文档库 最新最全的文档下载
当前位置:文档库 › 船舶操纵运动波浪力计算

船舶操纵运动波浪力计算

船舶操纵运动波浪力计算
船舶操纵运动波浪力计算

船舶操纵运动波浪力计算

2.1 不规则波入射力计算模型

依据概率统计理论,不规则波的波面可以看作是由一系列具有不同的频率、波数、波幅、传播方向以及随机分布初相位角的规则波叠加而成。在实际应用中寻求海浪的统计特性,通常采用“波能谱”的概念来描述海浪。

海浪形成的过程是风把能量传递给水的过程。这一过程大致可分为两个阶段,第一阶段为波浪生长阶段,当风最初作用于海面上时,海面开始出现较小的波,随着时间的增长,风不断地把能量传递给水,波浪越来越大,显然这一阶段海浪是比较复杂,其统计特性随时间不断变化,这一阶段的海浪描述描述相当复杂。但是,当波浪渐趋稳定时,波的能量达到一定值,其统计特征基本上不随时间变化,为了这一阶段海浪的数学描述,应用波谱密度函数,从大量观察分析结果表明海浪以及船舶在波浪中的运动等均属于狭带谱的正态随机过程,因此基于以下假设:

1.波浪为弱平稳的、各态历经的、均值为零的正态(高斯)随机过程。 2.波谱的密度函数为窄带。

3.波峰(最大值)为统计上独立的。

由波的方向性谱密度,不规则波的波面可用下列随机积分表示来描述:

??-

+-+=220

),(2)],()sin cos (cos[),,(π

π?θωθωθωεωθηθξηξ?d d S t k t (2-1)

其中,),(θω?S 为波谱密度函数,表示了不规则波浪中各种频率波的能量在总能量中所占的份量。

仅考虑波沿主浪向运动的情况,并将式(2-1)转化为随船坐标系下表示为:

?∞

+--=0

)(2)]()sin cos (cos[),,(ωωωεωμμ??d S t y x k t y x e (2-2)

为了方便计算,将波能谱密度函数进行离散,用求和形式代替上式的积分如下:

∑=+--?=n

i i ei i i t y x k S t y x 1

])sin cos (cos[)(2),,(εωμμωω?? (2-3)

其中,相位角i ε可视为均匀分布在(0,2π)区间内的随机变量。

由于不规则波可看作是多个规则谐波分量叠加的结果,因而航行于不规则波浪中的船舶所受到的主干扰力仍然依据傅汝德-克雷洛夫(Froude-Krylov )假设。

类比规则波主干扰力的推导过程,深水中不规则波浪对船体的主干扰力(力矩)仍然是对压力差沿船体表面进行的积分,同样将船体简化成箱体,经推广可得不规则波对船体的主干扰力和力矩的数学模型表达如下:

∑=-???? ??-???? ??-???

? ?

?--=n

i i i i i i

g

d

i i w t g V g B g L e E g

X i

122243

cos sin 2sin sin 2cos sin 1sin 42

εχωωχωχωχωρω∑=-???? ??-???? ??-???

? ?

?-=n

i i i i i i

g

d

i i w t g V g B g L e E g

Y i

122243

cos sin 2sin sin 2cos sin 1cos 42

εχωωχωχωχωρω ∑=-???? ??-???? ??-???

? ?

?--=n

i i i i i i

g

d

i i w t g V g B g L e E g

Z i

122243cos cos 2sin sin 2cos sin 1cos sin 42

εχωωχωχωχχωρω b n

i i i i i i

g

d

i i w z t g V g B g L e E g

K i

∑=-???? ??-???? ??-???

? ?

?--=122243

cos sin 2sin sin 2cos sin 1cos 42

εχωωχωχωχωρω?????? ??-???? ??-???? ??-???? ??-+∑=-χωχωχωχωεχωωχωχωρωsin 2sin cos sin 2sin sin 2cos sin 2cos sin 1cos 222

2422122222i i i i n i i i i i g d i i g B Bg g B g t g V g L e E g i ?

???

??

? ??-???? ??-???? ??-???? ??-=∑=-χωχωχωχωεχωωχωχωρωcos 2cos cos cos 2cos sin 2cos sin 2sin sin 1sin 222

2422122222i i i

i n i i i i i g d i i w g B Lg g L g t g V g B e E g M i ?????

? ??-???? ??-???? ??-???? ??--=∑=-χωχωχωχωεχωωχωωρωcos 2cos cos cos 2cos sin 2cos cos 2sin sin 1222

2422122222

i i i i n i i i i i g d i i w g B Lg g L g t g V g B e E g N i (2-4)

其中,ωω??=)(2i i S E 为各离散规则波的单幅值。

为简化问题,通常假定波浪是二因次的,即波浪只沿一个固定方向传播,而且波峰线是无限长彼此平行的,它与平面行进波不同的是波浪周期、波高是随即变化的,通常称这类不规则波浪为长峰不规则波。

线性水波理论已证明,二因次不规则波波浪是由无限多个不同的波幅和波长的单元规则线性叠加而成(各单元规则波相位是随机的)。这样,长峰不规则波的数学表达式可写成

()001()cos n

i i i i i z t a k x t ωε==-+∑ (2-5)

式中n ε为随机相位。

同理可得不规则波波浪压力的表达式:

[]{}1cos cos()sin()n

kz i i ei i i P ga e k x y t ρψβψβωε-==-+-+++∑ (2-6)

式中i a 可根据波浪谱求的:

i a =

当船舶在大地坐标系中运动时,随船坐标系也随之运动。假设船舶的航向角为ψ,即随船坐标系与大地坐标系0x 方向的夹角。当随船坐标系静止,且原点与大地坐标系原点重合时,两坐标系之间的转化关系为

???

