文档库 最新最全的文档下载
当前位置:文档库 › 经济数学基础线性代数综合练习题

经济数学基础线性代数综合练习题

经济数学基础线性代数综合练习题
经济数学基础线性代数综合练习题

2016《线性代数》综合练习

一、选择题

1、 若===),,(,3),,(,3),,,(3214324321ααααααααααr r r 则( )

(A )2; (B )3; (C )1或2或3; (D )2或3 2、设A 、B 为满足AB=O 的任意两个非零矩阵,则必有( )。

(A )A 的列向量组线性相关,B 的行向量组线性相关;

(B )A 的列向量组线性相关,B 的列向量组线性相关; (C )A 的行向量组线性相关,B 的行向量组线性相关; (D )A 的行向量组线性相关,B 的列向量组线性相关。

3、设A 为3阶方阵,将A 的第2行加到第3行后得到矩阵B ,则AB -1=( )。

(A )??

??

?

?????101001010; (B )??????????100101010; (C )??????????110001010; (D )??????????-110010001。

4、下列向量集按R n 的加法和数乘构成R 上一个线性空间的是( )。

(A )R n 中,坐标满足x 1+x 2+…+x n =0的所有向量; (B )R n 中,坐标满足x 1+x 2+…+x n =1的所有向量; (C )R n 中,坐标是整数的所有向量; (D )R n 中,坐标满足x 1=1,x 2,…, x n 可取任意实数的所有向量。

5、已知???

?

? ??=y x A 6364221,B 为三阶矩阵,且AB =O ,则有( )

(A )当y =3x 时,r(B )=1 (B )当y =3x 时,r(B ) ≠2 (C )当y ≠3x 时,r(B )=1 (D )当y ≠3x 时,r(B ) ≠2

6、设A 的伴随矩阵A *≠O ,若α1,α2,α3,α4是非齐次线性方程组β=AX 的互不相等的解,则齐次线性方程组AX =O 的基础解系( )

(A )不存在 (B )仅含一个非零解向量, (C) 含有两个线性无关的解向量 (D) 含有三个线性无关的解向量 7、设非奇异矩阵A 的各行元素之和为2,则矩阵(

3

1A 2)-1

有一个特征值等于( )。 (A )34; (B )43; (C )21; (D )4

1

8、设矩阵 ,则 A 合同于( )

(A )??????????-000010001; (B )??????????-100010001; (C )??????????000010001; (D )????

?

?????--100010001

二、判断题:

1、( )若向量组线性相关则线性表示可以被向量组s s αααβββααα,,,,,,,,,,211-s 2121 。

???

?? ??--=120210001A

2、( )若AB 为可逆矩阵,则A 、B 均为可逆矩阵。

3、( )设A 为n 阶可逆矩阵,则对任意n 维实向量b ,方程组AX=b 总有解。

4、( )若A 、B 均为n 阶矩阵,且A 与B 合同,则A 与B 有相同的特征多项式。

5、( )设A 为对称矩阵,且满足A 2-5A +4E =O ,则A 为正定矩阵。 三、填空题

1、设304

0223

20700532

2D =

--,ij a 的余子式为ij M ,代数余子式为ij A ,则41424322M A A -+= 。

2、计算行列式0111

1

011

1

10111

10

n D == . 3、设A , B 均为3阶方阵, 且 |A |=5, |B |=-3, 则**11

A B A B ---= 。

4、已知A ,B 为n 阶可逆方阵,且满足2A -1B=B-4E ,其中E 是n 阶单位矩阵,(A-2E )-1=

5、设α1,α2,α3是4元非齐次线性方程组Ax =b 的三个解向量,且r (A )=3,其中1231290

,,

4094????

? ? ? ?=+= ? ? ? ? ? ?????

