文档库 最新最全的文档下载
当前位置:文档库 › 实验一 第二章 模拟信号数字化

实验一 第二章 模拟信号数字化

实验一 第二章 模拟信号数字化
实验一 第二章 模拟信号数字化

第二章 模拟信号数字化

实验一 脉冲幅度调制与解调实验

一、实验目的

1、掌握抽样定理的概念。

2、理解脉冲幅度调制的原理和特点。

3、了解脉冲幅度调制波形的频谱特性。

4、了解脉冲幅度调制与解调电路的实现。

二、实验内容

1、观察音频信号、抽样脉冲及PAM 调制信号的波形,并注意它们之间的相互关系。

2、改变抽样时钟的占空比,观察PAM 调制信号及其解调信号波形的变化情况。

3、观察脉冲幅度调制波形的频谱。

三、实验仪器

1、信号源模块

2、PAM&AM 模块

3、终端模块(可选)

4、频谱分析模块(可选)

5、20M 双踪示波器 一台

6、频率计(可选) 一台

7、音频信号发生器(可选) 一台

8、立体声单放机(可选) 一台

9、立体声耳机(可选) 一副 10、连接线 若干

四、实验原理

(A )抽样定理 1、低通抽样定理 抽样定理表明:一个频带限制在(0, )内的时间连续信号()m t ,如果以T ≤ 秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

假定将信号()m t 和周期为T 的冲激函数()t T δ相乘,如图5-1所示。乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。若用()m t s 表示此抽样函数,则有:

()()()s T m t m t t δ=

12H

f H f

图5-1 抽样与恢复

假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。按照频率卷积定理,()m t ()T t δ的傅立叶变换是()M ω和()T δω的卷积:

[]1()()()2s T M M

ωωδωπ=

*

因为 2()T T s n n T

πδδωω∞

=-∞

=-∑

T

s πω2=

所以 1()()()s T s n M M n T ωωδωω∞

=-∞

?

?

=*

-???

?

由卷积关系,上式可写成 1()()s s n M M n T

ωωω∞

=-∞

=

-∑

该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()

M ω相迭加而成。

这就意味着()M s ω中包含()M ω的全部信息。

需要注意,若抽样间隔T 变得大于 ,则()

M

ω和()

T

δω的卷积在相邻的周期内存在

重叠(亦称混叠),因此不能由()M s ω恢复()

M

ω。可见, 是抽样的最大间隔,它被

称为奈奎斯特间隔。图5-2画出当抽样频率s f ≥2B 时(不混叠)及当抽样频率s f <2B 时(混叠)两种情况下冲激抽样信号的频谱。

(a) 连续信号的频谱

(b ) 高抽样频率时的抽样信号及频谱(不混叠)

1

2H f 1

2H

T f =

(c ) 低抽样频率时的抽样信号及频谱(混叠)

图5-2 采用不同抽样频率时抽样信号的频谱

2、带通抽样定理

实际中遇到的许多信号是带通信号。例如超群载波电话信号,其频率在312KHz 至552KHz 之间。若带通信号的上截止为频率H f ,下截止频率为L f ,此时并不一定需要抽样频率高于两倍上截止频率。带通抽样定理说明,此时抽样频率s f 应满足:

)1(2)1)((2N M B N

M f f f L H s +

=+

-=

其中,L H f f B -=,N f f f M L H H --=)]/([,N 为不超过)(

L H H f f f -/的最大正整数。由此可知,必有10<≤M 。由上式画出曲线。由图可知,带通信号的抽样频率在2B 至4B 间变动。

(B )脉冲振幅调制与解调 1、脉冲振幅调制实验

所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制的原理。

图5-3 脉冲幅度调制原理框图

但是,实际上理想的冲激脉冲串物理实现困难,通常采用窄脉冲串来代替。本实验采用图5-3所示的原理方框图。具体的电路原理图如图5-4所示。

图5-4 脉冲幅度调制电路原理图

图中,从PAM音频输入端口输入2KHz左右的正弦波信号,通过隔直电容去掉模拟信号中的直流分量,然后通过电压跟随器电路(U01)提高其带负载的能力,然后信号被送入模拟开关(U02)。由于实际上理想的冲激脉冲串物理实现困难,这里采用方波脉冲信号代替。具体实现方法是通过改变信号源“24位NRZ码型设置”及“BCD码分频值设置”,使得“NRZ”端输出不同占空比的近似8KHz的方波信号。该方波信号从PAM时钟输入端口输入,当方波为高电平时,模拟开关导通,正弦波通过并从调制端口输出;当方波为低电平时,模拟开关截止,输出零电平。

