文档库 最新最全的文档下载
当前位置:文档库 › 模流分析报告

模流分析报告

模流分析报告
模流分析报告

目录

第1章模流分析的概述 -------------------- 2

1.1模流分析的原理------------------------------------------------------------------------- 2

第2章塑件的工艺性分析------------------- 3

2.1原材料分析 ---------------------------------------------------------------------------------- 3

2.2结构分析 --------------------------------------------------------------------------------------- 3

2.3成形工艺分析------------------------------------------------------------------------------ 4

第3章成形方案的设计与分析 ---------------- 4

3.1成形方案的设计------------------------------------------------------------------------- 4

3.2初始方案的分析------------------------------------------------------------------------- 5

3.2.1侧浇口的特点--------------------------- 5

3.2.2工艺参数的设置------------------------- 5

3.2.3网格模型的划分------------------------- 6

3.2.4流动+翘曲的分析------------------------ 7

3.2.5冷却分析------------------------------- 9

3.3优化方案的分析------------------------------------------------------------------------ 10

3.3.1点浇口的特点-------------------------- 10

3.3.2冷却分析------------------------------ 13

第4章方案对比-------------------------------- 13

4.1浇口位置对比----------------------------------------------------------------------------- 13

4.2工艺条件设定----------------------------------------------------------------------------- 13

4.3实验结果对比----------------------------------------------------------------------------- 14

第1章模流分析的概述

1.1模流分析的原理

1. 粘性流体力学的基本方程

1)广义牛顿定律,反映了一般工程问题范围内粘性流体的应力张量与应变速率张量之间的关系,数学表达式为本构方程。

2) 质量守恒定律,其含义是流体的质量在运动过程中保持不变,动量守恒定律,其含义是流体动量的时间变化率等于作用于其上的外力总和,数学表达式为运动方程。

3) 热力学第一定律,其含义是系统内能的增加等于对该系统所作的功与加给该系统的能量之和,数学表达式为能量方程。

2. 塑料熔体充模流动的简化和假设

1) 由于型腔壁厚(z向)尺寸远小于其他两个方向(x和y方向)的尺寸且塑料熔体粘性较大, z向的速度分量可忽略不计,且认为压力不沿z向变化。

2) 充模过程中熔体压力不是很高,因此可视熔体为未压缩流体。

3) 由于熔体粘性较大,对于粘性剪切应力而言,惯性力和质量力都很小。

4) 在熔体流动方向(x和y方向)上,相对于热对流项而言,热传导项很小。

5) 在充模过程中,熔体温度变化不大,可认为比热容和导热系数是常数。1.2模流分析的作用

专业模流分析,可以预先发现模具可能存在的缺陷,节省试模、改模费用。如最佳进浇方案优化,帮助确定最佳的热流道进点位置,帮助确认有无“缩水”现象,结合线的位置,减轻翘曲变形,提高冷却效率缩短成型周期等等,对高品质的模具制作有确实的好处。总的来说,做模流分析的好处有以下几点:

1.省钱,节省不必要的试模、改模费用;

2.省时,缩短模具成型周期及制作周期,提升第一次试模成功率;

3.高质,预先发现模具可能存在的缺陷,避免试模后烧焊;

4.有利于树立良好的服务形象,增强信心,从而促使客人多下订单。

第2章塑件的工艺性分析

2.1原材料分析

1.材料品种:聚乙烯,即PE。

2.PE特点:乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。乙烯为结晶料,吸湿小,不须充分干燥,流动性极好流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分.不宜用直接浇口,以防收缩不均,内应力增大。注意选择浇口位置,防止产生缩孔和变形。收缩范围和收缩值大,方向性明显,易变形翘曲。冷却速度宜慢,模具设冷料穴,并有冷却系统。加热时间不宜过长,否则会发生分解。软质塑件有较浅的侧凹槽时,可强行脱模。可能发生融体破裂,不宜与有机溶剂接触,以防开裂

3.聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃), 化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,电绝缘性能优良。

4.成型温度为140-220℃。

5.注射工艺及模具条件

1)干燥处理:通常不需要进行干燥处理

2)熔化温度:121-141℃

3)模具温度:20-50℃

4)注射压力:可达到150MPa

5)保压压力:可达到100MPa

6)注射速度:为避免材料降解,一般要用相当低的注射速度。

7)流道和浇口:可以采用所有常规的浇口,如果注射成型较小的塑料件,最好采用针状浇口或潜伏式浇口,对于较厚部件,最好使用扇形浇口或潜伏式浇口的最小直径应为1mm,扇形浇口的厚度不能小于1mm。

2.2结构分析

1.从图2-1分析,该塑件的外形整体结构特征较为简单,却带有曲面的

特征,尺寸较小。壁厚均匀,符合最小壁厚要求。

2.塑件内外壁成型不是直角,而是成圆角,主要是为了在成型后,脱模

的时候塑件方便取出,不需要考虑侧抽芯装置。

图2-1塑料胶带圈的三维图

2.3成形工艺分析

1)结晶料,吸湿小,不须充分干燥,流动性极好流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分.不宜用直接浇口,以防收缩不均,内应力增大.注意选择浇口位置,防止产生缩孔和变形.

2)收缩范围和收缩值大,方向性明显,易变形翘曲.冷却速度宜慢,模具设冷料穴,并有冷却系统.

3)加热时间不宜过长,否则会发生分解.

4)软质塑件有较浅的侧凹槽时,可强行脱模.

5)可能发生融体破裂,不宜与有机溶剂接触,以防开裂.

第3章成形方案的设计与分析

3.1成形方案的设计

注塑模具的浇口是分流道与型腔之间的狭窄部分,它使由分流道输送来的熔融塑料产生加速,形成理想的流动状态而充满型腔。它是整个浇注系统最关键的环节,它的形式、尺寸及位置会影响塑料流的充填模式,对塑件质量影响很大,其形式和尺寸可以通过试模后的修模过程来调整。对于胶带圈的模流分析我采用了两种方案的对比,方案一(侧浇口) 方案二(点浇口)

方案一采用侧浇口,一模四腔的布局形式,对胶带圈的成形进行模塑分析,通过分析胶带圈在成形过程中的体积收缩率、剪切速率等,发现可能出现的各种成型缺陷以及生产效率的高低,从而确定合理的浇口位置,优化模具设计。

方案二采用点浇口,一模两腔的布局形式,对胶带圈的成形进行模塑分析,并通过胶带圈的浇口位置、充填时间、充填压力、锁模力、熔接痕、气穴等分析,

确定模具在充填过程中的利与弊,以及塑件的力学性能和外观质量,最后根据所出现的问题采用合理的设计方案,保证制品的质量。

3.2初始方案的分析

3.2.1侧浇口的特点

侧浇口,又叫边浇口,矩形浇口,是浇口种类中使用最多的一种,因而又称普通浇口,其截面形状一般加工成矩形,故又称矩形浇口。它一般开在分型面上,从型腔外侧进料。由于侧浇口的尺寸一般都较小,所以截面形状与压力、热量的关系可忽略不计。矩形浇口的长一般为0.5~3mm,宽为 1.5~3mm,浇口深为

0.5~2mm.

