文档库 最新最全的文档下载
当前位置:文档库 › 金属材料学复习总结

金属材料学复习总结

金属材料学复习总结
金属材料学复习总结

名词解释

合金元素:指为了使钢获得所需要的组织结构、物理、化学和力学性能而添加在钢中的元素。微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右时,就能显

著地影响钢的组织与性能的若干元素。

奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ-Fe的元素C,N,Cu,Mn,Ni,Co,W

铁素体形成元素:在α-Fe中有较大的溶解度,且能γ-Fe不稳定的元素Cr,V,Si,Al,Ti,Mo等

原位析出:指在回火过程中,合金渗碳体转变为特殊碳化物。碳化物形成元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物。如Cr

钢碳化物转变

离位析出:含强碳化物形成元素的钢,在回火过程中直接从过饱和α相中析出特殊碳化物,同时伴随着渗碳体的溶解,如V,Nb,Ti。(W和Mo既有原味析出又有异位析出)

网状碳化物:热加工的钢材冷却后,沿奥氏体晶界析出的过剩碳化物(过共析钢)或铁素

体(亚共析钢)形成的网状碳化物。

热脆:指当某些钢在1100-1200度进行热加工时,分布与晶界的低熔点的共晶体熔化而导致

开裂的现象。

冷脆:指材料在低温条件下的极小塑变脆断。

水韧处理:将高锰钢加热到单相奥氏体温度范围,使碳化物完全溶入奥氏体,然后在水中

快冷,从而获得获得单相奥氏体组织。(水韧后不再回火)

超高强度钢:用回火M或下B作为其使用组织,经过热处理后抗拉强度大于1400 MPa (或屈服强度大于1250MPa)的中碳钢,均可称为超高强度钢。

晶间腐蚀:晶界上析出连续的网状富铬的Cr23C6引起晶界周围基体产生贫铬区成为微阳

极而引发的腐蚀。

应力腐蚀:奥氏体或马氏体不锈钢受张应力时,在某些介质中经过一般不长的时间会发生破坏,且随应力增大,发生破裂的时间也越短,当取消应力时,腐蚀较小或不发生腐蚀,这种

腐蚀现象称为应力腐蚀。

n/8规律:当Cr的含量达到1/8,2/8,3/8,……原子比时,Fe的电极电位就跳跃式显著

提高,腐蚀也显著下降。这个定律叫做n/8规律。

双相钢:是指显微组织主要是由铁素体和5%-20%体积分数的马氏体所组成的低合金高

强度结构钢,即在软相铁素体基体上分布着一定量的硬质相马氏体。

针状铁素体钢:在低合金钢的基础上,当钢中的碳含量低于0.06%时,添加适量的Mn、Mo、Nb等元素,形成一种具有高密度位错结构的“针状铁素体”组织的钢。

黑色组织:高速钢在实际铸锭凝固时,冷速>平均冷速。合金元素来不及扩散,在结晶和固

态相变过程中转变不能完全进行,共析转变形成δ共析体为两相组织,易被腐蚀,在金相组

织上呈黑色,而称作黑色组织。

低(中高)合金钢:合金元素总量小于3.5%的合金钢叫低合金钢。合金含量在3.5%-

10%之间的合金钢叫中合金钢。大于10%的高合金钢。

黄铜: Cu与Zn组成的铜合金

青铜: Cu与Zn、Ni以外的其它元素组成的铜合金

白铜: Cu与Ni组成的铜合金

灰口铸铁:灰口铸铁中碳全部或大部分以片状石墨形式存在,其断口呈暗灰色。(片状石墨

对基体产生割裂作用,并在尖端造成应力集中,故灰口铸铁力学性能较差)

可锻铸铁:可锻铸铁中的碳全部以或大部分以图案絮状的石墨形式存在,它是由一定成分的

白口铸铁经长时间高温石墨化退火而形成的。又称韧性铸铁。

蠕墨铸铁:蠕墨铸铁中的碳大部分以蠕虫状石墨形式存在。(高耐热性)

麻口铸铁::麻口铸铁中的碳一部分以渗碳体形式存在,另一部分以石墨形式存在,端口呈黑白相间。(无实用价值)。

基体钢:指其成分含有高速钢淬火组织中除过剩余碳化物以外的基体化学成分的钢种。(高强度高硬度,韧性和疲劳强度优于高速钢,可做冷热变形模具刚,也可作超高强度钢)

二次淬火,二次硬化:见后面问答题

第一章

1、合金元素V、Cr、W、Mo、Co、Ni、Cu、Ti、Al、Mn中哪些是铁素体形成元素?哪

些是奥氏体形成元素?哪些能在a-Fe中形成无限固溶体?哪些能在γ-Fe中形成无限固溶体?为什么?