2、脉冲振幅解调

若要还原出原始的音频信号,则将该PAM信号通过截止频率略大于2KHz的二阶低通滤波器,滤除掉其中的高频成分即可。解调电路如图5-5所示。

图5-5 脉冲幅度调制信号解调电路原理图

五、实验步骤

1、将信号源模块、PAM&AM模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、

POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)

3、不同占空比8KHz方波脉冲分别对2KHz正弦信号抽样实验

将信号源模块产生的正弦波(峰-峰值在2V左右,从信号输出点“模拟输出”输出)送入PAM&AM模块的信号输入点“PAM音频输入”,将信号源模块产生的8KHz 方波(从信号输出点“NRZ”输出)送入PAM&AM模块的信号输入点“PAM时钟输入”。选择不同拨码设置的NRZ码后,观察“调制输出”测试点PAM抽样信号的波形,并注意它与正弦信号及抽样脉冲三者之间的关系。

连接PAM&AM模块的信号输出点“调制输出”和信号输入点“解调输入”,观察“解调输出”测试点还原的正弦信号波形,与“PAM音频输入”点波形进行对比。

注:以下将正弦波选定为2020Hz和2000Hz两种频率,是为了能够清晰、稳定的双路观察正弦信号、抽样脉冲及PAM调制信号三者之间的关系。

(1)占空比为1/2的抽样脉冲信号PAM实验

正弦信号选择2020Hz,“24位NRZ码型设置”为10101010 10101010 10101010,

“BCD码分频值设置”为00000001 00100100(124分频)。

(2)占空比为1/3的抽样脉冲信号PAM实验

正弦信号选择2000Hz,“24位NRZ码型设置”为10010010 01001001 00100100,

“BCD码分频值设置”为00000000 10000100(84分频)。

(3)占空比为1/4的抽样脉冲信号PAM实验

正弦信号选择2020Hz,“24位NRZ码型设置”为10001000 10001000 10001000,

“BCD码分频值设置”为00000000 01100010(62分频)。

(4)占空比为1/6的抽样脉冲信号PAM实验

正弦信号选择2000Hz,“24位NRZ码型设置”为10000010 00001000 00100000,

“BCD码分频值设置”为0000000 01000010(42分频)。

(5)占空比为1/8的抽样脉冲信号PAM实验

正弦信号选择2020Hz,“24位NRZ码型设置”为10000000 10000000 10000000,

“BCD码分频值设置”为00000000 00110001(31分频)。

4、将“PAM音频输入”和“调制输出”测试点输出的波形分别送入频谱分析模块,观察其

频谱并比较之。(可选)

六、输入、输出点参考说明

1、输入点参考说明

PAM音频输入:基带正弦信号输入点。

PAM时钟输入:抽样时钟信号输入点。

解调输入:PAM信号解调输入点。

2、输出点参考说明

调制输出:PAM调制信号输出点。

解调输出:PAM解调信号输出点。

七、实验报告要求

1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。

3、对实验思考题加以分析,按照要求做出回答,并尝试画出本实验的电路原理图。

八、实验思考题

1、简述抽样定理。

2、在抽样之后,调制波形中包不包含直流分量,为什么?

3、造成系统失真的原因有哪些?

4、为什么采用低通滤波器就可以完成PAM解调?

