文档库 最新最全的文档下载
当前位置:文档库 › 实验六 SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量(预习报告)

实验六 SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量(预习报告)

实验六 SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量(预习报告)
实验六 SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量(预习报告)

生物化学实验预习报告

实验六SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量

一、研究背景

电泳技术的发明是人们在分离纯化技术中的“差异转换”思路上一次伟大的飞跃,在实际应用的过程中,人们发现了它在大量样品纯化上的劣势以及分析上的突出优点,进行“扬长避短”,最终将其作为生物大分子分离鉴定的常用技术而被保留与发展下来。自电泳技术发明以来,生命科学领域迅猛发展,人们对生物大分子的研究不能仅仅停留在分离、纯化、鉴定这些宏观操作上,需要确定它们的分子量进行更加深入的研究,所以迫切需要一种新技术能够测定像蛋白质这样的生物大分子的相对分子质量。人们又把目光转移到迅猛发展的电泳技术上来,试着去寻找突破口。在之前的非变性电泳技术中,生物大分子得以分离的基础是基于三方面的差异,即分子质量、分子大小与形状、电荷性质。如果要测定种生物大分子的分子质量,直接测定难度很大,这就需要首先找到一个参照标准(标准蛋白),在待测蛋白与标准蛋白之间进行“差异缩小”,将他们在电场中泳动速度的大小仅仅体现为分子量上的差异,再通过寻求某种线性关系就能得到蛋白质样品的分子质量。此外,人为地借助其他物质处理来缩小这些差异也就意味着破坏蛋白质的原有结构,变性电泳便成了必然。这一步是整个技术的核心,也是最难的突破的。1967年,Shapiro年首次报告了SDS-聚丙烯酰胺凝胶电泳系统,根据他对11种蛋白质电泳获得的结果,发现蛋白质(或亚基)分子量的对数与蛋白质分子的迁移率之间有直线关系。随后,Weber等人进行深入研究,肯定了Shapiro 的发现,确立了以连续的磷酸盐系统作为电极缓冲系统的SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量的新方法。后来,Laemmli将SDS电泳和Davis的不连续盘状电泳结合起来,设计出了不连续的SDS-Tris-甘氨酸系统。[1]由于SDS-聚丙烯酰胺凝胶电泳具有分辨率高、重复性好、微量、设备简单、价廉和操作容易、迅速等优点,因而得到了迅速的发展和广泛的应用,目前已成为蛋白质研究的有力工具,广泛地应用于分子生物学、生物化学、遗传学、病理学、微生物学和植物生理学等学科的研究中。

在本次实验中,我们采用SDS-聚丙烯酰胺凝胶电泳(Tris-甘氨酸系统)测定蛋白质分子量,体会学习这一技术的发明历程、原理及操作。

二、研究目标

1.体会SDS-聚丙烯酰胺凝胶电泳技术的发明历程;

2.进一步学习和掌握垂直板聚丙烯酰胺凝胶电泳的原理与方法;

3.学习和应用SDS-聚丙烯酰胺凝胶电泳法测定蛋白质分子量。

三、研究策略

1.同时对蛋白质样品和标准蛋白进行处理,消除他们在形状以及电荷量上的差异,仅剩下分子量的差异;

2.将处理后的样品和标准蛋白在相同条件下进行电泳,他们的迁移速度不同,经过一段时间后,会体现出迁移距离上的差异。

3.分析相对迁移率和蛋白质分子质量之间的关系,作出图像,计算样品蛋白的相对迁移率,从图像上直接得出它的分子质量。

四、研究方案及可行性分析

1.研究方案

SDS(十二烷基硫酸钠,sodium dodecylsulfate)是一种很强的阴离子表面活性剂,它以其疏水基和蛋白质分子的疏水区相结合,形成牢固的带负电荷的SDS-蛋白质复合物。SDS 和蛋白质的结合是高密度的,其重量比通常为1.4 : 1,由于这种高密度的结合,新引入的净电荷远远超过蛋白质分子原有的净电荷,从而消除或极大地降低了不同蛋白质分子之间原有净电荷的差异,即消除了由于各种蛋白质所带净电荷的不同对电泳迁移率的影响。

SDS-蛋白质复合物具有均一的电荷密度、相同的荷质比。据流体力学等方面的研究推测,SDS-蛋白质复合物呈紧密的椭圆形或棒状结构,棒的短轴是恒定的,在18A的数量级,与蛋白质的种类无关;棒的长轴是变化的,而且与蛋白质的分子量成正比。这就是说,SDS和蛋白质结合后所形成的SDS-蛋白质复合物,消除了由于天然蛋白质分子形状的不同对电泳迁移率的影响。

带电分子电泳迁移率的大小取决于三个方面,即带电荷的多少、分子量的大小和分子的形状。根据上面的分析,SDS作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。SDS和蛋白质结合后使其电泳迁移率仅取决于蛋白质分子量的大小,因而可以通过比较未知分子量的蛋白质和已知分子量的蛋白质分子的迁移率,测定出未知蛋白质的分子量。

2.可行性分析

从基本的实验原理、到研究方案和具体操作,再考虑实验器材和时间等因素,本实验均有较大的可行性。在具体操作中需要注意以下问题:

(1)SDS处理样品之后保证蛋白质的迁移率仅取决于分子量大小。操作时,首先应保证SDS单体的浓度,当单体浓度大于1mmol/L时大多数蛋白质与SDS结合的重量比为1:1.4,才能消除电荷的差异。还要注意加入还原剂如巯基乙醇,充分断开二硫键,在SDS和还原剂共同作用下,使蛋白质解聚成多肽链,随后与SDS充分结合,消除结构(形状)差异。