ααα则Ax =b 的通解为

6、设A =(a ij )3?3为实正交矩阵,且a 13=1,β=(1,0,0)T ,则非齐次线性方程组β=AX 的解为 。

7、设A 为3阶矩阵,321,,ααα为线性无关的3维列向量,已知01=αA ,21222ααα-=A ,

321332αααα++-=A ,则A 的所有特征值为 。

8、设矩阵A =???

?

?

??50413102x 可相似对角化,则x= 。

9、 若二次型f = 2x 12+x 22+x 32+2 x 1 x 2+t x 2 x 3是正定的,则t 的取值范围是 。

10、二次型323121232221222x bx x x x ax x x x f +++++=经正交替换化为2

3222y y +,则a = ,b = 。

四、计算题

1、已知线性方程组???

??-=++++=+-+=++)

12()3()1(12)12(1

23

2

1

3

21

321

λλλλλx x x x x x x x x ,讨论λ取何值时,方程组无解?有唯一解?有无穷多组解?在有无穷多组解时,用导出组的基础解系表示出一般解。

2、讨论m 和n 各取何值时,线性方程组??????

?-=-++=----=-++=-++1

682316420234

32143214

3214321x x x x m nx x x x x x x x x x x x

无解?有唯一解?有无穷多组解?在有无穷多组解时,用导出组的基础解系表示出一般解。

3、设???

?

?

?

?=11

1110

011

A ,求矩阵X ,满足O E X A X =---12。 4、设?????

?

?

?

?-=30

1

001010010

0001A ,矩阵B 满足等式E BA BA A 3211+=--*, 求B 。 5、设三维向量空间R 3里的两组基分别为α1, α2, α3与β1, β2, β3, 且

????

?

??-=????? ??-=????? ??-=????? ??=????? ??-=????? ??-=100,221,111,

110,121,101321321βββααα

(1)求由基β1,β2,β3到基α1, α2, α3的过渡矩阵;(2)若向量η=3α1-α2, 求η关于基β1,β2,β3的坐标。

6、设三维向量空间里的两组基分别为α1, α2, α3与β1,β2,β3, 且???

??+-=++=+=3213

32123

1122β

ββαβββαββα

(1)求由基α1, α2, α3到基β1, β2, β3的过渡矩阵;

(2)若向量η=3β1-6β2+3β3, 求η在基α1, α2, α3下的坐标。

7、设三阶实对称矩阵A 的特征值为λ1 = -2,λ2 = 1(2重),α1=(1,1,1)T 是属于λ1 = -2的特征向量。试求:(1)属于λ2 = 1(2重)的特征向量;(2)A 的伴随矩阵A *。

8、设矩阵A 与B 相似,且????

??????=x A 10100002,??

???

?????-=10000002y B ,

(1)求x,y 的值;(2)求正交矩阵Q ,使Q -1AQ =B

9、已知二次型212

322213212322),,(x ax x x x x x x f +++=,其中a >0,经正交替换化为标准形

2

3

222133y y y f ++=,求a 及所用的正交替换。 10、求正交替换将二次型322

322213212334),,(x x x x x x x x f +++=化为标准形,要求写出所用的正交替换

及所得的标准形。

五、证明题

1、设有3个非零n 阶(n ≥3)方阵321,,A A A ,满足)3,2,1(,2==i A A i i ,且)3,2,1,,(,=≠=j i j i O A A j i 。若

321,,ααα分别是321,,A A A 的对应于特征值1的特征向量。证明:321,,ααα线性无关。

2、 设A 为n 阶矩阵,且1,1)(2211=+?++-=nn A A A n A r ,其中ii A 是A 中元素ii a 的代数余子式 (i =1,2,…,n )。试证:A 的伴随矩阵A *的特征值是0和1,并说明各个特征值的重数。