答:奥氏体形成元素:C,N,Cu,Mn,Ni,Co等。

铁素体形成元素:Cr,V,Si,Al,Ti,Mo,W。

V、Cr与α-Fe可形成无限置换固溶体;

Mn、Co、Ni与γ-Fe可形成无限置换固溶体。

决定组元在置换固溶体中的溶解条件是:(1)溶剂与溶质的点阵相同;(2)原子尺寸因素(形成无限固溶体时,两者之差不大于±8%);(3)组元的电子结构(组元在周期表中的相对位置)。

2、简述合金元素对铁碳相图(如共析碳量等等临界点)的影响。

答:1.改变奥氏体相区位置奥氏体形成元素均使奥氏体存在的区域扩大,其中开启γ相区的元素如,Ni、Mn、Co含量较多时可使钢在室温下得到单相奥氏体相区。铁素体形成元素均使奥氏体的相区缩小,其中封闭γ相区的元素如Cr Ti Si等超过一定含量时,可使钢在室温获得单相铁素体组织。

2.改变共析/共晶转变温度扩大γ相区的元素,使共析转变温度降低。缩小γ相区的元素,使其升高。

3.改变了共析含碳量几乎所有合金元素均使共析点(S)左移,说明钢在C不到

0.77%时就会因过共析而析出Fe3C II,即共析含碳量降低。

3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?(1)扩大γ相区:使A3降低,A4升高。一般为奥氏体形成元素

分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶.

b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。

(2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素

分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。

b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等

(3)生产中的意义:可以利用M扩大和缩小γ相区作用,获得单相组织,具有特殊性能,在耐蚀钢和耐热钢中应用广泛。

4.如何利用合金元素来消除或预防第一次、第二次回火脆性?

1)低温回火脆性(第I类,不具有可逆性)

其形成原因:沿条状马氏体的间界析出K薄片;

防止:加入Si, 脆化温度提高300℃;加入Mo减轻作用。

2)高温回火脆性(第II类,具有可逆性)

其形成原因:与钢杂质元素向原奥氏体晶界偏聚有关。防止:加入W,Mo消除或延缓杂质元素偏聚.

5.如何理解二次硬化与二次淬火两个概念的相关性与不同特点。

答:二次硬化:在含有Ti, V, Nb, Mo, W等较高合金钢淬火后,在500- 600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的HRC和强度提高。(但只有离位析出时才有二次硬化现象)

二次淬火:在强K形成元素含量较高的合金钢中淬火后γ’十分稳定,甚至加热到500-600℃回火时仍不分解,而是在冷却时部分转变成马氏体,使钢的硬度提高。

相同点:都发生在合金钢中,含有强碳化物形成元素相对多,发生在淬回火过程中,且回火温度550℃左右。

不同点:二次淬火,是回火冷却过程中Ar转变为m,使钢硬度增加。二次硬化:回火后,由于特殊k的沉淀析出,钢硬度不降反升。

6.一般地,钢有哪些强化与韧化途径?

强化固溶强化细晶强化位错强化第二相强化(弥散强化、析出强化、沉淀强化、时效强化、二次硬化、过剩相强化)

韧化1、细化晶粒2、提高冶金质量,降低杂质元素含量3、改善基体韧性4、细化碳化物5、调整化学成分6、形变热处理,减少显微裂纹7、低碳马氏体强韧化8、提高钢的耐回火性

7.合金元素对马氏体转变有何影响?

答:合金元素的作用表现在:

1.对马氏体点Ms- M f温度的影响;除Al,Co 外,绝大多数合金元素都降低Ms、Mf温度,其降低程度:强C→Mn→Cr→Ni→V→Mo,W,Si弱。且随合金元素含量增加,马氏体转变温度继续下降。

2.改变马氏体形态及精细结构(亚结构)。

合金元素Cr、Ni、Mo、Mn等有增加形成孪晶马氏体的倾向,且亚结构与合金成分和马氏体的转变温度有关。

第二章工程结构钢

1.对工程结构钢的基本性能要求是什么?