(2)电泳操作中一系列条件的控制。此处不再赘述。

五、具体实验设计

1.实验仪器及试剂

仪器:垂直板电泳槽及附件、直流稳压电源(600V,100mA)、10mL注射器1支;微量进样器(100μl×1);

器具:微量可调手动移液器;

试剂:三羟甲基氨基甲烷(Tris)、丙烯酰胺(Acr)、甲叉双丙烯酰胺(Bis)、十二烷基硫酸钠(SDS)、N,N,N’,N’-四甲基乙二胺(TEMED)、过硫酸铵、甘油、巯基乙醇、溴酚蓝、考马斯亮蓝R-250、甘氨酸、盐酸、乙酸、冰醋酸;

材料:实验四麦清蛋白脱盐样品。

2.实验步骤[2]

(1)电泳槽的安装(10min)

洗液浸泡玻璃板→热水、馏水冲洗→干燥,装入硅胶夹套,垂直固定于两半槽之间(对角线螺旋依次拧紧)→高玻板一侧注入2%的琼脂(防漏胶)

(2)制胶(30min)

小烧杯中混匀立即灌胶(电泳槽微倾)→灌至距短玻璃片顶端2cm→放平电泳槽,立即用滴管覆盖水层→界面二次出现时,静置将水倒出(余下的水用滤纸片吸干)

C. 向电泳槽内倒入电极缓冲液,短玻璃片一侧没过顶端,长玻璃片没过电极丝。小心拔梳子准备点样

(3)样品的处理(15min)

Marker:市售标准样品按要求处理;

待测样品:麦清蛋白初步提取的凝胶过滤脱盐实验所获峰值管制备的SDS-PAGE样品。

将上述样品均置于沸水浴中加热5min,冷却上样(上样量:Marker 20μl;待测样品梯度上样,4μl、10μl、20μl、30μl、50μl)。

(4)电泳(2.5h)

取稳流状态,浓缩胶15mA,分离胶20mA(注意电压)。特别注意溴酚蓝前沿指示剂不能跑丢。

(5)检测(2.5h)

取胶板置于水中浸泡10min→胶板置于染色液中加热2h(通风橱)→脱色液脱色至条带清楚→观察结果。

(6)测量蛋白质分子的迁移率和未知样品的分子量

将溴酚蓝迁移距离定为d1,蛋白质迁移距离定为d2,根据下面公式计算各种蛋白质的迁移率R m:R m=d2

d1

以标准蛋白迁移率为横坐标,对应的分子量为纵坐标,在半对数坐标纸上作图,得到一条直线。根据未知样品的迁移率,在直线上查出对应的分子量,注意纵坐标原点的选择。

3.实验所需时间预计

整个实验预计所用时间约为6h。

六、参考文献

[1]朱广廉,杨中汉. SDS-聚丙烯酰胺凝胶电泳法测定蛋白质的分子量. 植物生理学通讯[J]. 1982,02: 43~47.

[2]中国农业大学生物学院. 生物化学实验指导[M]. 中国农业大学自编教材. 42~45.

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

蛋白质测定实验报告

蛋白质测定实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

血清蛋白质醋酸纤维薄膜电泳实验报告

血清蛋白质醋酸纤维薄膜电泳实验报告 实验名称血清蛋白醋酸纤维薄膜电泳及其定量 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目的 1.1.学习醋酸纤维薄膜电泳的基本原理和操作方法; 1.2.了解电泳技术的一般原理; 1.3.掌握电泳分离血清蛋白质及其定性定量的方法。 二、实验原理 2.1.血清中各种蛋白质的等电点不同,一般都低于pH7.4。它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中各种蛋白质分子大小、形状及所带的电荷量不同,在醋酸纤维素薄膜上电泳的速度也不同。因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 2.2.血清中不同蛋白质的等电点、分子量及含量 血清蛋白质等电点分子量占总蛋白的% 清蛋白 4.64 69,000 57~72 α1-球蛋白 5.06 200,000 2~5 α2-球蛋白 5.06 300,000 4~9 β-球蛋白 5.12 90,000~150,000 6.5~12

γ-球蛋白 6.85~7.3 156,000~950,000 12~20 缓冲液pH=8.6,pI<pH。 血清蛋白带负电荷,在电场中向正极移动。 预测血清蛋白电泳区带图 血清蛋白依次分为清蛋白,球蛋白的α1、α2、β、γ五个区带 2.3.①膜条经过氨基黑10B染色后显出清晰色带;②各色带蛋白质含量与染料结合量基本成正比;③可将各色带剪开,分别溶于碱性溶液中;④用分光光度法计算各种蛋白质的百分数。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①样品:健康人血清(新鲜、无溶血);②巴比妥-巴比妥钠缓冲液(pH8.6,离子强度0.06mol/L);③氨基黑10B染色液;④漂洗液;⑤洗脱液:0.4mol/NaOH溶液。 3.1.2.实验器材:①V-1100分光光度计(×1);②恒温水浴箱(×1);③试管(×6)、试管架(×1);④1000μL加样枪(×1)、加样枪架(×1);⑤醋酸纤维薄膜(2cm*8cm,厚度120μm);⑥培养皿(×5);⑦点样器或载玻片(×1);⑧平头镊子(×2);⑨剪刀(×1);⑩电泳槽(×1);?直流稳压电泳仪(×1) 3.2.实验步骤 1.准备与点样:①取2×8cm的膜条;②亚光面距一端1.5cm处取一点样线;③充分浸透在巴比妥缓冲液中;④取出膜条,用滤纸吸去多余的缓冲液;⑤点样器下端粘上