实验二脉冲编码调制与解调实验

一、实验目的

1、掌握脉冲编码调制与解调的基本原理。

2、定量分析并掌握模拟信号按照13折线A律特性编成八位码的方法。

3、通过了解大规模集成电路TP3067的功能与使用方法,进一步掌握PCM通信系统的工

作流程。

二、实验内容

1、观察脉冲编码调制与解调的整个变换过程,分析PCM调制信号与基带模拟信号之间

的关系,掌握其基本原理。

2、定量分析不同幅度的基带模拟正弦信号按照13折线A律特性编成的八位码,并掌握

该编码方法。

三、实验仪器

1、信号源模块

2、模拟信号数字化模块

3、20M双踪示波器一台

4、连接线若干

四、实验原理

1、PCM工作原理

所谓脉冲编码调制,就是将模拟信号抽样量化,然后使已量化值变换成代码。脉码系统原理框图如图6-1所示。

图6-1 PCM 系统原理框图

上图中,抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号。解调过程中,一般采用抽样保持电路。同时,在对模拟信号抽样之前一般要进行预滤波,

预滤波是为了把原始语音信号的频带限制在300Hz ~3400Hz 内,所以预滤波会引入一定的频带失真。

在整个PCM 通信系统中,重建信号的失真主要来源于量化以及信道传输误码。我们定义信号与量化噪声的功率比为信噪比S/N 。国际电报电话咨询委员会(ITU-T )详细规定了信噪比的指标。

下面将详细介绍PCM 编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。

(1)量化

模拟信号的量化分为均匀量化和非均匀量化两种,我们先讨论均匀量化。把输入模拟信号的取值域按等距离分割的量化就称为均匀量化。均匀量化中,每个量化区间的量化电平均取在各区间的中点,如图6-2所示。

图6-2 均匀量化过程示意图

其量化间隔(量化台阶)v ?取决于输入信号的变化范围和量化电平数。一旦输入信号的变化范围和量化电平数被确定后,量化间隔也随之被确定。

例如,输入信号的最小值和最大值分用a 和b 表示,量化电平数为M ,那么,均匀量化的量化间隔为:

M

a b v -=

?

量化器输出q m 为:

,q i m q = 当1i i m m m -<≤

式中i m 为第i 个量化区间的终点,可写成 v i a m i ?+=

i

q 为第i 个量化区间的量化电平,可表示为

m

q

1

,12

i i i m m q i M -+=

=???、2、、

上述均匀量化的主要缺点是无论抽样值大小如何,量化噪声的均方根值都固定不变。因

此,当信号()m t 较小时,则信号量化噪声功率比也很小。这样,对于弱信号时的量化信噪比就难以达到给定的要求。通常把满足信噪比要求的输入信号取值范围定义为动态范围,那么,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中往往采用非均匀量化的方法。

非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔v ?也小;反之,量化间隔就大。非均匀量化与均匀量化相比,有两个突出的优点:首先,当输入量化器的信号具有非均匀分布的概率密度(实际中往往是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例,因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的信噪比。

非均匀量化的实际过程通常是将抽样值压缩后再进行均匀量化。现在广泛采用两种对数压缩,美国采用μ压缩律,我国和欧洲各国均采用A 压缩律。本实验模块采用的PCM 编码方式也是A 压缩律。所谓A 压缩律就是压缩器具有如下特性的压缩律:

1,01ln y=1ln 1,11ln A x X A A

A x X A A

?

<≤

??+?

+?≤

当复杂的。实际中往往都采用近似于A 律函数规律的13折线(A=87.6)的压扩特性。这样,它基本保持连续压扩特性曲线的优点,又便于用数字电路来实现。本实验模块用到的PCM 编码芯片TP3067正是采用这种压扩特性来进行编码的,如图6-3所示。

图6-3 13折线

表6-1列出了13折线时的x 值与计算得的x 值的比较。

表 6-1

表中第二行的x 值是根据6.87=A 时计算得到的,第三行的x 值是13折线分段时的值。可见,13折线各段落的分界点与6.87=A 曲线十分逼近,同时x 按2的幂次分割有利于数字化。

(2)编码

所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。注意这里谈论的编码和译码与差错控制的编码和译码是完全不同的,前者属于信源编码的范畴。

在现有的编码方法中,若按编码的速度来分,大致可分为低速编码和高速编码两类。实际通信一般都采用高速编码。编码器的种类大体上也可以归结为三类:逐次比较型、折叠级联型和混合型。本实验模块中

PCM 编码芯片TP3067采用的是逐次比较型编码。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。下面结合13折线的量化来加以说明。

表6-2

段落码 表6-3 段内码

在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码,即用8

位折叠二进制码来表示输入信号的抽样量化值。其中,用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平。其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级。这样处理的结果,使8个段落被划分成27=128个量化级。段落码和8个段落之间的关系如表6-2所示,段内码与16个量化级之间的关系见表6-3。上述编码方法是把压缩、量化和编码合为一体的方法。