答:(1)足够高的强度、良好的塑性;

(2)适当的常温冲击韧性,有时要求适当的低温冲击韧性;

(3)良好的工艺性能。

2.低合金高强度钢的合金化特点

答:低合金高强度钢是指在普通碳素钢的基体上通过添加一种或多种少量合金元素(总质量分数低于3%),使钢的强度明显高于碳素钢的一类工程结构钢。

合金元素的作用:1)溶入铁素体基体产生固溶强化(Si、Mn、Ni、W、Mo、V、Cr)2)细化晶粒(V、Mo),利用细晶强化使钢的韧-脆转变温度的降低,来抵消由于碳氮化物沉淀强化使钢的韧-脆转变温度的升高。

3)析出弥散的碳、氮化物,起沉淀强化作用。

4)增加珠光体的含量以提高强度。

3.什么是微合金钢?微合金化元素在微合金化钢中的主要作用有哪些?试举例说明。

答:微合金钢:在现有的钢中添加微量元素使钢的性能明显提高,并通过工艺和化学成分使细晶强化和沉淀强化良好组合后的钢。

主要微合金化元素Ti, Nb, V;

作用:1)抑制奥氏体形变再结晶:在热加工过程中,通过应变诱导析出Nb、Ti、V的氮化物,沉淀在晶界、亚晶界和位错上,起钉扎作用,能有效抑制再结晶过程的进行。

2)阻止奥氏体晶粒长大:微量Nb(N,C)以及TiN从高温固态钢中析出,呈弥散分布,阻止奥氏体晶粒长大。

3)沉淀强化:低温下析出沉淀相Nb(N,C)以及VC,起沉淀强化作用,能显著提高钢的屈服强度。

4)改变与细化钢的显微组织:在轧制加热时,溶于奥氏体的微合金元素提高了过冷奥氏体的稳定性,降低了发生先共析铁素体和珠光体的温度范围,细化了组织和析出相。

第三章机械制造结构钢

1.调质钢、弹簧钢进行成分、热处理、常用组织及主要性能的比较,并熟悉各自主要钢种。答:

成分热处理常用组织主要性能

调质钢0.30~0.50%C的C

钢或中、低合金钢淬火+高温回

回火S或回

火T

较高的强度,良好的塑性

和韧性

弹簧钢中、高碳素钢或低

合金钢淬火+中温回

回火T 高的弹性极限,高的疲劳

强度,足够的塑性和韧性

主要钢种:

A.调质钢:按淬透性大小可分为几级:

1)40,45,45B

2)40Cr,45Mn2, 45MnB, 35MnSi

3)35CrMo, 42MnVB, 40MnMoB ,40CrNi

4)40CrMnMo, 35SiMn2MoV,40CrNiMo

B.弹簧钢:1)Mn弹簧钢:60Mn,65Mn

2)MnSi弹簧钢:55Si2Mn,60Si2MnA

3)Cr弹簧钢:50CrMn,50CrV A, 50CrMnV A (使用T<300℃)

4)耐热弹簧:30W4Cr2V A (可达500℃)

5)耐蚀弹簧:3Cr13, 4Cr13, 1Cr18Ni9Ti (温度<400℃)

2.马氏体时效钢与低合金超强钢相比,在合金化、热处理、强化机制、主要性能等方面有何不同?

合金化热处理强化机制主要性能

马氏体时效钢1)扩大γ相区(Ni、Co);

2)时效强化(Ni,Ti, Al,

Mo, Nb ,Mo);

3)为提高塑韧性,必须

严格控制杂质元素含量

(C,S,N,P)

815°固溶处理加时

效强化

固溶强化

冷作相变强

时效强化

高强度,同时具有良好的塑

韧性和缺口强度;

热处理工艺简单;

淬火后硬度低,冷变形性能

和切削性能好;

焊接性较好

低合金超高强钢1)保证钢的淬透性(Cr,

Mn, Ni);

2)增加钢的抗回火稳定

性(V, Mo);

3)推迟低温回火脆性

(Si);

4)细化晶粒(V,Mo)。

淬火+ 低温回火或

等温淬火

晶粒细化、沉

淀硬化及亚

结构的变化

强度高;成本低廉;生产工

艺较简单;

韧塑性较差;

较大的脱C倾向;

焊接性不太好。

3、G Cr15钢是什么类型的钢?这种钢中碳和铬的含量约为多少?碳和铬的主要作用分别是什么?其预先热处理和最终热处理分别是什么?