1)侧浇口的优点

A、截面形状简单,加工方便,能对浇口尺寸进行精细加工,表面粗糙度值小。

B、可根据塑件的形状特点和充模需要,灵活地选择浇口位置,如框形或环形塑件,其浇口可设在外侧,也可设在内侧。

C、由于截面尺寸小,因此去除浇口容易,痕迹小,制品无熔合线,质量好。

D、对于非平衡式浇注系统,合理地变化浇口尺寸,可以改变充模条件和充模状态。

E、侧浇口一般适用于多型腔模具,因此生产率很高,有时也用于单型腔模具中。2)侧浇口的缺点

A、对于壳形塑件,采用这种浇口不易排气,还容易产生熔接痕、缩孔等缺陷。

B、在塑件的分型面上允许有进料痕迹的情况下才可使用侧浇口,否则,只有另选浇口。

C、注射时压力损失较大,保压补缩作用比直浇口要小。

3)侧浇口的应用

侧浇口的应用十分广泛,特别适用于两板式多型腔模具,多用于中小型塑件的浇注成型。

3.2.2工艺参数的设置

表3-1 PE的成型条件

完成分析后,选择注塑原料为PE,其材料参数及成型条件,见表3-1。

3.2.3网格模型的划分

网格模型的划分网格划分采用表面网格类型(Fusion),网格平均边长1.71mm,网格单元为11203个三角形,节点数为5642个,最大纵横比小于10,匹配率大于88.2%,此网格构造良好,完全能满足分析要求

产品模型网格划分

3.2.4流动+翘曲的分析

图3-2 变形

变形是薄壳塑料制品注塑成形过程中常见的缺陷之一,不同材料,不同形状制品的翘曲变形规律差别很大,图3-2中最大的变形比例为0.1912,最小的比例为0.0711。

剪切速率是指流体的流动速相对圆流道半径的变化速率。塑料熔体注塑时流道的剪切速率一般不低于1000ˉS 浇口的剪切速率一般在100000ˉS—1000000ˉS 。

公式:剪切速率=流速差/所取两页面的高度差

表3-5 剪切速率

剪切速率最大值34149/s 剪切速率第95 个百分数300001/s

剪切速率平均值 5.1814 1/s

剪切速率标准差 5.2972 1/s

图3-9 缩痕指数

缩痕的定义及有关研究缩痕指的是注塑制品表面产生凹坑、陷窝或者收缩痕迹的现象,缩痕深度一般比较小,并不影响使用性能,但是由于它使光线朝不同方向反射,使得产品在外观上不可接受。如图3-9所示画圈的地方即为制品上产生的缩痕。

表3-6 缩痕指数

缩痕指数最大值0.2542 % 缩痕指数第95 个百分数0.213 % 缩痕指数最小值-0.1395 % 缩痕指数标准差0.2232 %

图3-10 体积收缩率

体积收缩率是保证塑件尺寸的重要因素,同时它也影响模具推出机构推出件

力的大小,如图3-10胶带圈的收缩率为20.18%,那么模具的型芯也就根据收缩率的大小相应变大,这样尺寸才能在规定公差范围之内。

表3-7 体积收缩率

体积收缩率最大值20.18 %

体积收缩率第95 个百分数18.85 %

体积收缩率第5 个百分数 3.45%

体积收缩率最小值0.027 %

体积收缩率平均值13.4636 %

体积收缩率标准差 2.7272 % 3.2.5冷却分析

图3-11 温度

图3-11为注塑过程中模具的温度分析,从分析图中来看,模具内部温度较高,最大温度为38.51 C。分析数据如下:

表3-8 型腔表面温度

型腔表面温度最大值38.51℃

型腔表面温度最小值25 ℃

型腔表面温度平均值30.13 ℃平均模具外部温度25 ℃

循环时间35.0000 s

3.3优化方案的分析

3.3.1点浇口的特点

点浇口又叫橄榄形浇口或菱形浇口,是截面尺寸很小的圆形截面浇口,是应用较广泛的一种小浇口,其结构和尺寸如图3-1所示。点浇口的特点是浇口位置可根据工艺要求灵活地确定,浇口附近塑件变形小,去浇口容易,可自动拉断,有利于自动化操作。点浇ロ适于成型低黏度塑料及黏度对剪切速率敏感的塑料,如PE、PP、ABS等。

变形是薄壳塑料制品注塑成形过程中常见的缺陷之一,不同材料,不同形状制品的翘曲变形规律差别很大,图3-2中最大的变形比例为0.1912,最小的比例为0.0711。

图3-3 填充结束时的压力

通过填充结束时的压力分布情况,分析充模压力分布是否平衡,在最后充型

的部分压力较低,见图3-3。注塑过程中的最大充填压力为40.21MPa,在充填结束后制品应处于保压阶段。

压力峰值- 最小值(在13.561 s) 40.21 MPa

3.0 tonne

锁模力- 最大值(在15.061

s)

2.484 g

总重量- 最大值(在22.699

s )

表3-4 保压阶段结束的结果

保压结束时间30.02s

总重量(制品+ 流道) 4.53g Array

图3-4 熔接痕

熔接痕会影响制品的力学性能和外观质量,但可以通过采用提高模具温度|、加大浇口尺寸、降低锁模力或在熔接缝处开设排气系统等措施来解决,从而降低废品率。根据图3-4分析结果,因没有大面积熔接痕,塑件表面质量不会受到影

响。

图3-5 锁模力

在注塑过程中,当熔体充满整个模具型腔,会产生使模具分型面胀开的力,导致飞边的产生,因此注射机合模机构必须有足够的锁模力,且锁模力必须大于胀开力。一般在满足要求的前提下,锁模力应尽可能的小,有利于节约能源、降低成本,延长注射机及模具的使用寿命,有利于模具的排气,控制填充状态。此胶带圈通过分析计算填充时所需的锁模力为3.0tonne。从图3-5可以看出,建议选用锁模力为1800kN以上的注射机。

图3-6 气穴

气穴导致的制品表面瑕疵及焦痕等缺陷,见图3-6。从图3-6可以看出,图中为塑件的气穴位置,非常容易产生困气的现象,模具设计时尽量靠近这些区域排布顶针、镶件等,以避免困气,以确保模具设计的合理性。