??=+=-=z z y x y y x x 0

00cos sin sin cos ψψψ

ψ (2-7) 考虑船的航速,则上式可写为

()()()()000

cos sin sin cos x x ut y vt y x ut y vt z z ψψψψ=+-+??

=+++??=? (2-8) 若在初始时,船艏与波浪有夹角β,上式可写为

()()()()000

cos()sin()sin()cos()x x ut y vt y x ut y vt z z ψβψβψβψβ=++-++??

=+++++??=? (2-9) 在本文建立的坐标系中,浪向角的定义见如图:

-90

180

°

±

将上式代入式(2-6)可得波浪中任意一点的压力分布 在计算规则波作用于船舶上的波浪干扰力时,应用著名的傅汝德—克雷洛夫

(Froude-Krylov )假设:波浪中船舶的存在不影响波浪的压力分布。

作用在船体上的波浪扰动力与力矩即为波浪动压力沿船体湿表面的积分:

()?????????-=?-=????S w S

w dS n r P M dS n P F

(2-10) 式中,S ——船体的湿表面积

n

——S 的单位外法线矢量,方向指向船体外部 r

——动压力作用点相对于随船坐标系的位置向量 写成坐标轴上的投影形式

()()()123321321wave I s

wave I s wave I s

wave I s wave I s

wave I s X p n ds

Y p n ds

Z p n ds K p yn zn ds

M p zn xn ds

N

p xn yn ds ?=??

=??

?

=???

=-??

?

=-???=-??

???????????? (2-11) 在数值计算时,采用将船舶表面划分成多个网格,分别计算每个网格上的波

浪力再求和的方法。

船体面元网格

2.2 不规则波辐射力计算模型

2.2.1 横摇水动力及力矩模型

对于船舶在波浪中的横摇运动,由于粘性的影响较大,但粘性系数除了试验之外尚无准确的理论计算方法。所以本文采用较简单的非耦合的横摇运动模型。

?λsin 244???---=GM p K p

K p H (2-12) 横摇阻尼系数如下:

GM I K xx p ???+=)(44λμ? (2-13) 式中一般07.0~055.0在?μ之间。

此外由于船舶在回转时会由于横向流体动力的作用而产生横倾,加上横倾力矩后,式(2-12)变为:

H H p H z Y GM p K p

K ?-???---=?λsin 244 (2-14) 式中,H z 为横向流体动力H Y 作用点的z 向坐标,

aT z z g H -= (2-15)

g z 为船舶重心距基线的高度,a 为横向力作用点高度系数,当0.85.2≤≤B 时,可用下式计算:

3)35.5(02.04-+-=B B a (2-16)

2.3 不规则波漂移力和力矩计算模型

波浪的二阶漂移力则会改变船舶航行的航向和航迹,由于理论计算波浪漂移

力较复杂,但已知二阶波浪干扰力与波幅的平方成比例,因此,将波浪漂移力的数学模型表示如下:

???

???

??????

??=???

??=??? ??-=L C a gL N L C gLa Y L C gLa X NwD wD YwD wD XwD wD

λχρλχρλχρsin 21sin 21cos 212222 (2-17)

其中,XwD C 、YwD C 、NwD C 是关于波浪波长与船长比的系数,Daidola 根据English 的船模试验结果回归得到

??

?

?

?

?

???+-+-=+-+=-+-=323232)(21.0)(79.0)(68.011.0)(44.8)(65.15)(83.646.0)(51.0)(75.0)(2.005.0L L L C L L L C L

L L C NwD

YwD XwD

λλλλλλλλλ (2-18)

不规则波浪漂移力可以看成各种频率的规则波浪漂移力的叠加,由式(2-17)可推导不规则波浪漂移力:

()()()????

?

?

??

???????? ??=????? ??=?????

??=∑∑∑===n

i i i NwD wD n

i i i YwD wD n i i i XwD wD S gL C gL N S gL C gL Y S gL C gL X 12212122sin 2sin 2cos ωωπωχρωωπωχρω

ωπωχρ??? (2-19)

海浪波长以及波浪力计算

Option Explicit Dim L1 As Single, L2 As Single, t As Single, d!, k!, kd!, thkd!, H!, D1! Dim CD As Single, CM As Single, l As Single, Ko As Single Dim Fhdmax As Single, Fhlmax As Single, Mhdmax As Single, Mhlmax!, Fhmax!, Mhmax! Dim θ As Si ngle Const Pi = 3.141592653 Const G = 9.8 Const γ = 1025 Private Sub Command1_Click() Dim r As Integer Do While True L1 = V al(InputBox("请输入波长L1:", "求解设计波长:", "100")) t = V al(InputBox("请输入设计波周期T:", "请输入", "6")) d = V al(InputBox("请输入设计水深d:", "请输入", "20")) If L1 <= 0 Then r = MsgBox("请输入一个正数!", 5, "输入错误") If r = 2 Then End End If Else Exit Do End If Loop k = 2 * Pi / L1 kd = k * d thkd = (Exp(kd) - Exp(-kd)) / (Exp(kd) + Exp(-kd)) L2 = G * (t ^ 2) * thkd / (2 * Pi) Do Until Abs(L2 - L1) < 0.001 L1 = L2 k = 2 * Pi / L1 kd = k * d thkd = (Exp(kd) - Exp(-kd)) / (Exp(kd) + Exp(-kd)) L2 = G * (t ^ 2) * thkd / (2 * Pi) Loop Print "设计波长是:"; L2 Print "波数:"; Format$(k, "0.0000") End Sub Private Sub Command2_Click() End End Sub Private Sub Command3_Click() H = V al(InputBox("请输入设计波高H:", "请输入", "3")) D1 = V al(InputBox("请输入桩柱直径D1:", "请输入", "2")) l = V al(InputBox("请输入桩柱间距l:", "请输入", "15"))