答:(1) GCr15钢是滚动轴承钢。含碳量为1%,含铬量为1.5%。

(2)碳的主要作用:

含碳量为0.45%的回火马氏体基体,提高强度、硬度和耐磨性。

数量为8%的细颗粒未溶合金渗碳体(Fe,Cr)3C,提高耐磨性、细化奥氏体晶粒。

(3)铬的作用:提高淬透性;提高合金渗碳体的稳定性,淬火加热时保持细小颗粒,细化奥氏体晶粒,提高耐磨性。

(4)预先热处理

球化退火:得到均匀细粒状珠光体组织。780-800℃加热,炉冷。

正火:得到细片状珠光体。850-950℃加热,空冷。

(5)最终热处理

淬火:830-860℃加热,油冷。回火:150-170℃。

4.高锰钢在平衡态、铸态、热处理态、使用态四种状态下各是什么组织?为何具有抗磨特性?

平衡态组织:α+ (Fe,Mn)3C 铸态组织:γ(+ α) +碳化物

固溶处理后组织:单相γ使用状态下组织: 表面硬化层 + 内部γ

高冲击和强挤压下,通过大形变在奥氏体基体中产生大量层错、形变孪晶、位错缠结、ε(α)-马氏体,其表面层迅速产生加工硬化,在滑移面上形成硬化层,表面硬度极大地提高到HB550左右,而心部仍保持韧性的奥氏体。

第四章

1.从总体看,工具钢与结构钢相比,在主要成分、组织类型、热处理工艺、主要性能与实际应用方面各自有何特点?

结构钢工具钢

成分C:中低C

合金元素:中偏低中高C

合金元素:中偏低高C

组织P(S,T),B,M M,S,T

热处理退、正、淬、回火淬火回火

综合性能强韧(热)硬,强

应用工程或制造结构各种工具

2、什么是红硬性?为什么它是高速钢的一种重要性能?哪些元素在高速钢中有利于提高钢的红硬性?

答:红硬性:在高温下保持高硬度的能力。在高速切削过程中,刀具的刃部温度可达600℃以上,并且要满足切削性能和耐磨性,这要求它必须具有红硬性。

提高红硬性元素:C碳、W钨、Mo钼、V钒、Co钴、N氮。

3.18-4-1高速钢的铸态显微组织特征是什么?为什么高速钢在热处理之前一定锻造?

铸态组织:鱼骨状Le+黑色与白色组织

铸态高速钢由于组织中存在大量粗大的共晶碳化物,并呈不均匀的网状分布,因而严重影响高速钢的性能,所以必须经过锻轧将其破碎,使其尽可能成为均匀分布的颗粒状碳化物4.高速钢18-4-1的最终热处理的加热温度为什么高达1280℃?在加热过程中为什么要在600~650℃和800~850℃进行二次预热保温?

加热温度高:为使奥氏体中合金度含量较高,应尽可能提高淬火温度至晶界熔化温度偏下(晶粒仍然很细,8-9级)。

目标:淬火后获得高合金的M组织,具有很高抗回火稳定性;

在高温回火时析出弥散的合金碳化物产生二次硬化,使钢具有高的硬度和热硬性。

一次或两次预热:由于高合金的高速钢导热性差,为防止工件加热时变形,开裂和缩短加热的保温时间以减少脱碳。

5.高碳高珞冷作模具钢性能特点,元素作用及其热处理工艺及组织是什么?

答;高碳高铬型钢是铬的质量分数为12%左右的高碳亚共晶莱氏体钢,在退火态含有体积分数为16%~20%的(Cr,Fe)7C3碳化物,其中也可能会溶入少量的钼和钒。在高温回火时(500℃左右),合金元素从马氏体中析出产生二次硬化,增加了耐回火性,

从而提高了钢的硬度和耐磨性。由于高温淬火加热后,Ms点降低,使淬火组织中存在大量的残余奥氏体,可以保证微小体积变形,这类钢中碳化物不均匀性比较严重。其铸态组织有网状共晶莱氏体存在,高碳高铬型钢锻造以后通常采用等温球化退火处理(850℃~870℃等温3~4h炉冷720~740℃等温6~8h炉冷至500℃空冷)退火后获得索氏体型珠光体+颗粒碳化物组织,高碳高铬型钢的淬火回火处理通常有一次硬化(采用较低的淬火回火温度)二次碳化(采用高的淬火温度进行多次回火处理)

C;提高硬度和耐磨性Cr;增加淬透性和耐磨性Mo、V:提高耐回火性,增加淬透性,细化晶粒

第五章

1. 合金元素对不锈钢的影响。

答:合金元素:Cr决定和提高耐蚀性的主要元素;