3.3.2冷却分析

图3-7 冻结时间

图3-7为点浇口时的产品所需冻结时间,其中最上面部分最快冻结,中部最后冻结,整个过程大约需要1.561s;

第4章方案对比

4.1浇口位置对比

方案一侧浇口方案二点浇口

从理论上讲,本产品最佳浇口位置应该在产品中央,但受产品表面质量的要求,是不能在产品中央设置浇口的。方案一采取侧浇口一点注射,一模两腔。而方案二点浇口一模四腔,通过模拟模流充填过程的数据分析比较,判断这四个浇口位置的优劣,为生产实际提供理论依据。

4.2工艺条件设定

冷却水道布置在模具上下位置,即定模和动模部分,水管直径为8mm,冷却水温度为25℃。。本实验采用PE材料,模流分析序列采用“冷却+流动+翘曲”进行模拟分析。设置模具表面温度为50℃,熔体温度为230℃,开模时间为5s,设置充填自动控制,速度/压力自动切换,保压控制由充填压力与时间决定,顶出温度为88℃,顶出时的冻结百分比为100%,并将翘曲原因分离,矩阵求解器为自动求解。

4.3实验结果对比

本实验从模流充填过程的三个方

面对浇口位置的选择进行分析对比:

流动分析、冷却分析、翘曲分析,并

且在每个方面只选择对产品质量影响

最大的因素进行分析

流动分析对比

方案一图4-3 方案二图4-4 流动分析选择对产品表面的熔接痕进行分析对比。熔接痕是出现在产品的表面,产品的外观要求是平整光洁,保证熔接痕处强度,不能开裂,浇口的位置的设计要尽量避免熔接痕的出现。图4-3所示是浇口设计在产品的侧面,从产品侧面进料,可以看到产品的侧面和上面都产生了熔接痕,其中产品侧面的熔接痕影响美观;图4-4所示是浇口设计在产品的上面,从产品上面的转轴上进料,则只在产品后面的避空处的转角产生熔接痕,并不影响产品的美观。

充填结束压力对比

方案一图4-5

方案二图4-6

图4-6为点浇口注射时所需的充填压力,它充填结束时所需的充填压力为40.21。图4-5为侧浇口所需的注射压力,它充填结束时所需的充填压力为38.19。充填压力是选用注射机型号的重要因素,充填结束时的压力越大,所需的注射机的注射压力越大,成本越高。通过比较点浇口充填结束时所需的压力比侧浇口要大,因此所需的成本也较高。冷却分析对比:

方案一图4-7

方案二图4-8

在相同的冷却条件下,产品的散热快、冷却效率高,产品冻结时间就会短,成型周期就会短,可以提高生产效率。图4-8为点浇口时的产品所需冻结时间,其中上间部分最快冻结,中部为最后冻结,整个过程大约需要1.56s;图4-7为侧浇口时的产品所需冻结时间,冻结的顺序与前面基本一样,整个过程大约需要4.21s。比较二个过程,点浇口比侧浇口节省时间2.65s,以及综合制品的充填时间对比来看,点浇口充填时间为0.4577s,侧浇口的充填时间为0.3668,通过对比侧浇口比点浇口提高生产效率。

翘曲分析对比

方案一图4-9

方案二图4-10

产品的总变形量显示的是模型上每一点空间的变形量,以所有变形前的节点为参照,显示模型变形后的形态。引起翘曲变形有多种因素,这里只考虑综合各种因素的总变形量的对比。如图4-9所示,侧浇口所产生的最大翘曲总变形量约为0.1912mm,而图4-10所示的点浇口所产生的最大翘曲总变形量约为0.1975mm,二者相比,最大翘曲总变形量下降了0.063mm,翘曲变形减少32%,提高了产品精度。

所以,确定最终使用方案二作为最终方案。

Moldflow地模流分析报告入门实例

基于MOLDFLOW的 模流分析技术上机实训教程主编: 姓名: 年级: 专业: 南京理工大学泰州科技学院

实训一基于Moldflow的模流分析入门实例 1.1Moldflow应用实例 下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。 图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。 (2)新建工程。启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。 图1-3 “创建新工程”对话框图1-4 工程管理视图 (3)导入模型。选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。选择STL文件进行导入。选择文件“lianpen.stl”。单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫

米。 图1-5 导入选项 单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。 图1-6 脸盆模型

图1-7 工程管理视窗图1-8 方案任务视窗 (4)网格划分。网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。双击方案任务

模流分析

模具厂所接的订单的和一般公司还有所不同,我们所接的模具订单各种各样,工程师的经验有时毕竟有限,所以借助MOLDFLOW软件的分析功能,对我们设计模 具帮助很大。 案例一,CLIP设计: 此产品为一固定U盘的回行夹。如下图所示,标示处变形量要求较严格,以往生产出来的产品此处变形常常偏大,我们的工程师考虑先在模具设计时设定一方向的预变形,与产品变形相互抵消,保证产品符合要求的。 问题是此预变形量多大,方向如何,设计前并不知道,如果预变形做的太大, 将来产品可能就会反向变形。 借助MOLDFLOW软件的FLOW COOL WARP 模块,我们先分析出产品可能的变形量,在此基础上,给模具设计一合理的预变形量,从而一次试模成功,获得 了合格的产品。 案例二,memorex-bottom-top 设计:[/ALIGN]

此套模具为2+2 模穴,设计为自然平衡流道,如果不经过分析,模具设计者很难想到要在标示处加强排气,只能等试模时才能发现问题,必然会提高整 个产品上市周期。 经过 MOLDFLOW 软件的FLOW 模块分析后,我们在模具设计前就已经知道此问题,所以模具设计时特意在此处加强排气,保证一次试模成功。 还有一些案例解决流道平衡的问题,一模多腔的设计,通过控制流道尺寸,保证流动平衡,从而控制产品品质。避免由于流动不平衡带来过保压现象,导致产品翘曲变形。同时优化流道尺寸设计还有一个很大的益处就是减小循环周期。因为很多情况下,产品最后凝固在流道处,如果流道尺寸偏大,必然提高整个循 环周期,同时还会产生较多的废料。 电池盖部件是我们运用MOLDFLOW软件的又一成功案例。此产品是薄壁件, 难以填充。 在分析之前,解决它的方法是加大注射压力,提高注射速度,强制成型。这样一方面机器磨损较大,另外高压高速注射后的产品内部残余应力较大,产品品质仍然无法保证。采用MOLDFLOW分析后,采用局部加厚的方法,改善了产品的流动,从而使公司可以利用较小的压力和较低的注射速度成型。提高了成型参数 的选择范围,改善了产品品质。 [/ALIGN] [/TD][/TR