2、PCM编译码电路TP3067芯片介绍

本实验模块采用大规模集成电路TP3067对语音模拟信号进行PCM编解码。TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。其编码速率为2.048MHz,每一帧8位数据,采用8KHz帧同步信号。模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙(此时隙应与发送码数据的时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后再译码输出。

五、实验步骤

1、将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下二个模块中的相应开关

POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,三个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)

3、对任意频率、幅度的模拟正弦信号脉冲编码调制与解调实验

(1)将信号源模块中BCD码分频值(拨码开关SW04、SW05)设置为0000000 0000001,模拟信号数字化模块中拨码开关S1设置为0000,“编码幅度”电位器(标号为P02)逆时针旋转到顶。

(2)信号源模块产生一频率为2KHz,峰-峰值约为2V的正弦模拟信号,由“模拟输出”端送入到模拟信号数字化模块的“S-IN”端,再分别连接信号源模块的信号输出端“64K”、“8K”、“BS”与模拟信号数字化模块的信号输入端“CLKB-IN”、“FRAMEB-IN”、“2048K-IN”。开电,观察“PCMB-OUT”端PCM编码。(因为是对随机信号进行编码,所以建议使用数字存储示波器观察。)

(3)断电,分别连接模拟信号数字化模块上编译码时钟信号“CLKB-IN”和“CLK2-IN”,帧同步信号“FRAMEB-IN”和“FRAME2-IN”,PCM编译码信号输出点“PCMB-OUT”

和信号输入点“PCM2-IN”。开电,观察并比较基带模拟信号“S-IN”和解调信号

“JPCM”。

(4)改变正弦模拟信号的幅度及频率,观察PCM编码信号和解调信号随之的波形变

化情况,同时注意观察满载和过载时的脉冲幅度和解调信号波形,超过音频信号频

带范围时的解调信号波形。

4、用模拟示波器定量观察PCM八位编码实验

(1)断电,拆除所有信号连线,将拨码开关S1设置为1111。

(2)开电,观察2KHz基带信号“S-IN2”、8KHz帧同步信号“FRAMEB-IN”、64KHz

编码时钟信号“CLKB-IN”与PCM编码信号“PCMB-OUT”的波形。调节“编码幅度”

电位器,分析PCM八位编码中极性码、段落码与段内码随基带信号幅值大小的变化

而变化的情况。

(3)断电,分别连接信号点“CLKB-IN”和“CLK2-IN”,“FRAMEB-IN”和“FRAME2-IN”,“PCMB-OUT”和“PCM2-IN”。开电,观察并比较基带模拟信号“S-IN2”和解调信号“JPCM”。

注:实验完后务必将拨码开关S1重新设置为0000。

六、输入、输出点参考说明

1、输入点参考说明

2048K-IN: 2.048MHz时钟信号输入点。

S-IN:模拟信号输入点(基带信号)。

CLKB-IN: PCM编码64KHz时钟信号输入点。

FRAMEB-IN: PCM编码8KHz帧同步信号输入点。

PCM2-IN:译码时的PCM码信号输入点。

CLK2-IN:PCM译码64KHz时钟信号输入点。

FRAME2-IN: PCM译码8KHz帧同步信号输入点。

2、输出点参考说明

S-IN2: 2KHz基带信号测试点。

PCMB-OUT: PCM调制信号输出点。

JPCM:PCM解调信号输出点。

七、实验报告要求

1、分析脉冲编码调制与解调的基本工作原理,画出其流程框图,并解释每一步的作用。

2、记录实验测试结果,分析实验现象。

3、回答实验思考题。

八、实验思考题

TP3067 PCM编码器输出的PCM码的速率是多少?在本实验中,为什么要给TP3067提供2.048MHz的时钟?