六年级实验报告单

实验报告单(一) 实验时间年月日 实验名称制作化石模型六年级()班第()组指导教师 实验目的:了解化石也是怎样形成的。 实验器材:有关工具、黏土、贝壳、骨头或树叶。 实验步骤: 1、将黏土擀平。 2、将贝壳、骨头或树叶放在心上黏土上,用手把它压进去,留下印迹后取出。 3、把印有印迹的黏土模型晾干。 实验结论: 化石是地层岩石中保存的几百万年以前生物的残骸或遗迹。 实验报告单(二) 实验名称仙人掌耐旱原因实验 实验时间班级小组 实验目的: 1、通过实验使学生知道生物是不断进化的 2、通过实验使学生知道生物的形态是其适应所处生活环境的结果 3、使学生意识到人类活动会对生物产生影响,体验到人与自然和谐相处的重要性 实验器材: 三张纸巾、一张蜡纸、一杯水、一块儿塑料布 实验步骤: 1、把三张纸巾充分浸湿,一张平铺,一张卷起来,一张用蜡纸包起来,都放在塑料布上放在窗台前 2、一小时后检查三张纸巾的干湿程度 实验结论:实验结果是,平铺的最干,蜡纸包的最湿,结论是,仙人掌上的蜡质层既减少了水分的蒸发,又能很好的储存水分 实验报告单(三) 实验时间年月日 实验名称:制作“火箭”及其“发射器” 六年级()班第()组指导教师 实验目的 探究能量的大小与物体运动的关系。 实验器材吸管、剪刀、胶带、记号笔、橡皮筋若干、米尺、纸筒 实验步骤 1.制作吸管火箭 按书中步骤与要求,制作一个吸管火箭模型。注意不要剪到手,不要乱扔剩余的吸管。 2.制作发射器 (1)、按书中步骤与要求制作一个简易的发射器。 (2)、将吸管火箭模型放到发射器上,在吸管下端标记0刻度,然后往下拉吸管火箭,用记号笔在吸管上以厘米为单位依次标上刻度。

蛋白质含量测定——双缩脲试剂法-实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称蛋白质含量测定——双缩脲试剂法 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目的 1.1.掌握双缩脲测定血清总蛋白的基本原理、操作; 1.2.掌握双缩脲试剂的配制; 1.3.熟悉血清总蛋白的临床意义; 1.4.了解双缩脲法测定血清总蛋白的特点和注意事项。 二、实验原理 2.1.两分子尿素加热脱氨缩合成的双缩脲(H2N-OC-NH-CO-NH2),因分子内含有两个邻接的肽键,在碱性溶液中可与Cu2+发生双缩脲反应,生成紫红色络合物。 2.2.蛋白质分子含有大量彼此相连的肽键(-CO-NH-),同样能在碱性条件下与Cu2+发生双缩脲反应,生成的紫红色络合物,且在540nm处的吸光度与蛋白质的含量在10~120g/L范围内有良好的线性关系。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①小牛血清;②6.0mol/LNaOH溶液;③双缩脲试剂:硫酸酮、酒石酸钾钠、碘化钾;④蛋白质标准液(70g/L);⑤0.9%NaCl;⑥蒸馏水。 3.1.2.实验器材:①试管;②烧杯;③容量瓶;④加样枪;⑤刻度吸管;⑥玻璃棒;⑥1100分光光度计;⑦电子天平;⑧水浴锅。

3.2.实验步骤 四、结果与讨论: 4.1.实验现象: ①选取三支洁净无损的试管,从左往右依次加入0.9%氯化钠溶液、蛋白质标准液、相应的小牛血清各0.5ml,分别命名为B试管、S试管和U试管,再分别向三支试管内加入4ml的双缩脲试剂,溶液均成蓝色透明状。

测定次数 1 2 3 平均吸光度 ②将三支试管放入37℃水浴锅中加热20min,取出后,B试管呈淡蓝色,S试管和U 试管均成浅紫色,且S试管的颜色比U试管的颜色深。(如图一) 图一水浴后三支试管颜色图二分光计读数 S 0.185 0.184 0.185 0.1847 U 0.152 0.151 0.152 0.1517 结果计算:代入公式:血清总蛋白(g/L)=(Au/As)X蛋白质标准液浓度(g/L),得出结果:血清总蛋白=57.493g/L。 4.3.结果讨论 经查阅资料得:正常成人血清总蛋白含量为60~80g/L,而小牛血清总蛋白含量比正常成人血清总蛋白含量略低一点,本次结果得出小牛血清总蛋白含量为57.493g/L,符合情况。 4.3.1.成功原因: ①本次试验的试剂混合水浴后出现了预期效果:B试管呈淡蓝色,S试管和U试管均成浅紫色,且S试管的颜色比U试管的颜色深。B试管呈淡蓝色是因为B试管中没有发生任何反应,所以呈现双缩脲试剂本来的淡蓝色,而S试管和U试管呈浅紫色是因为试剂中的蛋白质和双缩脲发生了双缩脲反应而呈浅紫色。 管号