Moldflow的模流分析入门实例

基于MOLDFLOW的模流分析技术上机实训教程 主编: 姓名: 年级: 专业: 南京理工大学泰州科技学院

实训一基于Moldflow的模流分析入门实例 1.1Moldflow应用实例 下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。 图1-1 脸盆造型图1-2 充填分析结果 (1)格式转存。将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。 (2)新建工程。启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。 图1-3 “创建新工程”对话框图1-4 工程管理视图 (3)导入模型。选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。选择STL文件进行导入。选择文件“lianpen.stl”。单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默

认为毫米。 图1-5 导入选项 单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。 图1-6 脸盆模型 图1-7 工程管理视窗图1-8 方案任务视窗

(4)网格划分。网格划分是模型前处理中的一个重要环节,网格质量好坏 直接影响程序是否能够正常执行和分析结果的精度。双击方案任务 图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显 示“生成网格”定义信息,如图1-9所示。 单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。 图1-9 “生成网格”定义信息图1-10 网格日志 划分完毕后,可以看见如图1-11所示的脸盆网格模型,此时在管理视窗新增加了三角形单元层和节点层,如图1-12所示。 图 1-11 网格模型图1-12 层管理视窗

MOLDFLOW模流分析结果解释

MOLDFLOW模流分析结果解释 解释结果的一个重要部分是理解结果的定义,并知道怎样使用结果。下面将列出常用结果的定义及怎样使用它们的建议,越常用的结果将越先介绍。 屏幕输出文件(screen output)和结果概要(results summary) 屏幕输出文件和结果概要都包含了一些分析的关键结果的总结性信息。屏幕输出文件还包含如图169所示的附加输出,表明分析正在进行,同时还提供重要信息。从它可以看出分析使用的压力和锁模力的大小、流率的大小和使用的控制类型。

图169. 充模分析的屏幕输出文件 屏幕输出文件和结果概要都有与图170相似的部分。它同时包含了分析过程中(第一部分)和分析结束时的关键信息。使用这些信息可以快速查看这些变量,从而判断是否需要详细分析某一结果,以发现问题。

图170. 结果概要输出 充模时间(Fill Time) 充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,但使用云纹图可更容易解释结果。云纹线的间距应该相同,这表明熔体流动前沿的速度相等。制件的填充应该平衡。当制件平衡充模时,制件的各个远端在同一时刻充满。对大多数分析,充模时间是一个非常重要的关键结果。 压力(Pressures) 有几种不同的压力图,每种以不同的方式显示制件的压力分布。所有压力图显示的都是制件某个位置(一个节点)、或某一时刻的压力。 使用的最大压力应低于注射机的压力极限,很多注射机的压力极限为140 MPa (~20,000 psi)。模具的设计压力极限最好为100 MPa (~14,500 psi)左右。如果所用注塑机的压力极限高于140MPa,则设计极限可相应增大。模具的设计压力极限应大约为注射机极限的70%。假如分析没有包括浇注系统,设计压力极限应为注射机极限的50%。 象充模时间一样,压力分布也应该平衡。压力图和充模时间图看起来应该十分相似,如果相似,则充模时制件内就只有很少或没有潜流。 具体的压力结果定义如下: ?压力(Pressure) 压力是一个中间结果,每一个节点在分析时间内的每一时刻的压力值都记录了下来。默认的动画是时间动画,因此,你可以通过动画观察压力随时间变化的情况。压力分布应该平衡,或者在保压阶段应保证均匀的压力分布和几乎无过保压。 ?压力(充模结束时)(Pressure (end of filling)) 充模结束时的压力属于单组数据,该压力图是观察制件的压力分布是否平衡的有效工具。因为充模结束时的压力对平衡非常敏感,因此,如果此时的压力图分布平衡,则制件就很好地实现了平衡充模。 ?体积/压力控制转换时的压力(Pressure at V/P switchover ) 体积/压力控制转换时的压力属于单组数据,该压力图同样是观察制件的压力分布是否平衡的有效工具。通常,体积/压力控制转换时的压力在整个注塑成型周期中是最高的,此时压力的大小和分布可通过该压力图进行观察。同时,你也可以看到在控制转换时制件填充了多少,未填充部分以灰色表示。

xxx模流分析报告

目录 第1章模流分析的概述---------------------- 2 1.1模流分析的原理---------------------------------- 2 第2章塑件的工艺性分析---------------------- 3 2.1原材料分析--------------------------------------- 3 2.2结构分析----------------------------------------- 3 2.3成形工艺分析------------------------------------- 4 第3章成形方案的设计与分析------------------ 4 3.1成形方案的设计----------------------------------- 4 3.2初始方案的分析----------------------------------- 5 3.2.1侧浇口的特点 --------------------- 5 3.2.2工艺参数的设置 -------------------- 5 3.2.3网格模型的划分 -------------------- 6 3.2.4流动+翘曲的分析------------------- 7 3.2.5冷却分析 ----------------------- 9 3.3优化方案的分析----------------------------------- 10 3.3.1点浇口的特点 -------------------- 10 3.3.2冷却分析 ----------------------- 13 第4章方案对比 ----------------------- 13 4.1浇口位置对比-------------------------------------- 13 4.2工艺条件设定--------------------------------------- 13 4.3实验结果对比--------------------------------------- 14

广达电脑铝镁合金压铸模流道设计参考2010版

工作说明书版次 A 壓鑄模流道設計標準作業規範 页数 壓鑄模 流道設計 標準作業規範 发行日期修订日期原发行单位核准审查拟稿

工作说明书版次 A 壓鑄模流道設計標準作業規範 页数1 目 錄 前言 一、 模具流道設計基本流程 二、 模具流道設計前相關資料 2.1、說明 2.2、設計時产品3D电子档确认及檢討 2.3、壓鑄機車壁圖設計確認及要求事由 2.4、产品外观面及特殊要求确认方能設計流道 2.5、产品流道設計及模流分析 三、 模具流道設計分析 3.1、模具流道设计要点 3.2、流道分析与检讨 四、 流道設計(鎂鋁鋅流道設計) 4.1、鎂合金壓鑄模設計標準化 4.1.1 鎂合金流道設計(125t)(灌口置下) 4.1.2 鎂合金流道設計(150t)(灌口置下) 4.1.3 鎂合金流道設計(200t)(灌口置下) 4.1.4 鎂合金流道設計(125t)(灌口置中) 4.1.5 鎂合金流道設計(150t)(灌口置中) 4.1.6 鎂合金流道設計(200t)(灌口置中) 4.1.7 鎂合金流道設計(350t)(灌口置中) 4.1.8 鎂合金流道設計(500t)(灌口置中)