波浪力的计算

波浪力的计算需要两方面理论的支持:波浪运动理论及波浪荷载计算理论。前者研究波浪的运动,后者在已知波浪运动的前提下计算波浪对水中物体的作用。几种常用的波浪普: 1.P-M 谱 Pierson 和Moskowitz适用于无限风速发在的波浪普。国际船模水池会议(ITTC)推荐采用这一形式的波,故也称为ITTC波谱。 JONSWAP(Joint north sea wave project).是一种频谱。 3.应力范围的长期分布模型:1.离散型模型,2.分段连续型模型,3.连续模型。 1. 离散模型:用Hs作为波高,Tz为波浪周期,定义一个余弦波。然后用规则波理论计算作用在结构上的波浪力。并用准静定的方法计算结构呢I的应力。缺陷:没有将波浪作为一个随机过程来处理。每一海况的应力范围只有一个确的数值。因此又称为确定性模型。 2.分段连续型模型 每一短期海况中,交变应力过程是一个均值为0的平稳正态过程。综合所有海况中应力范围的短期分布,并得出各个海况出现的疲劳,就得到应力范围的长期分布,它的形式是分段连续的。 应力范围的两种短期分布模型:1.Rayleigh分布和Rice分布。 在某一海况中交变应力均值为。应力峰值服从Rayleigh分布。通过计算得出应力范围也服从Rayleigh分布。 3.在船舶及海洋工程结构疲劳可靠性分析中,希望应力范围的长期分布能用一个连续的分布函数来描述。这就是应力范围长期分布的连续模型.最常用的就是Weibull分布。 4.有义波高:(significant wave height)所有波浪中波高最大的三分之一波浪的平均高度。用Hs表示。 5.Stokes五阶波给出了波陡的量度(H/L)H/L越大,波就越陡。当波高与波长的比值大到一定程度时,波会破碎。 6.波速=波长与频率的乘积 C=λ/T或者C=λf,其中f是频率。或者T=2π/ω 7.圆频率 1.圆频率即2π秒内振动的次数,又叫角频率,和角速度的ω没有任何关系。角频率与频率f的关系是ω0=2πf;周期T=2π/ω0. 角速度应用的举例:单摆摆动,钟摆所走过部分圆时,钟摆在单位时间内“扫”过的角度,此时角速度为非恒定量。角速度并非振动与三角函数关联后所讲到的角频率。 2单位 圆频率虽然名字中有“频率”二字但其单位并不是“Hz”而是“rad/s”。

船舶在波浪中航行时的安全操纵

船舶在波浪中航行时的安全操纵 关于船舶在波浪中航行的纯稳性丧失,国内外学者进行了大量的研究,文献[1]、[2]采用波浪中船舶瞬时湿表面的计算方法,得出了稳性变化与波浪要素之间的相互关系;文献[3]、[4]通过船舶操纵运动方程,运用流体动力学理论,将波浪运动的影响引人操纵方程,并对船舶稳性的影响进行了模拟计算。对于船舶驾驶员来说,仅从静态上了解衡量船舶稳性是否满足稳性规范的要求是不够的,更重要的是要从动力学的角度出发,了解和掌握在恶劣的天气条件下,船舶在波浪中的稳性变化规律,保证船舶以适应于稳性要求的姿态正确航 行。 1 稳性变化的原因分析 根据文献[5],船舶在波浪中航行时,由于船体浸水体积的变化,使得正浮时的浮心B移至B*。根据静力学理论,对于横倾θ度的船舶,波浪中的复原力臂GZ*值与静水中的复原 力臂GZ值之间的差值可由式(1)确定。 ΔGZ=(B*R-BR)-BB*Sinθ(1) 由式(1)可以看出,船舶在波浪中的稳性变化是由于形状稳性和浮心位置的变化所引起 的。 为了具体地表现这种内在的关系,把GZ改写为表示动稳性的稳性高度GM,有: GM=I/V-BG(2) 式(2)中,I为水线面的惯性矩,V为船舶水下排水体积,BG为船舶浮心至船舶重心的垂直距离。由于波浪的影响,船舶的排水体积变为V+ΔV,水线面的惯性矩变为I+ΔI,浮心由B移至B*,则GM的变化GM+ΔGM可近似地表示为: GM+ΔGM=I/V(1+ΔI/I-ΔV/V)-B*G(3) 利用BM=I/V的关系,GM的变化量ΔGM可按下式求得:

ΔGM=BM(ΔI/I-ΔV/V)-BB* (4) 通过式(4)可以看出,导致船舶在波浪中的稳性变化是由于船舶的排水体积和水线面惯性矩的变化以及浮心位置的移动而引起的。第一项为舷侧外漂和船体浸水体积变化引起的BM的变化量表示由注心上下移动引起的变化量。 2 稳性变化与海浪之间的关系 防止船舶因稳性丧失而导致倾覆,是船舶驾驶员最为关心的问题。IMO亦已通过《在随浪和尾随浪情况下避免危险局面的指南》,其目的在于给船长在随浪和尾随浪航行时提供避免危险局面的建议。对于驾驶员来说,了解船舶姿态与波浪之间相互位置关系而导致船舶稳性的变化,从而采取和选择安全的操船方案有着重要的意义。 2.1 波长与船长比(λ/L)对稳性的影响 稳性变化主要是浮在波面上的船体的水线面惯性矩I的增减引起的,并与波浪的大小和船舶的尺度有关。图l给出了在波高H固定不变,波长与船长比(λ/L)变化、以及波浪位 于船舶各种相对位置时的GZ曲线。 从图1可以看出,当船中位于波谷(ξG/λ=0)时,由于船体前后部的水线面惯性矩与静水中相比,其数值是增加的,因而船舶的稳性也是增加的;当船中位于波峰(ξG/λ=0.5)时,由于水线面的惯性矩减少了,故船舶的稳性也随之减小。另外,从图1还可以看出,这种由船体前后部水线面惯性矩的增减引起的稳性变化,当波长等于船长时,其稳性变化量最大,随着波长的增加,其稳性变化量有减少的趋向。

第四章 船舶稳性教案.

第四章船舶稳性 (一)课程导入 (二)新授课 第一节、稳性的基本概念 船舶平衡的3种状态: 1.船舶的平衡状态 船舶漂浮于水面上,其重力为W,浮力为△,G为船舶重心,B为船舶初始位置的浮心。在某一性质的外力矩作用下船舶发生倾斜,由于倾斜后水线下排水体积的几何形状改变,浮心由B移至B1点,当外力矩消失后船舶能否恢复到初始平衡位置,取决于它处在何种平衡状态(下图)。 (1)稳定平衡。如图(a)所示,船舶倾斜后在重力W和浮力△作用下产生一稳性力矩,在此力矩作用下,船舶将会恢复到初始平衡位置,称该种船舶初始平衡状态为稳定平衡状态。 (2)随遇平衡。如图2-1所示,船舶倾斜后重力W和浮力△仍然作用在同一垂线上而不产生力矩,因而船舶不能恢复到初始平衡位置,则称该种船舶初始平衡状态为随遇平衡状态。 (3)不稳定平衡。如图2-1(c)所示,船舶倾斜后重力W和浮力△作用下产生一倾覆力矩,在此力矩作用下船舶将继续倾斜,称称该种船舶初始平衡状态为不稳定平衡状态。 2.船舶平衡状态的判别 为对船舶的平衡状态进行判别,将船舶正浮时浮力作用线和倾斜后浮力作用线的交点定义为稳心,以M表示。由于船舶倾斜后的浮心位置或浮力作用线与船舶吃水(或排水量)、船舶倾角有关,稳心位置也随船舶吃水(或排水量)、船舶倾角不同而变化。 进一步分析表明,船舶处于何种平衡状态与重心G和稳心M的相对位置有关。船舶稳定平衡时,重心G位于稳心M之下;船舶不稳定平衡时,重心G位于稳心M

之上;船舶随遇平衡时,重心G 和稳心M 重合。因此,为了使船舶在受到一外力矩作用下具有一定的复原能力从而保证船舶安全,船舶重心必须在相应倾角时的稳心之下。 处于稳定平衡状态的船舶,其复原能力的大小取决于倾斜后产生的稳性力矩或复原力矩s M 的大小。由图(a )可见,该稳性力矩大小为 s M GZ =?? 式中:GZ ──静稳性力臂 (m ),是船舶重心G 至倾斜后浮力作用线的垂直距离,通常简称作稳性力臂或复原力臂。 船舶稳性的分类: 船舶在外力矩作用下偏离其初始平衡位置而倾斜,当外力矩消失后船体能自行恢复到初始平衡状态的能力称为船舶稳性。 船舶稳性通常可按以下方法分类: 1.按船舶倾斜方向分类。可分为横稳性和纵稳性。横稳性指船舶绕纵向轴(x 轴)横倾时的稳性,纵稳性指船舶绕横向轴(y 轴)纵倾时的稳性。由于纵稳性力矩远大于横稳性力矩,故实际营运中不可能因纵稳性不足而导致船舶倾覆。 2.按倾角大小分类。可分为初稳性和大倾角稳性。初稳性(小倾角稳性)指船舶微倾时所具有的稳性,微倾在实际营运中将倾斜角扩大至10°~15°;大倾角稳性指当倾角大于10°~15°时的稳性。 3.按作用力矩的性质分类。可分为静稳性和动稳性。静稳性指船舶在倾斜过程中不计及角加速度和惯性矩时的稳性;动稳性指船舶在倾斜过程中计及角加速度和惯性矩时的稳性。 4.按船舱是否进水分类。可分成完整稳性和破舱稳性。船体在完整状态时的稳性称为完整稳性,而船体破舱进水后所具有的稳性则称为破舱稳性。 第一节 船舶初稳性 船舶初稳性的基本标准: 理论证明:船舶在微倾条件下,倾斜轴过初始水线面的面积中心即初始漂心F ;过初始漂心F 微倾后船舶排水体积不变;当排水量一定时,船舶的稳心M 点为一定点。船舶初稳性是以上述结论为前提进行研究和表述的。 船舶在小倾角条件下,稳性力矩M s 和稳性力臂GZ 可表示为 M s =ΔGM sin θ GZ =GM sin θ 式中:GM ───船舶重心与稳心间的垂直距离,称为初稳性高度(m ); θ───船舶横倾角(°)。 由上式可见,在排水量及倾角一定情况下,静稳性力矩大小取决于重心和稳心的相对位置,即取决于GM 大小。当M 点在G 点之上,GM 为正值,此时船舶具有稳性力矩并与GM 值成正比;当M 点在G 点之下,GM 为负值,此时船舶具有倾覆力矩亦与GM 值成正比;当M 点和G 点重合,GM 为零,此时稳性力矩为零。 由此分析可知,GM 可以作为衡量船舶初稳性大小的基本标志。欲使船舶具有稳性,必须使GM >0。 初稳性高度GM 的计算: 1.由装载排水量查取横稳心距基线高度KM ;