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

《经济数学基础》线性代数

《经济数学基础》线性代数 第3章 线性方程组 1.了解n 元线性方程组、线性方程组的矩阵表示、系数矩阵、增广矩阵、一般解的概念. 2. 理解并熟练掌握线性方程组的有解判定定理;熟练掌握用消元法求线性方程组的一般解. ? 线性方程组AX = b 的解的情况归纳如下: AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ; AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ). ? 相应的齐次线性方程组AX = 0的解的情况为: AX = 0只有零解的充分必要条件是 秩(A ) = n ; AX = 0有非零解的充分必要条件是 秩(A ) < n . 例1 线性方程组?? ?=-=+0223221x x x x 的系数矩阵是( ) . A .2×3矩阵 B .3×2矩阵 C .3阶矩阵 D .2阶矩阵 解 此线性方程组有两个方程,有三个未知量,故它的系数矩阵是2×3矩阵. 正确的选项是A . 例2 线性方程组AX = B 有唯一解,那么AX = 0 ( ) . A .可能有解 B .有无穷多解 C .无解 D .有唯一解 解 线性方程组AX = B 有唯一解,说明秩,)(n A =故AX = 0只有唯一解(零解). 正确的选项是D . 例3 若线性方程组的增广矩阵为???? ? ?=41221λA ,则当λ=( )时线性方程组有无穷多解. A .1 B .4 C .2 D .12 解 将增广矩阵化为阶梯形矩阵, ???? ??=41221λA ??? ? ??λ-λ→021021

线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A) 考试方式:闭卷 考试时间: 一、单项选择题(每小题 3分,共15分) 1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222 123123 (,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. (A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥. 4.初等矩阵(A ); (A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,, ,n ααα线性无关,则(C ) A. 12231,, ,n n αααααα-+++必线性无关; B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关; C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关; D. 以上都不对。 二、填空题(每小题3分,共15分) 6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ?? ? = ? ??? ,则1A -=

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

经济数学基础线性代数讲义

经济数学线性代数学习讲义 合川电大兰冬生 1, 矩阵: A =?? ?? ? ?????-012411210, 称为矩阵。认识矩阵第一步: 行与列, 横为行, 竖为列, 第一行依次0,1,2, 第二行1,1,4 第一列0,1,2 这是一个三行三列矩阵, 再给出一个三行四列矩阵 ?? ?? ? ?????-----=12614231213252A 教材概念的m 行n 列矩阵。 ? ???? ???????mn m m n n a a a a a a a a a 2 1 2222111211, 这个矩阵记作n m A ?, 表明这个矩阵有m 行, n 列, 注意行m 写在前面,列n 写在后面, 括号里面的称为元素, 记为ij a , i 是行, j 是列, 例如: ???? ??????-----12614231213252是三行四列矩阵, 也说成43?矩阵, 注意行3在

前面, 列4在后面, 这里211=a ( 就是指的第一行第一列那个数) 123-=a ( 就是指的第二行第三列那个数) 2, 矩阵加法 矩阵加法, 满足行列相同的矩阵才能相加, 对应位置的数相加。 例如: ??????????--011101010 +??????????-012411210=?????? ? ???-021512220 减法是对应位置的数相减。, 3, 矩阵的乘法 矩阵乘法参看以下法则: 注意字母对应 ???? ? ?????3332 31 232221131211 a a a a a a a a a ????? ? ?????3332 312322211312 11b b b b b b b b b ???? ? ??????+?+??+?+??+?+??+?+??+?+??+?+??+?+??+?+??+?+?=33332332133132 332232123131 332132113133232322132132232222122131232122112133132312131132132212121131 1321121111b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a 说明: ???? ? ?????3332 31 232221131211a a a a a a a a a ???????????3332 312322211312 11b b b b b b b b b =?? ? ?????3332 31 232221 1211 c c c c c c c 乘积的结果矩阵11c 等于第一个矩阵的第一行元素11a 12a 13a 乘以第二个矩阵的第一列元素11b 21b 31b , 注意是对应元素相乘, 再求和。 乘积的结果矩阵21c 等于第一个矩阵的第二行元素21a 22a 23a 乘以第二个矩阵的第一列元素11b 21b 31b 。