X X科技(y y)有限公司 作业办法/规定(续页)编号 工作说明书版次 A 壓鑄模流道設計標準作業規範 页数2 4.1.9 鎂合金流道設計(650t)(灌口置中) 4.1.10鎂合金流道設計(350t)(灌口置下) 4.1.11鎂合金流道設計(500t)(灌口置下) 4.1.12鎂合金流道設計(650t)(灌口置下) 4.2、鋁合金壓鑄模設計標準化 4.2.1鋁合金流道設計(125t)(灌口置下) 4.2.2鋁合金流道設計(250t)(灌口置下) 4.3、鋅合金壓鑄模設計標準化 4.3.1 鋅合金流道設計(75t)(灌口置中) 4.3.2 鋅合金流道設計(100t)(灌口置中) 4.3.3 鋅合金流道設計(75t)(灌口置下) 4.3.4 鋅合金流道設計(100t)(灌口置下) 五、產品豎流道長度限制規範標準化 5.1、鎂合金豎流道長度設計標準化 5.1.1 鎂合金豎流道長度設計限制(125t,150t,200t) 5.1.2 鎂合金豎流道長度設計限制(350t,500t,650t)(12”,13.4”,15”) (產品尺寸) 5.1.3 鎂合金豎流道長度設計限制(500t.650t)(17”,19”)(產品尺寸) 5.2、鋅合金豎流道長度設計標準化 5.2.1 鋅合金豎流道長度設計限制(75t,100t) 5.3、鋁合金豎流道長度設計標準化 5.3.1 鋁合金豎流道長度設計限制(125t,250t) 六、模具結構設計規範標準化 6.1鎂合金(125T,150T,200T),鋅合金(75T,100T),鋁合金(125T,250T)模具結構 設計規範標準化。 6.1.1鎂合金(125T,150T,200T),鋅合金(75T,100T),鋁合金(125T,250T)模 具結構設計規範標準化(模具無滑結構)。 6.1.2合金(125T,150T,200T),鋅合金(75T,100T),鋁合金(125T,250T)模

转子体压铸工艺分析及模具设计-毕业论文

转子体压铸工艺分析及模具设计-毕业论文天津职业技术师范大学 Tianjin University of Technology and Education 专业:材料成型及控制工程 班级学号: 材料0711班-12号 学生姓名: 江艳平 指导教师: 段磊讲师 二〇一二年六月 天津职业技术师范大学本科生毕业设计 转子体压铸工艺分析及模具设计 Die-casting process analysis and die design of the rotor body 专业班级:材料0711班 学生姓名:江艳平 指导教师:段磊讲师 学院:机械工程学院 2012 年 6 月 摘要 压力铸造是目前成型有色金属铸件的重要成型工艺方法。压铸的工艺特点是铸件的强度和硬度较高,形状较为复杂且铸件壁较薄,而且生产率极高。压铸模具是压力铸造生产的关键,压铸模具的质量决定着压铸件的质量和精度,而模具设计直接影响着压铸模具的质量和寿命。因此,模具设计是模具技术进步的关键,也是模具发展的重要因素。

本文通过对转子体的分析,设计其压铸模具。对其铸件外形及其分析,得出一 模一腔的模具结构。根据铸件的特点,需要采用中心浇口,尽量避免铸件出现气孔、填不满、凝固不均等问题,由于大批量生产,采用二次分模,自动脱料的方案,并完成整体模具的设计,其中包括冷却水道的设计、浇注系统的设计、顶出系统的设计等,以及压铸机的选择与校核。此设计通过UG软件设计完成,在设计过 程中结合自身设计的结构选择标准件,来完成装配后的最终模具效果。在设计过程中,利用ProCast软件来分析压铸件的各项结果和从中发现问题,通过分析可以仿真出铝合金成型过程中的充填、流动、凝固等过程,准确预测铸件中可能存在的缺陷。利用模流分析技术,能预先分析模具设计的合理性,减少试模次数,加快产品研发,提高企业效率。 关键词:转子体;压铸;模流分析;模具设计 ABSTRACT Die-casting molding technology is playing a key role in non-ferrous metal structure forming processes. Die-casting process’s features are the strength and hardness of die casting on high, thin-walled castings with complex shape can be cast, and the production is efficient. The die-casting die is the key for the process of die casting, its quality decides the quality and accuracy of castings, and the design of the die-casting die affects its quality and operating life directly. Therefore, designing the die-casting die is the key to technological progress; it is also an important factor in the development of mold. In this paper,through analysis of the rotor body, design of its die-casting mold, through its shape and analysis, obtain the one mode of

xxx模流分析报告

第1章模流分析的概述 -------------------- 1 模流分析的原理 --------------------------------------------------- 1 第2章塑件的工艺性分析------------------- 2 原材料分析 --------------------------------------------------------- 2 结构分析 ------------------------------------------------------------ 3成形工艺分析 ------------------------------------------------------ 4 第3章成形方案的设计与分析 ---------------- 4成形方案的设计 --------------------------------------------------- 4 初始方案的分析 --------------------------------------------------- 5侧浇口的特点-------------------------------- 5 工艺参数的设置------------------------------ 6 网格模型的划分------------------------------ 6 流动+翘曲的分析----------------------------- 7 冷却分析------------------------------------ 9优化方案的分析 -------------------------------------------------- 10点浇口的特点------------------------------- 10 冷却分析----------------------------------- 13第4章方案对比-------------------------------- 14浇口位置对比 ----------------------------------------------------- 14工艺条件设定 ----------------------------------------------------- 14实验结果对比 ----------------------------------------------------- 14

-xxx模流分析报告

目录 第1章模流分析的概述 -------------------- 2 1.1模流分析的原理------------------------------------------------------------------------- 2 第2章塑件的工艺性分析------------------- 3 2.1原材料分析 ---------------------------------------------------------------------------------- 3 2.2结构分析 --------------------------------------------------------------------------------------- 3 2.3成形工艺分析------------------------------------------------------------------------------ 4 第3章成形方案的设计与分析 ---------------- 4 3.1成形方案的设计------------------------------------------------------------------------- 4 3.2初始方案的分析------------------------------------------------------------------------- 5 3.2.1侧浇口的特点--------------------------- 5 3.2.2工艺参数的设置------------------------- 5 3.2.3网格模型的划分------------------------- 6 3.2.4流动+翘曲的分析------------------------ 7 3.2.5冷却分析------------------------------- 9 3.3优化方案的分析------------------------------------------------------------------------ 10 3.3.1点浇口的特点-------------------------- 10 3.3.2冷却分析------------------------------ 13 第4章方案对比-------------------------------- 13 4.1浇口位置对比----------------------------------------------------------------------------- 13 4.2工艺条件设定----------------------------------------------------------------------------- 13 4.3实验结果对比----------------------------------------------------------------------------- 14