水上打桩波浪力计算

大丰港波浪力计算 一、工程概况: (一)工程规模、结构形式及主要尺寸 1、工程规模:本工程为两个5000吨级泊位,散货、多用途泊位各一个。 2、引桥全长390米,宽15米,采用高桩梁板结构,桩径800mm,排架间距15米,引桥共142根桩,桩长均为35米。码头全长269米,宽35米,排架间距7米,高桩梁板结构。 3、桩型介绍:桩基采用PHCΦ800C型高强砼管桩,全称为先张法预应力离心高强砼管桩(Prestressed Spum High Strenth Concrete Pipe Piles),PHC为其英文单词的缩写。砼设计标号为C80。 (二)、工程地理位置: 大丰港位于江苏省大丰市境内,处于江苏沿海从连云港至长江口近千公里港口空白带的中部。 (三)工程区域自然情况: 港址海岸由潮滩淤长和人工围垦形成,岸滩宽5KM左右,码头区域处于无掩护地带。大丰港规划区潮位及波浪观测,在历史上几乎是空白,提供有关气象资料显示:港区夏季风影响显著,夏季多为东南风,频率占57%,冬季受寒潮影响,以西北风为主,频率可达53%,全年出现≥5级风的天数,平均为20天;≥6级风的平均天数为8.5天,影响本地区的台风平均次数为每年0.6次,多出现在7—9月份,龙卷风平均为三年发生一次。 施工地点设计波浪要素(设计高水位)5年一遇波浪H1%4.4m,2年一遇波浪H1%3.9m。 潮流流速达1.8m/s,流向方向角171度。本海域为强流海区,主流向与岸线大致平行,似呈南北向往复流,涨潮流向偏南,落潮流向偏北。 设计高水位为+5.07m,设计低水位为+0.46m。

(四)于1997 年12月,某公司承担在工程拟建位置打一组试桩,试桩为四根600×600mm的砼方桩,桩长47m,砼标号R50。桩打完后用16#槽钢连成了整体。20几天后四根桩全部倒入水中。 所以,我部在打桩之前先进行桩的抵抗波浪力计算。 二、计算波浪力 1、已知:五年一遇波高:H=4.4m ;设计高潮位: 5.07m ; 周期: T=8.5s; 桩位处泥面标高: -5.0m; 水深:d=5.07+5.0=10.07m; 海水容重:ρ=1.006×103 kg/m3; g=10m/s2 ⑴波长①L0=gT2/2π=10×8.52/2π=114.99m (深水波) ②Ls=T=8.5×=85.3m (浅水波) 由于d=10.07d/L=10.07/85.3=0.118>1/20 ,该波属于微幅波中有限水深情况。 按微幅波计算: 取同一时刻相距一个波长处质点:x=1;取水面处质点:z=0;时间取t=1s P=ρg (η-z)=ρgη=ρg×H/2×cos(δt-kx)=ρg×H/2×cos(δ-k) =1006×10×2.2×cos(0.7392-0.07366) =22.13KN/m 3、因桩为PHC管桩,所以假定波作用在桩上后没有反射。可按有限振幅 推进波计算: 波超高ζ0=πH2/4L=4.42π/4×85.3=0.17826 P d/Υ=H/2chkd→P d=HΥ/2chkd=4.4×1006×10/[2×(e kd+e-kd)/2] =44264/(e0.742 +e-0.742)

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

船舶操纵运动波浪力计算

船舶操纵运动波浪力计算 2.1 不规则波入射力计算模型 依据概率统计理论,不规则波的波面可以看作是由一系列具有不同的频率、波数、波幅、传播方向以及随机分布初相位角的规则波叠加而成。在实际应用中寻求海浪的统计特性,通常采用“波能谱”的概念来描述海浪。 海浪形成的过程是风把能量传递给水的过程。这一过程大致可分为两个阶段,第一阶段为波浪生长阶段,当风最初作用于海面上时,海面开始出现较小的波,随着时间的增长,风不断地把能量传递给水,波浪越来越大,显然这一阶段海浪是比较复杂,其统计特性随时间不断变化,这一阶段的海浪描述描述相当复杂。但是,当波浪渐趋稳定时,波的能量达到一定值,其统计特征基本上不随时间变化,为了这一阶段海浪的数学描述,应用波谱密度函数,从大量观察分析结果表明海浪以及船舶在波浪中的运动等均属于狭带谱的正态随机过程,因此基于以下假设: 1.波浪为弱平稳的、各态历经的、均值为零的正态(高斯)随机过程。 2.波谱的密度函数为窄带。 3.波峰(最大值)为统计上独立的。 由波的方向性谱密度,不规则波的波面可用下列随机积分表示来描述: ??- ∞ +-+=220 ),(2)],()sin cos (cos[),,(π π?θωθωθωεωθηθξηξ?d d S t k t (2-1) 其中,),(θω?S 为波谱密度函数,表示了不规则波浪中各种频率波的能量在总能量中所占的份量。 仅考虑波沿主浪向运动的情况,并将式(2-1)转化为随船坐标系下表示为: ?∞ +--=0 )(2)]()sin cos (cos[),,(ωωωεωμμ??d S t y x k t y x e (2-2) 为了方便计算,将波能谱密度函数进行离散,用求和形式代替上式的积分如下: ∑=+--?=n i i ei i i t y x k S t y x 1 ])sin cos (cos[)(2),,(εωμμωω?? (2-3) 其中,相位角i ε可视为均匀分布在(0,2π)区间内的随机变量。 由于不规则波可看作是多个规则谐波分量叠加的结果,因而航行于不规则波浪中的船舶所受到的主干扰力仍然依据傅汝德-克雷洛夫(Froude-Krylov )假设。 类比规则波主干扰力的推导过程,深水中不规则波浪对船体的主干扰力(力矩)仍然是对压力差沿船体表面进行的积分,同样将船体简化成箱体,经推广可得不规则波对船体的主干扰力和力矩的数学模型表达如下:

船舶静止在波浪上的外力计算

船舶静止在波浪上的外力计算 一、整体计算过程(计算思路) 两个假设: 1、假设船舶以波速在波浪的前进方向上航行,即船与波的相对速度为零; 2、假设船体是在重力和浮力作用下静平衡于波浪上的一根梁。 计算思路: 1、船舶外力计算的目的是进行强度校核,应保证: []max σσ≤ 其中,max σ为船体断面最大正应力,[]σ为许用应力。 2、应力计算根据梁的弯曲理论由下式给出: M Z I σ=? 其中,M 为计算断面的弯矩;I 为横断面绕水平中和轴的惯性矩;Z 为计算应力点到中和轴的距离。 3、船体梁在载荷作用下纵纵弯曲产生的弯矩有两部分构成:静水力弯矩和波浪附加弯矩: s M M M ω=+ 整体计算步骤: 1、计算不同装载状态下静水弯矩和波浪附加弯矩以及静水剪力和波浪附加剪力; 2、计算总纵弯矩; 3、计算船体断面的最大正应力; 4、根据许用应力进行强度校核。 波浪要素和装载状态: 1、计算波浪附加弯矩时,标准波浪的波形取为坦谷波; 2、应考虑四种装载状况:满载出港、到港,压载出港、到港

二、各部分计算过程详解 1、静水弯矩计算 两个必要条件:1)船体浮力等于重力;2)重心和浮心在同一铅垂线 静水弯矩计算核心公式: ()()() ()()()()00x x q x x b x N x q x dx M x N x dx ω=-?=???=? ?? 静水力弯矩计算步骤: 1) 绘制重量曲线; 2) 绘制浮力曲线; 3) 求出重量曲线和浮力曲线的差值()q x ,作为船体梁的载荷强度; 4) 根据上面的公式计算静水弯矩。 重量曲线绘制方法: 绘制重量曲线时,必须根据静力等效原则合理分布,满足以下四个要点:重量不变,重心不变,范围一致,均匀分布 围长法:核心是假设船体结构单位长度重量与剖面围长成比例; 抛物线法:核心是假定船体与舾装品总重量构成的重量曲线可以用抛物线和矩形之和来表示; 梯形法:将船体重量近似地用梯形曲线表示; 局部性重量:根据静力等效原则进行合理分布。 浮力曲线绘制方法: 浮力曲线由邦戎曲线得出,由于船舶并非处于平浮状态,所以必须进行纵倾调整,调整方法为解析法和逐步近似法,其中逐步近似法计算过程: ● 按给出的平均吃水m d ,浮心纵向坐标b x ,水线面漂心f x 以及纵稳心半径R ,计算首尾吃水: 22g b f m f g b a m f x x L d d x R x x L d d x R -???=+- ??????-???=-+ ????? ● 确定首尾吃水后,利用邦戎曲线求出对应吃水线时的浮力曲线,可计算出排水体积1V 和浮心纵向坐标1b x 的第一次近似值; ● 将求的的两个数值与给定的排水体积0V 及重心纵向坐标g x 比较,相差较大时,必须作第二次近似计算,由下式确定新的首尾吃水:

船舶在波浪中

船舶在波浪中 的运动 学号:M93520070 姓名:赖建中

?简介 ?操纵数学模式 ?运动数学模式 纵移(Surge)、横移(Sway)、上升下潜(Heave)、横摇(Roll)、纵摇(Pitch)、偏摇(Yaw)

? 船舶在海上行进时的反应是一个非常复杂的非线性现象,因为不只有波浪作用力,同时船本身也有一个前进的动力存在。 ? 规则波 单方向不规则波 多方向不规则波 操纵数学模式 ? 使用日本MMG( Mathematical Modeling Group)流力模式。 ? 船舶、螺桨、舵单独性能为基础再加上三者的扰动效应。 ? 只考虑船舶纵移(surge)、横移(sway)、平摆(yaw)、横摇(roll)。 坐标系 ? 空间固定坐标 ? 船体固定坐标 ? 船体固定坐标与水面平行。 ? 地球公转与自转效应忽略。 →→