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

六年级科学下册实验报告单

实验报告单

实验通知单 课题 第一单元微小世界 1.放大镜 实验名称 放大镜的构造、作用、用途 实验班级 六年级 实验类别 B 实验组数 10 实验时间 任课教师 实验 准备 分组实验器材:放大镜(最好每个学生都能有一个放大镜,如果只能提供给学生一种放大镜,尽量放大倍数大一点)科学书或报纸上的照片、计算机或电视机屏幕。柱形、球形的透明器皿、塑料薄膜、铁丝、普通玻璃片、平面镜片、水。 教师演示:不同放大倍数的放大镜、图片或课件(如放大镜镜片的结构等)。 规范操作要点 1.正确用放大镜观察物体。 2.比较用肉眼观察和用放大镜观察的不同。 备注 放大镜的作用——放大物体的像(可能学生会说“把物体放大”,提醒学生物体并未变大) 放大镜的用途——我们用放大镜观察校园里的生物、实验中在老师指导下观察花、昆虫等。它是视力不佳者的助视器,还适用于电子产品检验、线路板检验、集邮者欣赏鉴定邮票、

珠宝商鉴定珠宝、公安人员用它观察指纹毛发纤维等、农技人员用它观察花蕊进行人工授粉等、制作微型工艺品的工匠工作时使用… 实验通知单 课题 2.放大镜下的昆虫世界 实验名称 实验班级 六年级 实验类别 B 实验组数 10 实验时间 任课教师 实验 准备 分组实验器材:昆虫或昆虫器官标本、放大镜 教师演示器材:有关昆虫形态构造和生活习性的多媒体课件或图片资料 规范操作要点 提供给学生各种昆虫的标本或昆虫肢体的标本。(因这个寒假的冻灾,估计开学时不会有太多的昆虫,可以利用仪器室原有的标本和蚊蝇蟑螂等常见昆虫及其肢体为观察对象。估计肉眼观察学生的兴趣不会太浓,而且因观察对象小,肉眼的发现可能不会很多。可能的

紫外分光光度法测定蛋白质含量实验报告

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次 五、数据处理与结果分析

实验六的实验报告

实验六、地形分析-----TIN及DEM的生成及应用(综合实验) 一、实验目的 DEM是对地形地貌的一种离散的数字表达,是对地面特性进行空间描述的一种数字方法、途径,它的应用可遍及整个地学领域。通过对本次实习的学习,我们应: a)加深对TIN建立过程的原理、方法的认识; b)熟练掌握ArcGIS中建立DEM、TIN的技术方法。 c)掌握根据DEM或TIN 计算坡度、坡向的方法。 d)结合实际,掌握应用DEM解决地学空间分析问题的能力。 二、实验准备 软件准备:ArcGIS Desktop 9.x ---ArcMap(3D分析模块) 实验数据:矢量图层:高程点Elevpt_Clip.shp,高程Elev_Clip.shp,边界Boundary.shp,洱海Erhai.shp (ex7.rar) 三、实验内容及步骤 1. TIN 及DEM 生成 1.1由高程点、等高线矢量数据生成TIN转为DEM 在ArcMap中新建一个地图文档 (1)添加矢量数据:Elevpt_Clip、Elev_Clip、Boundary、Erhai(同时选中:在点击的同时按 住Shift) (2)激活“3D Analyst”扩展模块(执行菜单命令[工具]>>[扩展],在出现的对话框中选中 3D分析模块),在工具栏空白区域点右键打开[3D分析] 工具栏 (3)执行工具栏[3D分析]中的菜单命令[3D分析]>>[创建/修改TIN]>>[从要素生成TIN]; (4)在对话框[从要素生成TIN中]中定义每个图层的数据使用方式; 在[从要素生成TIN中]对话框中,在需要参与构造TIN的图层名称前的检查框上打上勾,指定每个图层中的一个字段作为高度源(Height Source),设定三角网特征输入(Input as)方式。可以选定某一个值的字段作为属性信息(可以为None)。在这里指定图层[Erhai] 的参数:[三角网作为:]指定为[硬替换] ,其它图层参数使用默认值即可。

蛋白质测定实验报告

生物化学实验报告 姓名: XXX 学号: XXXXXXXXXX 专业年级: 2015级护理(助产)组别:第六实验室 生物化学与分子生物学实验教学中心

实验名称Folin-酚试剂法测定蛋白质含量 实验日期2016-10-18 实验地点第六实验室 合作者指导老师 评分教师签名批改日期 一、实验目的 1、掌握Folin-酚试剂法测定蛋白质含量的原理及其实验操作技术。 2、掌握制作标准曲线的要领和通过标准曲线求样品溶液中待测定物质含量的方法。 3、熟悉分光光度计的用法。 二、实验原理 1、在碱性溶液中,蛋白质分子中的肽键与碱性铜试剂中的Cu2+作用生成紫红色的蛋白质- Cu2+复合物。 2、蛋白质- Cu2+复合物中所含的酪氨酸或色氨酸残基还原酚试剂中的磷钼酸和磷钨酸,生成蓝色的化合物。 3、在一定浓度范围内,蓝色的深浅度与蛋白质浓度呈线性关系,故与同样处理的蛋白质标准液比色即可求出蛋白质的含量。 三、材料与方法: 1.实验材料 (1)样品 健康人血清(300倍稀释);正常人血清蛋白质含量:60~80 g/L (2)试剂 牛血清白蛋白标准液(200μg/ml);碱性硫酸铜溶液(当日有效);Folin-酚试剂(3)仪器与器材