从模具上降低压铸成本

从模具上降低压铸成本 马福强 重庆大江美利信压铸有限责任公司技术中心 摘要:压铸行业是一个高成本制造行业,设备投资大,模具费用和劳动成本高。在当今竞争如此激烈的环境下,如何尽可能地减少成本成为企业生存的关键。本文介绍如何在模具上少模具费用,降低压铸生产成本。 关键词:压铸模具成本 引言 压铸生产成本由制造成本和期间成本构成,其中制造成本包括:人工费、原材料费、设备费及制造费;而期间成本则包括:销售费用、管理费用、财务费用。其中原材料费用、设备费用和模具费用是构成压铸成本的主要因素。就模具费用而言,有从几万到上百万不等。当原材料和设备定下来后,我们则可以在模具上做文章,去减少模具的费用。 1 降低模具费用的方法 1.1 模流分析降低成本 在过去我们很多都是依靠工程师的经验来设计和制作模具,这种模具开发设计的方式需要重复试模,然后根据试模结果不断地修改模具,每一次试模都会增加费用,而且增加了产品的开发周期。随着CAD/CAE技术的发展,现在很多公司都购买了模流分析软件,通过模拟分析,工程师能够看到压铸时模具内部金属液的真实流动和凝固情况,提前发现缺陷的位置,从而优化模具设计和工艺,降低成本。随着模具制作周期的变短,很多模流分析真正用到实处的却不多,只是为了应付客户而去做它。我们应该重视模流分析的重要性,在接到客户3D图后,先将3D 流道图画出来做模流分析,然后进行分模和出图。模具设计和模流分析同时进行,待模拟运算完成,就可以根据模拟结果进行相应的模具调整了。 1.2 采用型芯减少模具费用 很多产品的设计都具有相似性,通过局部的修改就可以用在其他机型上。对于这种产品,我们可以考虑将不同处做成型芯,一副模具做多款产品。例如,我们常见的天然气表,两端的天然气接头有很多种不同的类型,一种接头就是一款产品。 我们可以将接头处做成不同的型芯,几款产品共用一套模具,这样就可以减少几副模具的成本。如果型芯采用快换结构,就可以在较短的时间内直接生产另一种产品,而无需将整副模具下模,然后在上另外一副模具生产。 1.3 旧模具再利用减少模具费用 很多模具达到使用寿命后就需要开复制模,新开一套复制模就需要增加一套模具的费用。对于旧模具,我们可以将其再利用,其模框还是好的,我们只需重新做一套模仁,用新模仁配旧模框,这样就可以减少一套模框的成本。有些模具使用的时间不是很长,则可以将旧模仁降面处理,用旧模仁做新模具,这样就可以减少一套模具的成本。 1.4 模具设计应长远考虑 模具设计的好坯关系到一款产品的成败,因此我们在模具设计时,除了考虑产品的成型外,还必须考虑当前的设计是否会对后期产生不良的结果。例如,模具上是否留有预留渣包、预留顶出、进浇。模具设计中,产品上的R角是让很多工程师头痛的问题。在模型更改时,R角除了让设计人员花费更多的时间外,有些时候正是因为没有长完考虑,忽视了R角的存在,产品压出来后模具必须降面修模,大大地增加了不必要的成本。因此,模具设计必须小心谨慎,长完考虑,避免增加不必要的成本。 2 总结 压铸行业中,通过对模具设计的优化和对现

模流分析解析(详细) by heyy

AMI 分析详解 7.1.1 1.直浇口 直浇口直接由主流道进入型腔。 2.侧浇口 侧浇口是叫口中最简单又最常用的浇口。侧浇口的深度尺寸的微小变化可使塑料熔体的流量发生较大变化。 3 . 护耳式浇口 使用侧浇口对于某些开阔的型腔,可能会产生喷射呵蛇形流等现象。护耳式浇口可将喷射、气纹控制在护耳上,需要的话,可用后加工手段去除护耳,使制品外观保持良好,常应用于高透明度平板类制件。 4 . 环形浇口 根据制件的几何形状可以分为对称和不对称两种类型。当需要设置多个浇口时,对称形状的制件要遵循每个浇口流长相等和填充体积相等的原则;不对称形状的制件由于本身就不能达到自然平衡,所以每个浇口的填充体积和压力降都不尽相同。不对称形状的制件可能需要较多的浇口数目以获得平衡流动或者产生何莉莉的熔接线位置,同时降低注塑压力。 5 . 隔膜浇口 通常在环状制件的内径中设置浇口,该制件通常具有薄壁区域。 7.1.3 分析结果解释 1 . 浇口位置日志 浇口位置日志给出了分析的一些日志,其中一条主要信息是给出了最佳浇口位置的节点。 2 . 流动阻力指示器 表示熔体的流动前沿离不同浇口位置的流动阻力。流动阻力的值从0到1的变化,阻值越高表明熔体流动越困难。 3 . 浇口匹配性 表示浇口位置合理性的因子分布图,因子值越小,浇口位于这个位置的成型合理性越小。 7.2充填分析 (必须)1 . 充填时间 充填时间显示了熔体填充随时间的变化而变化情况。从充填时间可以看出产品的 填充是否平衡。产品的两个末端的充填时间为****和****,相差****,效果****。 (必须)2 . 速度\压力切换时的压力 V\P转换时刻压力属于单组数据,通常,V\P转换时刻压力在整个注塑周期中时最

xxx模流分析报告

目录 第 1 章模流分析的概述---------------- 2 1.1 模流分析的原理----------------- 2 第2章塑件的工艺性分析- --------------- 3 2.1 原材料分析-------------------- 3 2.2 结构分析--------------------- 3 2.3 成形工艺分析------------------ 4 第 3 章成形方案的设计与分析------------- 4 3.1 成形方案的设计----------------- 4 3.2 初始方案的分析----------------- 5 3.2.1 侧浇口的特点- ------------------------- 5 3.2.2 工艺参数的设置- ----------------------- 5 3.2.3 网格模型的划分- ----------------------- 6 3.2.4 流动+翘曲的分析- ---------------------- 6 3.2.5 冷却分析- ---------------------------- 9 3.3 优化方案的分析------------------ 9 3.3.1 点浇口的特点- ------------------------- 9 3.3.2 冷却分析- -------------------------- 12 第 4 章方案对比------------------ 13 4.1 浇口位置对比----------------------------- 13 4.2 工艺条件设定----------------------------- 13 4.3 实验结果对比----------------------------- 13

注塑模流分析报告

华东交通大学 螺丝刀盒moldflow实训说明书 QZ 2015/11/30 课程:材料成型计算机仿真 学校:华东交通大学 学院:机电工程学院 专业:材料成型及控制工程 班级:2012模具2班 姓名:覃钊 学号:20120310040 指导老师:匡唐清