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数综合练习题

线性代数综合练习题(一) 一、单项选择题 1. 对于n 阶可逆矩阵A ,B ,则下列等式中( )不成立. (A) ()1 1 1---?=B A AB (B) ())/1()/1(1 1 1---?=B A AB (C) ()1 11 ---?=B A AB (D) ()AB AB /11 =- 2. 若A 为n 阶矩阵,且03=A ,则矩阵=--1)(A E ( ). (A )2A A E +- (B )2A A E ++ (C )2A A E -+ (D )2A A E -- 3. 设A 是上(下)三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为( ). (A) 全都非负 (B ) 不全为零 (C )全不为零 (D )没有限制 4. 设 3 3)(?=ij a A ,????? ??+++=13 3312 321131 131211 232221a a a a a a a a a a a a B ,???? ? ? ?=10 0001010 1 P ,??? ? ? ? ?=10 1010 001 2P ,那么( ). (A )B P AP =21 (B )B P AP =12 (C )B A P P =21 (D )B A P P =12 5. 若向量组m ααα,,,21 线性相关,则向量组内( )可由向量组其余向量线性表示. (A )至少有一个向量 (B )没有一个向量 (C )至多有一个向量 (D )任何一个向量 6. 若??? ? ? ? ?=21 25314 3212A ,其秩=)(A R ( ). (A )1 (B )2 (C )3 (D )4 7. 若方程b AX =中,方程的个数小于未知量的个数,则有( ). (A )b AX =必有无穷多解 (A )0=AX 必有非零解 (C )0=AX 仅有零解 (D )0=AX 一定无解 8. 若A 为正交阵,则下列矩阵中不是正交阵的是( ). (A )1-A (B )A 2 (C )4A (D )T A 9. 若满足条件( ),则n 阶方阵A 与B 相似. (A )B A = (B ))()(B R A R = (C )A 与B 有相同特征多项式 (D )A 与B 有相同的特征值且n 个特征值各不相同 二、填空题

《经济数学基础》综合练习(线性代数)

《经济数学基础》综合练习(线性代数) 一、单项选择题 1.设A 为23?矩阵,B 为32?矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A . T T T )(B A AB = B . T T T )(A B AB = C . 1T 11 T )() (---=B A AB D . T 111T )()(---=B A AB 3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A . 若AB = I ,则必有A = I 或B = I B .T T T )(B A AB = C . 秩=+)(B A 秩+)(A 秩)(B D .111) (---=A B AB 4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ). A .B AB = B .BA AB = C .I AA = D .I A =-1 5.设A 是可逆矩阵,且A AB I +=,则A -=1( ). A . B B . 1+B C . I B + D . ()I AB --1 6.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( ). A .???? ??--6231 B .??????--6321 C .??????--5322 D .?? ? ???--5232 7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立. A .A B = A C ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BA D .AB = 0,则有A = 0,或B = 0 8.设A 是n 阶可逆矩阵,k 是不为0的常数,则()kA -=1 ( ). A .kA -1 B . 11k A n - C . --kA 1 D . 11k A - 9.设???? ? ?????----=314231003021A ,则r (A ) =( ). A .4 B .3 C .2 D .1

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数综合练习题(修改)

线性代数综合练习题 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. =0 00110000 0100100 ( ). (A) 0 (B)1- (C) 1 (D) 2 4.在函数1 003232 1 1112)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若573411111 3263 478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0

7. 若2 23500101 1 110403--= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 8. k 等于何值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. n 2阶排列)12(13)2(24-n n 的逆序数是. 2.在六阶行列式中项261365415432a a a a a a 所带的符号是 . 3. 行列式 =0 1 011101010 0111 . 4.如果M a a a a a a a a a D ==3332 31232221 13 1211 ,则=---=32 32 3331 2222232112121311133333 3a a a a a a a a a a a a D 5.齐次线性方程组??? ??=+-=+=++0 0202321 2 1321x x x kx x x x kx 仅有零解的充要条件是. 6.若齐次线性方程组?? ? ? ?=+--=+=++0 230520232132321kx x x x x x x x 有非零解,则k =.