V-1100分光光度计;恒温水浴箱;试管6支、试管架;加样枪、加样枪架;坐标纸 2.实验步骤 流程图: (1)取6支试管做好标记,再按下表加样:(1作空白对照,2-5作标准试管,6为待测样品) 试剂(ml) 1 2 3 4 5 6 牛血清白蛋白标准液- 0.20 0.40 0.60 0.80 - 样品液(稀释300倍)- - - - - 0.50 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.50 碱性硫酸铜 2.0 2.0 2.0 2.0 2.0 2.0 Folin-酚试剂0.20 0.20 0.20 0.20 0.20 0.20 蛋白质浓度(μg/ml)0 40 80 120 160 未知(2)往各试管中按表格要求加入蛋白标准液、样品液、蒸馏水及碱性硫酸铜试剂后,混匀室温静置10min。 (3)向各管内加入Folin-酚试剂0.20ml,并于2s内迅速摇匀。 (4)加样完毕后,将各试管进行40℃水浴10min。 (5)冷却至室温后,以500nm波长比色,以1号管作空白对照,按2-6顺序测定试管内溶液吸光度并重复测三次,记录数据并计算结果。

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量 一、前言 聚丙烯酰胺凝胶电泳 聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。 PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。

蛋白质浓度的测定实验报告

蛋白质浓度的测定 一.试验原理 考马斯亮蓝能与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250的磷酸溶液呈棕红色,最大吸收峰在465nm。当他与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm。考马斯亮蓝G250—蛋白质复合物的高消光效应导致了蛋白质定量测定的高敏感性。 在一定范围内,考马斯亮蓝G250—蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系。故可用于蛋白质浓度的测定。 二.试验设备与试剂 设备:普通离心机,721型分光光度计 试剂:标准蛋白液(100ug/ml) 三.实验材料 新鲜绿豆芽 四.实验内容 1.标准曲线的制备 取9支干净的试管,按表进行编号并加入试剂。 2.样品蛋白的测定 (1)样品蛋白液制备 准确称取2g新鲜绿豆芽胚轴的部分,研磨成匀浆,离心分离(4000r/min,10min)。取上清液用0.9%nacl定容到10ml。 (2)含量测定 另取两只干净的试管,加入样品液0.1ml,0.9mlnacl和考马斯亮蓝染液4.0ml,混匀。室温静置3min,与波长595nm处比色,读取吸光度。 五.实验结果 1.标准曲线 结果如表所示,并以吸光度为纵坐标,个标准液含量为横坐标做标准曲线。

标准曲线 y = 0.0075x - 0.0023 R2 = 0.9846 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 050100150 蛋白质含量 吸 光 度A595 线性 (A595) 2.样品蛋白含量的测定 样品蛋白的比色结果如表,根据直线方程求出每支试管中蛋白质含量。 试管号 A595 蛋白质含量 10 0.186 25.15 11 0.179 24.17 根据公式求出样品绿豆芽蛋白质含量 六.结果与讨论 结果:绿豆芽蛋白质含量=1233.0ug/g 讨论:1.试液为混合均与就取样2.量取溶液时读数有误差3.读取A值时有读数误差4.比色杯中的误差

实验六 实验报告

云南大学软件学院 实验报告 课程:数据库原理与实用技术实验任课教师:包崇明 姓名:匿名学号:2013…….专业:软件工程成绩: 实验6 数据库完整性 实验6-1 完整性约束 1、在学生表上面创建下列CHECK约束 【注】:因为学生表已经存在,所以这里使用添加check约束的方法实现: (1)创建入学日期约束“Enter_University_date_rule”,假定该学校于1923年4月30日创建。要求:入学日期必须大于等于学校创建日期,并且小于等于当前日期 测试语句: 结果(添加的check约束起作用了),如图: (2)创建学生年龄约束“Age_rule”。要求:学生年龄必须在15~30岁之间 测试语句 结果(添加”Age_rule”成功,并且年龄为’2015/4/27’没有违反”Enter_University_date_rule” 约束,进一步说明了(1)中的check约束添加成功,如图:

【注】:考虑到时间关系,下面的部分解答中将会省略测试约束的步骤。 (3)创建学生性别约束“Sex_rule”。要求:性别只能为“男”或“女” (4)创建学生成绩约束“Score_rule”。要求:学生成绩只能在0~100之间 (5)用图形方法查看学生成绩约束“Score_rule”,截图为: 2、删除约束Enter_University_date_rule 测试语句: 结果:(更新成功)

3、创建声明式默认约束:在创建表的过程中创建默认约束 (1)创建表“default_example”,表中包含字段pid、name、sex、age。要求设定sex的默认值为“男”、age的默认值为18。 创建default_example表语句: 采用SQL语句进行插入元祖: 执行结果为:(默认值起作用了!!) (2)插入一条编号为100 的记录,执行结果为: (3)修改默认值 一般先删除老的默认约束,再新建一个默认约束方法如下: 删除约束:alter TABLE default_example drop 约束名 新建默认约束:alter TABLE default_example add constraint df_age default(20) for age ①删除老的默认约束:

蛋白质功能性质的检测实验报告

华南农业大学实验报告 专业班次 13食工1班组别 题目蛋白质功能性质的检测姓名黄俊怡日期 一、实验目的 通过本实验定性地了解蛋白质的主要功能性质。 二、实验原理 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性质对食品的质量和风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质、表面性质、蛋白质-蛋白质相互作用的有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。 三、实验材料、试剂和仪器 1. 实验材料 (1)2%蛋清蛋白溶液:取2g蛋清加98ml蒸馏水稀释,过滤取清夜。 (2)卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 2. 试剂 (1) 硫酸铵、饱和硫酸铵溶液 (2) 氯化钠、饱和氯化钠溶液 (3) 花生油 (4) 酒石酸 3. 仪器 (1) 刻度试管 (2) 100ml烧杯

(3) 冰箱 四、实验步骤 1. 蛋白质水溶性的测定 在10ml刻度试管中加入蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 2. 蛋白质乳化性的测定 取卵黄蛋白于10ml刻度试管中,加入水和5滴花生油;另取5ml水于10ml刻度试管中,加入5滴花生油;再将两支试管用力振摇2~3min,然后将两支试管放在试管架上,每隔15min观察一次,共观察4次,观察油水是否分离。 3. 蛋白质起泡性的测定 (1) 在二个100ml的烧杯中,各加入2%的蛋清蛋白溶液30ml,一份用玻璃棒不断搅打1~2min;另一份用吸管不断吹入空气泡1~2min,观察泡沫的生成、泡沫的多少及泡沫稳定时间的长短。 (2) 在二支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,一支放入冰箱中冷至10℃,另一支保持常温(30~35℃),以相同的方式振摇1~2min,观察泡沫产生的数量及泡沫稳定性有何不同。 (3) 在三支10ml刻度试管中,各加入2%的蛋清蛋白溶液5ml,其中一支试管加入酒石酸,一支加入氯化钠;另一支作对照用,以相同的方式振摇1~2min,观察泡沫的多少及泡沫稳定性有何不同。 4. 蛋白质凝胶作用的测定 在试管中加入1ml蛋清蛋白,再加1ml水和几滴饱和食盐水至溶解澄清,放入沸水中,加热片刻观察凝胶的形成。

生化实验报告——蛋白质部分

实验题目:蛋白质的部分性质 第一部分蛋白质的颜色反应 一、试验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色。不同的蛋白质由于所含的氨基酸不完全相同,颜色反应亦不完全相同。颜色反应不是蛋白质的专一反应,一些非蛋白物质也可产生同样的颜色反应,因此不能根据颜色反应的结果来决定被测物是否为蛋白质。另外,颜色反应也可作为一些常用蛋白质定量测定的依据。 二、实验仪器 1、吸管 2、滴管 3、试管 4、电炉 5、pH试纸 6、水浴锅 三、实验试剂 1、卵清蛋白液:鸡蛋清用蒸馏水稀释10-20倍,3-4层纱布过滤,滤液放在冰箱里冷藏备用。 2、0.5%苯酚:1g苯酚加蒸馏水稀释至200ml。 3、Millon’s试剂:40g汞溶于60ml浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体积的蒸馏水,混匀,取上清夜备用。此试剂可长期保存。 4、尿素晶体 5、1%CuSO4:1g CuSO4晶体溶于蒸馏水,稀释至100ml 6、10%NaOH:10g NaOH溶于蒸馏水,稀释至100ml 7、浓硝酸 8、0.1%茚三酮溶液:0.1g茚三酮溶于95%的乙醇并稀释至100ml. 9、冰醋酸 10、浓硫酸 四、实验步骤 (一)米伦(Millon’s)反应 原理:米伦试剂是硝酸、亚硝酸、硝酸汞、亚硝酸汞的混合物。他能与苯酚及某些二羟基苯衍生物起颜色反应。组成蛋白质的氨基酸中只有酪氨酸含苯酚集团,因此该反应为蛋白质中酪氨酸存在的依据。 操作: 1、苯酚实验: 取0.5%苯酚溶液1ml于试管中,加Millon’s试剂0.5ml,于电炉上小心加热,溶液即出现玫瑰红色。 2、蛋白质实验: 取2ml蛋白液,加Millon’s试剂0.5ml,出现白色的蛋白质沉淀,小心加热,凝固的蛋白质出现红色。 (二)双缩脲反应 原理:尿素被加热,则两分子的尿素放出一分子氨而形成双缩脲。双缩脲在碱性环境中,能与硫酸铜结合成紫色的化合物,此反应称为双缩脲反应。蛋白质分子中含有肽键与缩脲结构相似,故也能进行此反应。双缩脲反应可作为蛋白质定量测定的依据。 操作: 1、取少量尿素晶体放在干燥的试管中,微火加热使其熔化成液体,有气体放出,用湿润石