1、三维造型 利用UG8.0设计出模型如下图1.1、1.2表示 图1.1 实物图图1.2三维图 模型参数长宽高为143*85*19.5,主壁厚为1.5mm。二维图如图1.3 图1.3二维图 壁厚均匀,但在盖钩和挂孔处厚度和壁厚相差较大,体积收缩率在这两个地方应该会出现一些问题。主分型面在上表面,侧面有卡勾及圆孔,需要做侧抽芯。材料选用普通PP材料。

模型建好之后导出为IGES格式。 2、模型修复与简化 打开CAD Doctor后导入IGES模型,检查并修复,直到所有错误都为0,修复完成 之后将模型导出,格式为udm格式。 3、moldflow模流分析 3.1网格划分 (1)新建工程,输入工程名称,导入模型,在导入窗口选择双层面。 (2)网格划分,网格变长取壁厚的3倍,为4.5mm,合并容差默认为0.1,启用弦高控制0.1mm,立即划分网格,划分之后打开网格统计,看到网格的基本情况,不存在自由边和多个连通区域的问题后进行下一步。一般来说初始划分的网格纵横比都比较大,所以要进行修复。纵横比诊断结果如图3.1.1:最大纵横比达到了45.57。 图3.1.1初次纵横比诊断 3.2网格诊断与修复 点击【网格】——【网格修复向导】,前进到选择目标纵横比,输入6,点击修复。之后在进行手动修复,通过合并节点移动节点等方式进行,直到得到满意的结果。如下图3.2.1:

FLOW3D压铸模流分析项目方案书

压铸模拟分析软件方案书 https://www.wendangku.net/doc/678161385.html, 021-********

目录 1、Flow Science 公司简介 (3) 2、上海析模计算机科技有限公司简介 (4) 3、代表性客户 (5) 4、方案描述 (7) a)Flow3d软件在铸造方面上的应用 (7) b)Flow3d的效益 (8) c)Flow3d软件的技术优势 (10) 5、FLOW3D在压铸行业的成功案例 (15) 6、技术支持及培训方案 (16) a)培训方案 (16) b)技术支持 (18) 附录一、推荐硬件配置 (19) 附录二、FLOW-3D?功能规格 (20)

1、Flow Science 公司简介 1963年,由 Dr. C.W. Hirt 在新墨西哥州美国国家实验室所开发 1980年,由 Dr. C.W. Hirt 创立的Flow Science,于美国新墨西哥州 Alamos 成立,其目标是提供一套计算精确的 CFD(计算流体 力学)软件。 1985年,FLOW-3D? 商业版正式释出。其特有的VOF(Volume of Fluid)计算技术,能够提供极为真实且详尽的自由液面(Free surface)流场信息,在产品开发上可作为非常重要且可靠的参考 依据。广泛应用于: 压铸成型 Die Casting 消失成型 Lost Form 砂模成型 Sand Core 半固态成型 Semi-Solid 连续铸造 Continuous Casting 精密铸造 Precision Casting 倾斜铸造 Tilt-Pour Filling 腊的射出模拟 由于其精确而稳定的特性,20多年来,FLOW-3D? 已受到如美国火箭实验室、海军、英国水利署、利物普大学、通用汽车及HP…等 等许多重要研究单位与国际大厂的肯定。

模流分析人员层次与要求知识分享

模流分析人員層次與要求Autodesk moldflow和moldex的差異性大致體現在軟體操作和結果顯現,理論相同,細節不一樣 1.模流分析人员的层次及其所达到的境界大致可分为以下几类: “见山是山,见水是水”:这个级别属于“技术”级别,即重点还停留在分析软件的操作技术掌握上面,动手的部分要比动脑的部分多很多。能熟悉模流分析软件的基本操作和使用环境,能输入产品划分网格建立流道水管进行分析输出结果,但对很多东西还停留在表面,对结果的内涵没有深刻清晰的理解,结果是是什么就是什么,他不大可能去考虑成型条件的变化,网格、算法之类问题引起的分析误差等等因素。 “见山不是山,见水不是水”:这个级别的人已经上升到“战术”级,有一定的模流分析持续应用经验,对实际设计、塑胶材料和注射成型工艺方面有越来越深刻的理解,随着分析案例的增多,他就会慢慢地发现,产品成型出现的缺陷与问题不只是模流分析结果表面显示的那么简单,而是变得越来越复杂。 比如,到了这个级别,再看熔合线,就不再是Weld lines分析结果上显示的那几条线,而是与产品的材料类别,壁厚,是否有玻纤等添加剂,流道浇口位置,成型时的温度、速度、压力,熔合角度,网格疏密、厚度定义是否正确,是否有滞流,困气,喷射等等都有千丝万缕联系的一种现象。 “见山还是山,见水还是水”:这个级别应该属于“战略”级,这一级别的人做模流分析时早已超越了一般的模流分析的范畴,而是把材料、产品、模具、注塑成型、产品二次加工、产品质量、加工效率、生产成本、经济效益等等综合起来全盘考虑。他有丰富的模流分析及相关领域的知识、经验、理论与实践的积累,最终完成了由量变到质变的转化。他能够轻易地看到问题的实质与核心,直指要害与根本,而不会为其它看似有关的因素迷惑。这是一种洞察问题后的返璞归真,对问题的本质常常能有一个非常清晰的认识。如果说前一级别的人对问题的认识还依稀有点雾里看花水中望月的感觉,这个级别的人就已经象具有“彗眼”的菩萨一样,能够把问题看得清清楚楚明明白白真真切切。这时候他也使用模流分析软件,但意义和前一级别的人却已经大不一样。前一级别的人还在使用模流分析软件来寻找问题可能发生的原因,而这一级别的人大多是用模流分析软件来验证他早已经在头脑中分析出的原因。在这个阶段,模流分析软件本身从某种意义上甚至可以说已经可有可无(当然,获得精确的数据必须由分析软件来完成,再怎么厉害的人也画不出moldflow那样的输出结果图,给出精确到0.001的变形数据)。可以说,这个级别已经相当于“独孤求败”剑学境界的最高级别——“无剑”,外功,内力等等对他都已经是小儿科,武学理论与修养的日臻圆满才是他所在意的。到了这个级别,那才算是真正的高手了。“高山仰止。景行行止;虽不能至,心向往之。” 2.CAE作用,CAE的基本流程,在注塑成型中的作用?(P8)CAE作用:在模具加工前,在计算机上对整个注射成型过程进行模拟分析,准确