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

线性代数综合练习zhongkai

线性代数综合练习 一. 填空题 1. 1.设,135213241 111 5312-= A 1 352132*********-=B 则41424344A A A A +++= ,=+++44434241B B B B 。 41424344423A A A A +++= ,41424344235B B B B +-+= 。 详解: 41424344A A A A +++=414243441111A A A A ?+?+?+? 21351111 042311111 -== 414243442 1351 111 423042314231A A A A -+++= = 4142434421351 112 235042312135 B B B B -+-+= =- 2.设行列式2 2 35007022 220403--= D 则第4行各元素代数余子式之和为 。 4142434424 232135 2135 11 12000142314231111111 1 1 213213 21 (1)423009(1)99 11 111111 B B B B ++--+++= = --=-==-?=-

详解:41424344304022 22007001111 A A A A +++= =- 3、设A 的特征值为:1,─2,3,则2A 的特征值是 1A -的特征值 详解: 2,─4,6 11123 -,, 4、正交矩阵A 的行列式的绝对值等于 1 解答:对, ,(,)()()0,0T T T T T T T A A A A A A A A A E αλαααααααααααααα=?=====>≠22,(,)(,)(,)T A A A αλαααλαλαλααλαα=?=== 21λ∴= 二. 选择题 1. 设1200221011011k k ?????? ? ? ?=- ? ? ? ??? ?--?????? ,则k = (A) 1; (B) 2; (C) 3; (D) 4 详解:选A . 2. 设A =2145?? ???,0319B ??= ?-?? 则AB = (A) 18; (B) 18-; (C) 13 ; (D) 15. 详解:B 3. 设非齐次线性方程组Ax = b ,其中A m ?n 且R(A )=m

经济数学基础线性代数之第1章行列式

第一单元 行列式的定义 一、学习目标 通过本节课学习,理解行列式的递归定义,掌握代数余子式的计算,知道任何一个行列式就是代表一个数值,是可以经过特定的运算得到其结果的. 二、内容讲解 行列式 行列式的概念 什么叫做行列式呢?譬如,有4个数排列成一个行方块,在左右两边加竖线。 即215 3-称为二阶行列式; 有几个概念要清楚,即 上式中,横向称行,共有两行;竖向称列,共有两列; 一般用 ij a 表示第i 行第j 列的元素,如上例中的元素311=a , 512=a ,121-=a ,222=a . 再看一个算式0 754 2 3 011--称为三阶行列式,其中第三行为5,-7,0;第二列为 –1,2,-7;元素 4 23=a , 5 31=a 又如 1 3 2140301 1320---,是一个四阶行列式. 而11a 的代数余子式为

()074 21111 111-- =-=+M A 代数余子式就是在余子式前适当加正负号,正负号的规律是-1的指数是该元素的行数加列数. () 43011322 332- =-=+M A 问题思考:元素ij a 的代数余子式ij A 是如何定义的? 代数余子式 ij A 由符号因 子j i +-)1(与元素ij a 的余子式ij M 构成,即()ij j i ij M A +-=1 三、例题讲解 例题1:计算三阶行列式 54 2 303 241---=D 分析:按照行列式的递归定义,将行列式的第一行展开,使它成为几个二阶行列式之和, 二阶行列式可以利用对角相乘法,计算出结果. 解: ()()() 5 2 33145 4 30112 11 1---?-+--?=++D () 420 3123 1--?++ 72 12294121=?+?+?= 四、课堂练习 计算行列式 h g f e d c b a D 0 00 00004= 利用n 阶行列式的定义选择答案.

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

相关文档
相关文档 最新文档