【报告】酪蛋白粗提取实验报告

【关键字】报告 酪蛋白粗提取实验报告 篇一:实验一蛋白质含量测定方法的研究 生物化学实验预习报告 实验一蛋白质含量测定方法的研究 一、研究背景 蛋白质含量的测定广泛应用于生产实践、医药卫生等各个领域,如测定牛奶等食品中蛋白质的含量作为其营养成分的参考值,测定病人尿液中蛋白质的含量以检测其是否患有某种疾病等,因而测定蛋白质的含量具有非常重要的意义。由于蛋白质本身具有一系列的特点(如具有等电点、富含有机氮、含有肽键、存在某些含共轭双键的氨基酸残基、可与某些染料结合等),利用它的这些特点可以通过特定的化学反应或者某些物理手段,将一定量的蛋白质转化为可以方便定量测定的其他量,从而达到测定蛋白质含量的目的。蛋白质诸多特点的存在决定了它会有不同的测定方法,同时由于多种非蛋白组分的存在和干扰以及各种方法本身的局限性(适用条件),每一种测定方法都有各自的优缺点,某一种方法并不能在任何条件下适用于任何形式的蛋白质,所以多种测定方法的共存是有意义的。目前常用的蛋白质含量测定方法有四种:凯氏定氮法、Folin-酚法、考马斯亮蓝(G-250)法、紫外法,其中后三种方法最常用。在实际工作中,需要根据所测定对象的具体情况综合考虑各种因素(如实验器材的限制、实验所要求的灵敏度和精确度、所测定蛋白质的种类与性质、溶液中存在的干扰物质、测定所花费的时间等),有选择性地使用某种方法。 二、研究目标 1.掌握常用的蛋白质含量测定方法的原理和操作流程;(基础目标) 2.了解不同测定方法的优点和局限性,掌握在实际工作中不同测定方法的选择条件;(基础目标) 3.证明非蛋白组分在蛋白质含量测定中存在干扰,并通过分析实验结果确定该干扰在实际工作中是否可以忽略。(高级目标) 三、研究策略 本实验最重要的目的是为了确定非蛋白组分在蛋白质含量测定中存在的干扰是否可以忽略。思路有两种:一种方法是先测定纯蛋白质溶液中蛋白质含量,随后在该溶液中加入非蛋白组分(如嘌呤、嘧啶等吸光物质,Ca2+等金属离子,无机酸或无机碱,甚至某些色素等),测定此时蛋白质含量,对比两次测定结果,计算相对误差,从而得出非蛋白组分的影响程度;另一种方法是直接使用天然的蛋白质粗提取物(含有非蛋白组分,并将其中包含的所有非蛋白组分看成一个影响因素),来测定粗提取物中的蛋白质含量。考虑到第一种方法中涉及到的非蛋白组分的加入量没有标准,这些非蛋白材料(影响因素)实验室内也不一定有,更重要的是该实验所具有的实际意义不大,故决定采用第二种方案。但是方案二所存在的一个问题是所测组分蛋白质含量的真实值未知,测得的结果没有可以参考比较的依据,所以需要另外找一个可以参考的标准。 所采取的策略是先用不同的方法测定已 知标准蛋白质溶液的浓度,三个测定值之间会有一定的相关性(或者说测定值之间的变化符

科教版六年级下册科学实验报告单

科教版六年级下册科学实验报告单

————————————————————————————————作者: ————————————————————————————————日期: ?

六年级下册 小学科学实验报告单 学校年级六年级实验者 时间实验名称放大镜下的新发现 实验器材:放大镜2只【3X、5X各一】/每组 我的猜测:放大镜观察物体,比用肉眼看得要清晰,看得要大 步骤:1、 2、 3、 4、 观察到的现象: 结论:我认为 指导教师: 评定等级:★优秀☆良好□及格 ○待改进

小学科学实验报告单 学校年级六年级实验者 时间实验名称放大镜的特点 实验器材:放大镜1只、玻璃塑料瓶1个、圆柱玻璃杯1只、烧杯1只、 烧瓶1只、保鲜膜3张、透明塑料绳2米 我的猜测: 步骤:1、比较放大镜与平板玻璃:放大镜的中间,周围较,而平板玻璃,没有放大功能; 2、在圆柱玻璃杯、烧杯、烧瓶中灌上清水,透过瓶体观察物体,发现比直接观察看到的图像要; 3、再次比较圆柱烧杯和烧瓶,我们发现,圆烧瓶比烧杯放大的 倍数要。 观察到的现象: 结论:我认为

小学科学实验报告单 实验者 学校年级六年 级 时间实验名称奇特的身体构造 实验器材:放大镜动物的标本1套 我的猜测:用放大镜可以观察到肉眼观察不清楚的细微部分 步骤: 1、观察昆虫的触角: 2、苍蝇的眼: 3、蝴蝶的鳞片: 4、蟋蟀的外壳: 5、苍蝇的脚: 观察到的现象:观察的小昆虫和肉眼大不相同,借助放大镜,可以观察到结论:我认为 指导教师: 蒋先红评定等级:★优秀☆良好□及格 ○待改进

小学科学实验报告单 学校年级六年级实验者 时间实验名称蚜虫和它的天敌---草蛉 实验器材:蚜虫标本1片、草蛉标本1片、 放大镜2只 我的猜测:肉眼看不清的蚜虫,身体构造也是完整的,草蛉像螳螂 步骤: 1、 2、 3、 观察到的现象:蚜虫、草蛉结构和大的昆虫 . 结论:我认为 指导教师:蒋先红评定等级:★优秀☆良好□及格

实验一 蛋白质浓度的测定实验报告

蛋白质浓度的测定 一.实验原理 考马斯亮蓝能与蛋白质的疏水微区相结合,这种结合具有高敏感性。考马斯亮蓝G250的磷酸溶液呈棕红色,最大吸收峰在465nm。当他与蛋白质结合形成复合物时呈蓝色,其最大吸收峰改变为595nm。考马斯亮蓝G250—蛋白质复合物的高消光效应导致了蛋白质定量测定的高敏感性。 在一定范围内,考马斯亮蓝G250—蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系。故可用于蛋白质浓度的测定。 二.实验设备与试剂 设备:普通离心机,721型分光光度计 试剂:标准蛋白液(100ug/ml) 三.实验材料 新鲜绿豆芽 四.实验内容 1.标准曲线的制备 取9支干净的试管,按表进行编号并加入试剂。 2.样品蛋白的测定 (1)样品蛋白液制备 准确称取2g新鲜绿豆芽胚轴的部分,研磨成匀浆,离心分离(4000r/min,10min)。取上清液用0.9%nacl定容到10ml。 (2)含量测定 另取两只干净的试管,加入样品液0.1ml,0.9mlnacl和考马斯亮蓝染液4.0ml,混匀。室温静置3min,与波长595nm处比色,读取吸光度。 五.实验结果 1.标准曲线 结果如表所示,并以吸光度为纵坐标,个标准液含量为横坐标做标准曲线。