探讨压铸模具的创新设计

探讨压铸模具的创新设计 作者:刘付国宇(广东东莞) 【摘要】压铸模具的创新设计主要有两大方向:一、使用“压铸模流分析软件”来辅助分析和选定模具设计方案;二、压铸模具结构的创新设计。铸模具结构的创新设计有利于提高模具的寿命,降低模具成本;有利于提高产品的质量和生产效率;有利于提高公司的竞争力。关键词:模流分析模具结构创新设计 Innovative design of die casting die 【abstract】There are two main aspects of the innovative design of die casting die: first,the use of"die casting mold flow analysis software"to assist in the analysis and selection of mold design;two,die casting mold structure of innovative design.The innovative design of the mold structure is helpful to improve the service life of the mold and reduce the cost of the mold,which is helpful to improve the product quality and production efficiency. Key word:Mold flow analysis Die structure Innovative design 1、引言 由于金属压制品有着较高的强度和硬度,可以满足很多产品的性能要求;同时它的外观效果看起来显得较高档、质感舒适,容易得到消费者的喜欢和追求;所以现在的机械行业、家电行业、汽车行业等对金属压制品的使用率越来越高;直接带动压铸行业和压铸模具行业的发展。中国的压铸模具行业兴起和发展相对国外较晚;与压铸模具行业相配套的设计人才和制造人才相对缺乏;压铸模具设计和制造的经验相对不够丰富,技术相对不够成熟。所以,压铸模具行业的发展就需要压铸模具的创新设计推动和引领。 2、压铸模具的创新设计之模流分析 压铸模具设计流程与塑胶模具设计流程十分相似,都需要考虑进料方式和模具结构布局。但是,压铸模具设计还要考虑如下重点:多个进料浇口之间的位置分布与分配;进料浇口截面积的计算,各级流道截面积的计算;渣包布置的位置,排气槽是否合理;还要考虑怎么样排出披锋、排出喷脱模剂残留液;防止披锋、废渣的堆积等等。 2.1使用“压铸模流分析软件”来辅助分析和选定模具设计方案。

模流分析报告解析

Moldflow的计算方式 ?模具内熔体的前端不断前移来连接各节点。 ?熔体不断填充相邻的节点,直到零件上所有的节点都被 填充。 ?熔体和模具接触时会形成一个凝结层。 Frozen Layer elements Fountain Flow Region nodes

Moldflow中的前处理 ?目前主流的模流分析软件是Moldflow,该软件只接受三角形单元以及四面体单元。 ?高质量的有限元网格是有限元分析精度的保障。 ?对于注塑件,在Moldflow主要有以下三种网格划分方式:中性面、双面流、3D实体。 抽取零件的中性面,然后在中 性面上划分网格(三角形单元) 抽取零件的表面做为模具的形 芯形腔面,然后进行网格划分 (三角形单元) 零件上下表面上的网格要求 一定的对应关系,网格划分要 求高 单元数量大,运算效率低零件中性面双面流3D实体 优点网格少,分析速度快,计算效 率高 无需抽取中性面,后处理更具 真实感 计算精度高 划分方法 缺点中性面抽取困难、分析精度低

网格质量检查: 1) 不能存在自由边界。 2) 双面流分析,上下表而的网格匹配率必须达到 90%o 3) 三角形单元的边长比:平均<3:1,最大<6:lo 4) 网格之间没有交叉和重叠。 5) 网格的大小。 网格大小对计算精度的影响 自山边界 Moldflow 网格质量检查报告

分析输入一定义浇口类型 侧浇口 (Gate)热浇道(Hot Drop) 潜伏式浇口(Sub) 旦接浇口 (Spnie) 香蕉型(Cashew) 阀式(Valve) GM PPC Requirement Gate Type 定义浇口尺寸 定义浇口数量 定义浇口位置

如何看懂一份模流分析报告

如何看懂一份模流分析报告 产品设计要确保所设计的零件是可以开模的,现在可以借助CAE软件(Moldflow、C-Mold、Z-Mold等),对塑料件的注塑、保压、冷却以及翘曲等工艺过程进行有限元模拟。开模检讨时,模具厂商一般都会提供模流分析报告,作为产品设计工程师,我们要如何去解读一份模流分析报告呢?首先要理解结果的定义,并知道怎样使用结果,下面将列出常用结果的定义及怎样使用。工艺过程参数的设置:工艺过程参数(Process Setting)包括了整个注塑周期内有关模具、注塑机等所有相关设备及其冷却、保压、开合模等工艺的参数。因此,过程参数的设定实际上是将现实的制造工艺和生产设备抽象化的过程。过程参数的设定将直接影响到产品注塑成型的分析结果。1.充填分析(1)充模时间(Fill Time)充模时间显示的是熔体流动前沿的扩展情况,其默认绘制方式是阴影图,使用云纹图更容易解释结果。云纹图以等值线形式显示结果,等值线间距比较均匀,稀疏的等值线表示流速缓和,密集的等值红表示流速湍急。产品上的任意位置,都可以显示熔体到达该位置的时间。对大多数分析,充模时间是一个非常重要的关键结果。较为均衡的填充过程主要体现在:熔体基本上在同一时刻到达型腔各个远程。利用充模时间结果可以发现以下一些注塑过程中出现的问题:1)短

射(Short Shot)和迟滞(Hesitation),短射部位以灰色显示,非常明显,还有一种情况,当等值线密集在一个很小的区域内时往往会发生迟滞现象,从而导致短射。2)过保压(Overpacking),如果熔体在某一个方向的流路中上首先充满型腔,就有可能发生过保压的情况,过保压可能会导致产品不均匀的密度分布,从而使产品超出设计重量,浪费材料,更为严重的是导致翘曲发生。(2)熔接线(Weld lines)当两股熔体的流动前沿汇集到一起,或一股流动前沿分开后又合到一起时,就会产生熔接线,如熔体沿一个孔流动。当有明显的流速差时,也会形成熔接线,如厚壁处的材料流得快,薄壁处流得慢,在厚薄交界处就可能形成熔接线。熔接线可与充模时间一起显示,也可与温度图和压力图一起显示。减少水口的数量可以消除掉一些熔接线,改变水口位置或改变产品的壁厚可以改变熔接线的位置。(3)包风(Air traps)当材料从各个方向流向同一个节点时就会形成包风。包风显示在其真正出现的位置,当包风位于分型面时,气体可以排出,存在包风的位置应该在模具上设置排气槽。产品上的包风应该消除,改变产品的壁厚、水口位置和注射时间都有助于消除包风。(4)流动前沿温度(Temperature at flow front)流动前沿温度是聚合物熔体充填一个节点时的中间流温度。因为它代表的是截面中心的温度,因此其变化不大。流动前沿温度图可与熔接线图结合使用。熔接线形成时熔体的温度

相关文档
相关文档 最新文档