现代数字信号处理仿真作业

现代数字信号处理仿真作业 1.仿真题3.17 仿真结果及图形: 图 1 基于FFT的自相关函数计算

图 3 周期图法和BT 法估计信号的功率谱 图 2 基于式3.1.2的自相关函数的计算

图 4 利用LD迭代对16阶AR模型的功率谱估计16阶AR模型的系数为: a1=-0.402637623107952-0.919787323662670i; a2=-0.013530139693503+0.024214641171318i; a3=-0.074241889634714-0.088834852915013i; a4=0.027881022353997-0.040734794506749i; a5=0.042128517350786+0.068932699075038i; a6=-0.0042799971761507 + 0.028686095385146i; a7=-0.048427890183189 - 0.019713457742372i; a8=0.0028768633718672 - 0.047990801912420i a9=0.023971346213842+ 0.046436389191530i; a10=0.026025963987732 + 0.046882756497113i; a11= -0.033929397784767 - 0.0053437929619510i; a12=0.0082735406293574 - 0.016133618316269i; a13=0.031893903622978 - 0.013709547028453i ; a14=0.0099274520678052 + 0.022233240051564i; a15=-0.0064643069578642 + 0.014130696335881i; a16=-0.061704614407581- 0.077423818476583i. 仿真程序(3_17): clear all clc %% 产生噪声序列 N=32; %基于FFT的样本长度

数字信号处理基础实验指导书

《数字信号处理》实验指导书 光电工程学院二○○九年十月

实验一离散时间信号分析 一、实验目的 1.掌握各种常用的序列,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的相加、相乘、移位、反转等基本运算及计算机实现与作用。 4.掌握线性卷积软件实现的方法。 5.掌握计算机的使用方法和常用系统软件及应用软件的使用。 6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列来表示,其中代表序列的第n个数字,n代表时间的序列,n的取值范围为的整数,n取其它值没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号进行等间隔采样,采样间隔为T,得到一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反转、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将和的变量换成,变成和,再将以纵轴为对称轴反褶成。 (2)移位:将移位,得。当为正数时,右移位;当为负数时,左

移位。 (3)相乘:将和的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得。 三、主要实验仪器及材料 微型计算机、Matlab软件6.5或更高版本。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB或C语言编程产生和绘制下列有限长序列: (1)单位脉冲序列 (2)单位阶跃序列 (3)矩形序列 (4)正弦型序列 (5)任意序列 3.序列的运算 利用MATLAB编程完成上述两序列的移位、反转、加法、乘法等运算,并绘制运算后序列的波形。 4.卷积运算 利用MATLAB编制一个计算两个序列线性卷积的通用程序,计算上述两序列,并绘制卷积后序列的波形。 5.上机调试并打印或记录实验结果。 6.完成实验报告。 五、实验报告要求 1. 简述实验原理及目的。 2. 给出上述序列的实验结果。 3. 列出计算卷积的公式,画出程序框图,并列出实验程序清单 (可略)(包括必要的程序说明)。 4. 记录调试运行情况及所遇问题的解决方法。 5. 给出实验结果,并对结果做出分析。 6. 简要回答思考题。 1 如何产生方波信号序列和锯齿波信号序列? 2 实验中所产生的正弦序列的频率是多少?是否是周期序列?

数字信号处理实验(吴镇扬)答案-2

(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的 值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。 ()() ?????≤≤=-其他0150,2n e n x q p n a 解:程序见附录程序一: P=8,q 变化时: t/T x a (n ) k X a (k ) t/T x a (n ) p=8 q=4 k X a (k ) p=8 q=4 t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 幅频特性 时域特性

t/T x a (n ) p=8 q=8 k X a (k ) p=8 q=8 t/T x a (n ) 5 10 15 k X a (k ) p=13 q=8 t/T x a (n ) p=14 q=8 5 10 15 k X a (k ) p=14 q=8 时域特性幅频特性 分析: 由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱; 当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值, p=14时的泄漏现象最为明显,混叠可能也随之出现;

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理实验作业

实验5 抽样定理 一、实验目的: 1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。 2、进一步加深对时域、频域抽样定理的基本原理的理解。 3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和插公式的编程方法。 二、实验原理: 1、时域抽样与信号的重建 (1)对连续信号进行采样 例5-1 已知一个连续时间信号sin sin(),1Hz 3 ππ=0001f(t)=(2f t)+6f t f ,取最高有限带宽频率f m =5f 0,分别显示原连续时间信号波形和F s >2f m 、F s =2f m 、F s <2f m 三情况下抽样信号的波形。 程序清单如下: %分别取Fs=fm ,Fs=2fm ,Fs=3fm 来研究问题 dt=0.1; f0=1; T0=1/f0; m=5*f0; Tm=1/fm; t=-2:dt:2; f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); subplot(4,1,1); plot(t,f); axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); subplot(4,1,i+1);stem(n,f,'filled'); axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end 程序运行结果如图5-1所示:

原连续信号和抽样信号 图5-1 (2)连续信号和抽样信号的频谱 由理论分析可知,信号的频谱图可以很直观地反映出抽样信号能否恢复原模拟信号。因此,我们对上述三种情况下的时域信号求幅度谱,来进一步分析和验证时域抽样定理。 例5-2编程求解例5-1中连续信号及其三种抽样频率(F s>2f m、F s=2f m、F s<2f m)下的抽样信号的幅度谱。 程序清单如下: dt=0.1;f0=1;T0=1/f0;fm=5*f0;Tm=1/fm; t=-2:dt:2;N=length(t); f=sin(2*pi*f0*t)+1/3*sin(6*pi*f0*t); wm=2*pi*fm;k=0:N-1;w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1)); axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3; if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2;N=length(n); f=sin(2*pi*f0*n)+1/3*sin(6*pi*f0*n); wm=2*pi*fs;k=0:N-1; w=k*wm/N;F=f*exp(-j*n'*w)*Ts; subplot(4,1,i+1);plot(w/(2*pi),abs(F)); axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end 程序运行结果如图5-2所示。 由图可见,当满足F s≥2f m条件时,抽样信号的频谱没有混叠现象;当不满足F s≥2f m 条件时,抽样信号的频谱发生了混叠,即图5-2的第二行F s<2f m的频谱图,,在f m=5f0的围,频谱出现了镜像对称的部分。

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理实验(吴镇扬)答案-4

实验四 有限长单位脉冲响应滤波器设计 朱方方 0806020433 通信四班 (1) 设计一个线性相位FIR 高通滤波器,通带边界频率为0.6π,阻带边界频率为0.4π,阻 带衰减不小于40dB 。要求给出h(n)的解析式,并用MATLAB 绘出时域波形和幅频特性。 解: (1) 求数字边界频率: 0.6 , .c r ωπωπ== (2) 求理想滤波器的边界频率: 0.5n ωπ= (3) 求理想单位脉冲响应: []d s i n ()s i n [()] () ()1n n n n n n h n n παωαα παωα π?-- -≠??-=? ? -=?? (4) 选择窗函数。阻带最小衰减为-40dB ,因此选择海明窗(其阻带最小衰减为-44dB);滤 波器的过渡带宽为0.6π-0.4π=0.2π,因此 6.21 0.231 , 152 N N N ππα-=?=== (5) 求FIR 滤波器的单位脉冲响应h(n): []31d sin (15)sin[0.5(15)] 1cos ()15()()()15(15)1 15 n n n R n n h n w n h n n n ππππ?---????-? ?≠? ???==-???? ? ?=? 程序: clear; N=31; n=0:N-1; hd=(sin(pi*(n-15))-sin(0.5*pi*(n-15)))./(pi *(n-15)); hd(16)=0.5; win=hanning(N); h=win'.*hd; figure; stem(n,h); xlabel('n'); ylabel('h(n)'); grid; title('FIR 高通滤波单位脉冲响应h(n)'); [H,w]=freqz(h,1); H=20*log10(abs(H)); figure;3 plot(w/pi,H); axis([0 1 -100 10]); xlabel('\omega/\pi'); ylabel('幅度/dB'); grid; title('FIR 高通滤波器,hanning 窗,N=31');

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

现代数字信号处理及应用仿真题答案

仿真作业 姓名:李亮 学号:S130101083

4.17程序 clc; clear; for i=1:500 sigma_v1=0.27; b(1)=-0.8458; b(2)=0.9458; a(1)=-(b(1)+b(2)); a(2)=b(1)*b(2); datlen=500; rand('state',sum(100*clock)); s=sqrt(sigma_v1)*randn(datlen,1); x=filter(1,[1,a],s); %% sigma_v2=0.1; u=x+sqrt(sigma_v2)*randn(datlen,1); d=filter(1,[1,-b(1)],s); %% w0=[1;0]; w=w0; M=length(w0); N=length(u); mu=0.005; for n=M:N ui=u(n:-1:n-M+1); y(n)=w'*ui; e(n)=d(n)-y(n); w=w+mu.*conj(e(n)).*ui; w1(n)=w(1); w2(n)=w(2); ee(:,i)=mean(e.^2,2); end end ep=mean(ee'); plot(ep); xlabel('迭代次数');ylabel('MSE');title('学习曲线'); plot(w1); hold; plot(w2); 仿真结果:

步长0.015仿真结果 0.10.20.30.4 0.50.60.7迭代次数 M S E 学习曲线

步长0.025仿真结果

步长0.005仿真结果 4.18 程序 data_len = 512; %样本序列的长度 trials = 100; %随机试验的次数 A=zeros(data_len,2);EA=zeros(data_len,1); B=zeros(data_len,2);EB=zeros(data_len,1); for m = 1: trials a1 = -0.975; a2 = 0.95; sigma_v_2 =0.0731; v = sqrt(sigma_v_2) * randn(data_len, 1, trials);%产生v(n) u0 = [0 0]; num = 1; den = [1 a1 a2]; Zi = filtic(num, den, u0); %滤波器的初始条件 u = filter(num, den, v, Zi); %产生样本序列u(n) %(2)用LMS滤波器来估计w1和w2 mu1 = 0.05; mu2 = 0.005; w1 = zeros(2, data_len);

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

数字信处理上机实验答案全

数字信处理上机实验答 案全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第十章 上机实验 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。 实验一系统响应及系统稳定性。 实验二时域采样与频域采样。 实验三用FFT对信号作频谱分析。 实验四 IIR数字滤波器设计及软件实现。 实验五 FIR数字滤波器设计与软件实现 实验六应用实验——数字信号处理在双音多频拨号系统中的应用 任课教师根据教学进度,安排学生上机进行实验。建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。学习完第六章进行;实验五在学习完第七章后进行。实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。 实验一: 系统响应及系统稳定性 1.实验目的 (1)掌握求系统响应的方法。 (2)掌握时域离散系统的时域特性。 (3)分析、观察及检验系统的稳定性。 2.实验原理与方法 在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。 系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。或者系统的单位脉冲响应满足绝对可和的条件。系统的稳定性由其差分方程的系数决定。 实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的[19]。系统的稳态输出是指当∞ n时,系统的输出。如果系统稳定,信号加入 → 系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。 注意在以下实验中均假设系统的初始状态为零。 3.实验内容及步骤

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

西安电子科技大学数字信号处理大作业

数字信号处理大作业 班级:021231 学号: 姓名: 指导老师:吕雁

一写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会 1、采样定理 在进行A/D信号的转换过程中,当采样频率fs.max大于信号中最高频 率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定 理又称奈奎斯特定理。 (1)在时域 频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各 采样值完全恢复原始信号。 (2)在频域 当时间信号函数f(t)的最高频率分量为fmax时,f(t)的值可由一系列 采样间隔小于或等于1/2fo的采样值来确定,即采样点的重复频率fs ≥2fmax。 2、奈奎斯特采样频率 (1)概述 奈奎斯特采样定理:要使连续信号采样后能够不失真还原,采样频率必须 大于信号最高频率的两倍(即奈奎斯特频率)。 奈奎斯特频率(Nyquist frequency)是离散信号系统采样频率的一半,因哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香农采样定理得名。采样定理指出,只要离散系统的奈奎斯特频率高于被采样信号的最高频率或带宽,就可 以真实的还原被测信号。反之,会因为频谱混叠而不能真实还原被测信号。 采样定理指出,只要离散系统的奈奎斯特频率高于采样信号的最高频率或 带宽,就可以避免混叠现象。从理论上说,即使奈奎斯特频率恰好大于信号带宽,也足以通过信号的采样重建原信号。但是,重建信号的过程需要以一个低 通滤波器或者带通滤波器将在奈奎斯特频率之上的高频分量全部滤除,同时还 要保证原信号中频率在奈奎斯特频率以下的分量不发生畸变,而这是不可能实 现的。在实际应用中,为了保证抗混叠滤波器的性能,接近奈奎斯特频率的分 量在采样和信号重建的过程中可能会发生畸变。因此信号带宽通常会略小于奈 奎斯特频率,具体的情况要看所使用的滤波器的性能。需要注意的是,奈奎斯 特频率必须严格大于信号包含的最高频率。如果信号中包含的最高频率恰好为