运动方程式 ? 如果将 定在船体重心 上 ? 不考虑起伏(heave)、纵摇(pitch) ? 角速度 ? 重心速度相对于空间固定坐标的转换 ? 重心速度相对于水的速度转换成相对于地球的速度。 船舶-流体力与力矩,附加质量和黏滞度影响 ? 流体力系数可视为只与船舶之瞬间运动状态有关,此即所谓的准定态(quasi-steady)处理方式。 ? 考虑横摇运动 O G ()()() H eave X m u w p vr Sur ge Y m v ur w p Sw ay Z m w vp uq ??? ?? ?? =+-=+-=+- ()()() R ol l Pi t ch Yaw x z y y x z z y x K I p qr I I M I q r p I I N I r pq I I ??? ?? ?? =+-=+-=+- () pr op ps I I n Q Engi ne += () () X m u vr Y m v ur ?? ??? =-=+ p q r φ θ???????? ??? 00cos si n si n cos X u v Y u v ???? ?????=-=+

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

基于波浪谱分析的重大件货物在船受力计算

基于波浪谱分析的重大件货物在船受力计算 王彪,王扬 大连海事大学航海学院,大连(116026) E-mail :wangbiao820109@https://www.wendangku.net/doc/684686176.html, 摘 要:本文立足于我国海上重大件运输的实际,提出了一整套采用了海况长期预测技术和谱分析技术,预测重大件货物在既定航次的环境中所受外力的方法,与IMO 的CSS 规则中推荐的方法及中国船级社的拖航指南中的方法相比,更贴近运输实际且易于为从事工程设计人员理解,适合于海上重大件货物运输的现实要求。 关键词:重大件,外力,海况预测,谱分析 1. 引言 由于海上货物运输中因绑扎不牢引起的事故不断增多,IMO 制定货物积载与系固规则(CSS 规则),推荐用来计算货件在船所受外力;中国船级社也制定了拖航指南供驳船装载货件时计算货件所受外力。但在海上运输重大件货物过程中,货物重量及尺寸导致货件受力较大,若不能较精确的预测每个航次货件所受外力,则货件很可能由于受力估计不足而导致绑扎系固不牢,从而在遇到较恶劣的海况时,招致货损。本文着力于引入海况长期预测技术,利用船舶耐波性理论中较成熟的谱分析方法,较真实地考虑进航行过程中波浪运动对货件受力的影响,预测货件在既定航次环境中所受外力。货件所受外力可简化为惯性力、风作用力和波溅力,此三力的总和即为货件所受外力,其在三个方向上的受力如下面三式。本文即从这三方面入手,结合已有的较成熟的方法提出作者设计的实用计算方法,供海上重大件运输从业者参考使用。 x eix wx s F F F F =++ y eiy wy F F F =+ z eiz F F = 由于后文中,对货件绑扎不利的力的计算皆采用了趋于安全的值(对于横摇和纵摇时的风力和波溅力的减小,予以忽略),因此利用后文方法计算得出的各力相加所得代数和值作为设计外力来设计绑扎方案,是趋于安全的。 2. 惯性力 2.1 确定途经海区的最恶劣海况 对于重大件运输,需要较准确的计入海况的影响。目前世界上较有影响的海浪数据库有GWS (Global Wave Statistics )、IMDSS (Integrated Marine Decision Support System )和ClioSat (climatological atlas ),而这三个数据库中GWS 相对于其他两种数据库,对海浪的预报值偏大,即偏于安全,因此本文对海浪的长期预报采用GWS 中的波浪数据。1 GWS 中的波浪数据的来源为由不列颠海事技术有限公司于1986年出版的《全球波浪统计数据》一书(若有条件,也可在互联网上付费订购最新的波浪数据,网址:https://www.wendangku.net/doc/684686176.html, )。 此书包含了全球海洋波浪的统计数据,意于为那些需知道遇到特定区域的(将波高、波浪周期和波浪方向作为整体考虑)波浪的概率的人提供一个参考指南。此书提供了104个海

船舶初稳性高度计算

船舶初稳性高度计算 船舶初稳性高度计算 1.船舶装载后的初稳性高度GM: GM=KM--KG {KM--为船舶横稳心距基线高度(米) KG--为船舶装载后重心距基线高(米) KM--可由船舶资料静水曲线图按平均吃水查得} 2.舶装载后重心距基线高KG: KG=( DZg+∑PiZi) /Δ { D--空船重量(吨);查船舶资料得; Zg--空船重心距基线高度(米);查船舶资料得; Pi--包括船舶常数,货物总重量,船员及供应品,备品,油水重量(吨);Zi--载荷Pi的重心高度(米); ?--船舶排水量(吨);} 3.自由液面的影响δGMf : δGMf=∑ρix/Δ {ρ—舱内液体的密度(克/立方米) ix---液舱内自由液面对液面中心轴的面积横矩(M4)} 4.经自由液面修正后的初稳心高度GoM: GoM=KM--KG--δGMf 5.船舶横摇周期T?: T?=0.58f√(B+4KG)/GoM {0.58为常数; f—可由B/d查出; B—船舶型宽; d—船舶装载吃水;}

6.例题:某船装载货物后Δ=18500吨,全船垂向重量力矩∑PiZi= 143375吨.米,现有1号燃油舱自由液面对液面中心轴的面积横矩∑ρix= 58.7四次方米。淡水舱自由液面对液面中心轴的面积横矩∑ρix= 491.1四次方米。两舱均未装满,其中燃油密度ρ=0.97克/立方厘米。试计算经自由液面修正后的初稳性高度GoM(根据Δ查得KM=8.58米)。 解:1)求KG KG=( DZg+∑PiZi) /Δ=143375/18500=7.75米 2)计算自由液面影响的减小值δGMf : δGMf=∑ρix/Δ=(0.97*58.7+1.0*491.1)/18500 =0.03米 3)计算 GoM: GoM=KM—KG--δGMf =8.58-7.75-0.03 =0.80米