2.样品蛋白含量的测定 样品蛋白的比色结果如表,根据直线方程求出每支试管中蛋白质含量。 根据公式求出样品绿豆芽蛋白质含量 样品蛋白的体积 蛋白质含量(ug/g鲜重)= 测定时取样的体积 称取样品的重量 六.结果与讨论 结果:绿豆芽蛋白质含量=1233.0ug/g 讨论: 1.试液为混合均与就取样 2.量取溶液时读数有误差 3.读取A值时有读数误差 4.比色杯中的误差

BCA实验报告

蛋白质的定量测定(BCA试剂盒法)实验报告 一、实验目的:掌握BCA法测定蛋白质浓度的方法及原理。 二、实验原理:在碱性的环境下蛋白质与Cu2+络合并将Cu2+还原成Cu1+。BCA法与Cu1+结合形成稳定的蓝紫色复合物,在562nm处有高的光吸收值并与蛋白质浓度成正比,据此可测定蛋白质浓度。 三、实验材料: 实验药品和试剂:BCA Reagent 100 ml (普利莱基因技术有限公司)Cu Reagent 2.5ml (普利莱基因技术有限公司)BSA standard 4mg/ml 1 ml 待测溶液。 仪器:96孔板酶标分析仪(DNM-9602 北京普朗新技术有限公司)移液枪试管EP 管恒温水浴箱。 四、实验方法与步骤: (1)工作溶液配置:将5ml的BCA Reagent与100μl的Cu Reagent混合为WR工作试剂。(2)标准蛋白溶液的配置:用上节课已配置好的0.1M的PBS缓冲液进行配比稀释:40μl 4000μg/ml BSA+60μl 0.1M的PBS=100μl(BSA=1600μg/ml)。 (3)倍比稀释:为减小误差,将标准蛋白和待测样本分为三个相同组,每个孔加25μl,浓度从上到下依次增加,H行为待测溶液。从配置好的100μl标准蛋白溶液中取出75μl(浓度为1600μg/ml),再将75μl标准蛋白溶液取出一半到EP管中,将37.5μl的PBS缓冲液加入取出的蛋白溶液中(浓度为800μg/ml),在EP管上做好浓度标记,依次倍比稀释,得到BSA 标准溶液1600,800,400,200,100,50,25μg/ml,各75μl。省略1600μg/ml标准管直接从800μg/ml开始。 (4)标准测定:在每孔25μl标准品或待测样品中,各加入200μl WR 工作液轻摇混合。 表1 微板测定方案的加样量和比例

微量凯氏定氮法测定蛋白质含量实验报告

微量凯氏定氮法测定蛋白质含量实验报告 一、实验目的 1.学习微量凯氏定氮法的原理 2.掌握微量凯氏定氮法的操作技术(未知样品的消化、蒸馏、滴定及其含氮量的计算等) 二、实验原理 凯氏定氮法常用于测定天然有机物(如蛋白质,核酸及氨基酸等)的含氮量。 当天然含氮有机物与浓硫酸共热时,其中的碳、氢被氧化成二氧化碳和水,而氮则变成氨并进一步与硫酸作用生成硫酸铵。此过程称为“消化”。 此过程进行的相对较为缓慢,通常需要加入硫酸钾或硫酸钠以提高溶液的沸点,并加入硫酸铜作为催化剂,以促进反应的进行。氧化剂过氧化氢也能加速反应。 消化过程: 4 24423)(2SO NH SO H NH →+3 22242NH O H SO CO SO H +++→+含氮有机物 蒸馏:在消化完全的样品溶液中加入浓氢氧化钠使呈碱性,加热

蒸馏,即可释放出氨气。 反应方程式如下: OH NH SO N OH N SO NH 4424242a a 2)(+→+ 吸收与滴定:蒸馏所放出的氨,可用硼酸溶液进行吸收,待吸收完全后,再用盐酸标准溶液滴定,直至恢复溶液中原来氢离子浓度为止(即滴定至蓝紫色),最后根据所用标准酸的当量数(相当于待测物中氨的当量数)计算出待测物中的氮量。 324333BO H NH BO H NH →+ 334324BO H CL NH HCL BO H NH +←+ 三、实验试剂、材料和器材 实验材料:食用面粉。 实验试剂:浓硫酸、30%氢氧化钠溶液、克氏催化剂、2%硼酸、指示剂、0.01M HCL 。 实验器材:凯氏烧瓶、电炉、凯氏定氮蒸馏装置、锥形瓶、100ml 容量瓶、酸式滴定管。 四、操作步骤 1.消化 (1)准确称取1克食用面粉,用称量纸卷好小心送入至50毫升的凯氏烧瓶底部,切勿沾于瓶口或瓶颈上;

相关文档
相关文档 最新文档