数字信号处理基础实验报告 (2)

成都理工大学 《信号处理基础》实验 开设时间:2013—2014学年第2学期

题目1:信号的产生和显示 一、实验目的: 认识基本信号 通过使用MATLAB 设计简单程序, 掌握对MATLAB 的基本使用方法 二、实验原理: 找出下列表达式的信号与:正弦信号、最小相位信号、最大相位信号、零相位信号的对应关系。 1、sin60t 2、e-60t sin60t 3、(1- e-60t)sin60t 4、e60t sin60t 三、实验内容: 产生上述信号的信号并显示 (1)t=[-pi/30:0.001:pi/30]; f=sin(60*t); plot(t,f) 产生图形如下:

(2)t=[0:0.001:pi/30]; f=exp(-60*t).*sin(60*t); plot(t,f) 产生图形如下:

(3)t=[-5*pi/30:0.001:5*pi/30]; f=(1-exp(-60*t)).*sin(60*t); plot(t,f) 产生图形如下: (4) t=[-pi/30:0.001:pi/30]; f=exp(6*t).*sin(60*t); plot(t,f) 产生如下波形:

四、实验结果与讨论: 讨论上述信号的特点 从第一个波形图可以看出,它的波形与正弦函数sin(t)的相像,只是相位上有改变,是一个正弦信号。最大相位信号的能量集中在后面,最小相位能量集中在前面,所以第二个是一个最小相位,第四个是一个最大相位信号。第三个由于波形在t>0时没有,所以是一个零相位信号。 题目2:频谱分析与显示 一、实验目的 初步认识频谱分析

习题集-02 数字信号处理习题答案

§ Z 变换 ? Z 变换的定义及收敛域 【习题】 1. 假如)(n x 的z 变换代数表示式是下式,问)(z X 可能有多少不同的收敛域。 )83451)(411(411)(2122----+++- =z z z z z X 【分析】 )要单独讨论,(环状、圆外、圆内:有三种收敛域:双边序列的收敛域为:特殊情况有:左边序列的收敛域为:因果序列的收敛域为:右边序列的收敛域为:特殊情况有:有限长序列的收敛域为 0 0 , , 0 0 , , 0 , 0 0 , 0 , 0 22 11 212 1∞==<<≤≤<≤<<≥≥∞≤<≥∞<<≤∞<≤≥∞≤<≤≤∞<<+ -++--z z R z R n n R z n n R z n n z R n n z R n z n z n n n z x x x x x x

解:对X (Z )的分子和分母进行因式分解得 )43 1 )(21 1)(211(2111111----+-+- =Z jZ jZ Z X (Z )的零点为:1/2,极点为:j/2,-j/2,-3/4 ∴ X (Z )的收敛域为: (1) 1/2 < | Z | < 3/4,为双边序列,见图一 (2) | Z | < 1/2,为左边序列,见图二 (3) | Z | > 3/4,为右边序列,见图三 图一 图二 图三 )431)(211)(411()211)(211()(11211-----++++- =Z Z Z Z Z Z X

? Z 反变换 【习题】 2. 有一右边序列 )(n x ,其 z 变换为)1)(211(1 )(11----=z z z X (a) 将上式作部分分式展开(用 1-z 表示),由展开式求 )(n x 。 (b) 将上式表示成 z 的多项式之比,再作部分分式展开,由展开式求 )(n x ,并说明所得到的序列 与(a)所得的是一样的。 【注意】不管哪种表示法最后求出 x (n ) 应该是相同的。 解:(a) 因为11122 111)(---+--=z z z X 且x(n)是右边序列 所以 )()212()(n u n x n ?? ? ??-= (b) 122 1211 )1)(2 1(21231 )1)(2 1()(2 -+--+=---+=--=z z z z z z z z z X )()212( )1(2)1(21)()( n u n u n u n n x n n ??? ??-=-+-?? ? ??-=δ则

相关文档
相关文档 最新文档