船舶完整稳性规则

附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则 说明与要求 1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。 2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。详见本法规第4篇附则2《际高速船安全规则》。 3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。 349

第1章一般规定 1.1 宗旨 关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。 1.2 适用范围 1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具: ——货船; ——装载木材甲板货的货船; ——装载散装谷物的货船; ——客船; ——渔船; ——特种用途船; ——近海供应船; ——海上移动式钻井平台; ——方驳; ——动力支承船; ——集装箱船。 1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。 1.3 定义 下列定义适用于本规则。对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。 1.3.1 主管机关:系指船旗国政府。 1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。 1.3.3 货船:系指非客船的任何船舶。 1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。 1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。 1.3.6 近海供应船:系指主要从事运送物品、材料和设备至近海设施上,并在船前部设计有居住处所和桥楼、在船后部有为在海上装卸货物的露天装货甲板的船舶。 1.3.7海上移动式钻井平台(MODU)或平台:系指能够为勘探或开采诸如液态或气态碳氢化合物、 硫或盐等海床之下的资源而从事钻井作业的海上建筑物: .1柱稳式平台:系指用立柱将主甲板连接到水下壳体或沉箱上的平台; .2浮式平台:系指有单体或多体结构船型或驳船型排水船体、用于漂浮状态下作业的平台; .3自升式平台:系指有活动桩腿能够将其壳体升至海面以上的平台。 1.3.8动力支承船(DSC):系指能够在水面或超出水面航行的船舶,其具有的特性与适用现行国际公约,特别是SOLAS公约和LL载重线公约的普通排水量船舶大不相同,以致要采取其他措施来获得同等安 350

波浪荷载计算汇总

整理后: 波浪荷载的计算理论 波浪是发生在海洋表面的一种波动现象,其波动性质因受浅水区域海底地形影响和水深的变浅,发生波浪破碎现象,成为影响海岸侵蚀和变形以及海岸带污染物迁移与扩散的最主要的水动力环境之一。破浪破碎与冲击现象对海上工程设施的安全也十分重要。由于波浪破碎及冲击作用的机理极其复杂,至今仍然是海岸工程领域没有解决的困难课题之一。因此,开展近海波浪破碎与冲击过程数值模型的研究,就有着重要的理论意义和工程意义。 波浪荷载,也称波浪力,是波浪对港口码头和海洋平台等结构所产生的作用。目前按绕射理论进行分析。波浪对结构物的作用由四部分组成:水流粘性所引起的摩阻力(与水质点速度平方成正比);不恒定水流的惯性或结构物在水流中作变速运动所产生的附加质量力(与波浪中水质点加速度成正比);结构物的存在对入射波浪流动场的辐射作用所产生的压力和结构物运动对入射波浪流动场的辐射作用所引起的压力。包括上述全部作用影响的波浪力理论称为绕射理论。在目前实际工作中,常用只考虑了结构受到波浪摩阻力和质量力影响的半经验半理论的莫里森(Mrison)方程分析波浪力。波浪荷载是由波浪水质点与结构间的相对运动所引起的。波浪是一随机性运动,很难在数学上精确描述。当结构构件(部件)的直径小于波长的20%时,波浪荷载的计算通常用半经验半理论的美国莫里森方程;大于波长的20%时,应考虑结构对入射波场的影响,考虑入射波的绕射,计算时用绕射理论求解。影响波浪荷载大小的因素很多,如波高、波浪周期、水深、结构尺寸和形状、群桩的相互干扰和遮蔽作用以及海生物附着等。 波浪荷载常用特征波法和谱分析法确定。对一些特殊形状或特别重要的海洋

对船体波浪力计算书

3.2.1 风、水流和波浪对浮体产生的作用力 风、水流和波浪对浮体产生的作用力参照前苏联《波浪、冰凌和船舶对水工建筑物的荷载与作用》计算。 (1)风对浮体作用的横向分力和纵向分力 见3.2.1.1。 (2)水流对浮体作用的横向分力和纵向分力 水流对浮体作用的横向分力和纵向分力按以下公式计算: 2 0.59x x x F A v = 2 0.59y y y F A v = 式中:F x 、F y —趸船计算水流力的横向分力和纵向分力(kN); A x 、A y —浮趸水下横向和纵向阻水面积(m 2); v x 、v y —设计水流流速的横向和纵向分量(m/s)。 浮趸水面以下的阻水面积计算: A x =45×0.6=27m 2; A y =7×0.6=4.2m 2 作用在趸船上的水流力: 20.5927 1.5538.27kN x F =??= 20.59 4.2 1.55 5.95kN y F =??= (3)波浪对浮体的作用力 波浪对浮体的横向分力和纵向分力按以下公式计算: 1x x Q ghA χτρ= y y Q ghA χρ=

式中:Qx 、Qy —趸船计算波浪力的横向分力和纵向分力(kN); χ—系数,按图3-1取用,图中ds 为浮趸吃水,ds=0.6m ; τ1—系数,按表1-3.6取用,表中αl 为浮体水下部分纵向轮廓的最大水平尺寸(m ),取αl=45m ; h —取H5%波高,h=1.3m ; Ax 、Ay —浮趸水下横向和纵向阻水面积(m 2)。 图3-1 系数χ值的曲线图 表1-3.1 系数τ1 /0.6/20 0.03s d λ==,根据图 3-1, 取χ=0.85。 /48.6/20 2.25l αλ==,根据表1-3.6,取τ1=0.48。 χ

相关文档