Ni可提高耐蚀性;

C与Cr形成碳化物,降低耐蚀性;

Mn,N提高高铬不锈钢在有机酸中的耐蚀性;

Mo提高不锈钢的钝化能力;

Cu少量加入可有效地提高不锈钢在硫酸及有机酸中的耐蚀性;

Si提高在盐酸、硫酸和高浓度硝酸中耐蚀性。

2.奥氏体不锈钢晶间腐蚀产生的原因,影响因素与防止方法。

产生的原因:这类钢在加热到450-850温度区间会发生敏化,过饱和的固溶的碳向晶粒边界扩散,与晶界附近的铬结合形成铬的碳化物Cr23C6,并在晶界析出,由碳比铬的扩散快的多,铬来不及从晶内补充到晶界附近,以至于邻近晶界的晶粒周边的Cr的质量分数低于12%,即所谓的“贫铬”现象,从而造成晶间腐蚀

影响因素:不锈钢的碳含量;化学成分;加热温度;加热时间。

防止方法:1)超低C;2)改变K类型,加Ti, Nb固C,并稳定化处理;3)固溶处理,重新使K溶解于γ中;4)获得γ+δ(10-50%)双相组织

9、高碳,高鉻工具钢耐磨性极好的原因是什么,抗氧化的原因?

(1)耐磨性好的原因:

马氏体基体的硬度高。未溶碳化物数多(退火时体积分数为16-20%)。

未溶碳化物是铬碳化物中硬度最高的Cr7C3,HV为1700。

(2)抗氧化的原因:形成了稳定、致密、结合牢固的Cr2O3保护膜。

3.耐热钢中合金元素的作用是什么?耐热钢的种类?

铬:提高钢抗氧化性的主要元素

钼,钨:提高低合金耐热钢热强性能的重要元素

铝:提高钢抗氧化性的有效元素

硅:提高抗氧化性的辅助元素

镍:主要是获得工艺性能良好的奥氏体组织而加入

钛,铌,钒:这些强碳化物形成元素能形成稳定的碳化物,提高钢的松弛稳定性,也提高热强性

碳:碳能强化钢,在较低温度时,钢的蠕变主要是以滑移为主,碳有强化作用;在较高温度下,钢的蠕变是以扩散塑性变形为主,而碳促进了碳原子的自扩散,所以起了不利的作用。种类:珠光体耐热钢,马氏体耐热钢,奥氏体耐热钢

F型耐热钢: 350-650℃包括F-P、F、M耐热钢

奥氏体耐热钢:600-850℃包括固溶强化、沉淀强化奥氏体耐热钢

高温合金:Ni 、Co基合金,650-1150℃

难熔合金:Mo、 Nb基合金,>1000℃

综合.判断下列钢号的类别、成分、常用的热处理方法及使用状态下的显微组织和用途:Q275 、ZGMn13、40Cr、35CrMo、20CrMnTi、GCr15、60Si2Mn、W18Cr4V(作业)、Cr12MoV、3Cr2W8V、5CrNiMo、9SiCr、CrWMn、4Cr13、1Cr18Ni9Ti、Cr17、12CrMo、38CrMoAlA。

Q275碳素工程结构钢w c=0.38%,w Mn<1.0%,w Si<1.5%组织:铁素体+珠光体热处理:正火或退火,淬火+低温回火性能:具有较低的强度、较好的塑性和切削加工性能,一定的焊接性能。用途:冷冲压薄板、冷拔钢管、冷拉钢丝等

ZGMn13高锰钢高碳高锰w c在1.0%左右W Mn=10-14% 组织:奥氏体+细小碳化物热处理:固溶+水韧处理

性能:适当的硬度,较高的强度和冲击韧性,高的耐磨性。用途:用于承受大冲击和耐磨损的零件,碎石机衬板、履带、挖掘机斗齿等。

Cr12MoV 冷作模具钢

第七章铸铁

1.铸铁与钢相比,在主要成分、使用组织、主要性能上有何不同?

成分: C、Si含量高,S、P含量高

组织:钢的基体 +(不同形状)石墨;

性能:性能比钢要低,特别塑、韧性;G:HB3-5,屈强20MPa, 延伸率近为0;但具有优良的减震性、减摩性以及切削加工性能、优良的铸造性能、低的缺口敏感性;

2.可锻铸铁的其生产分几步?

生产:分两步: 1)生产白口铸铁;2)高温G化退火(900-980度,15h

铝合金

第八章

1. 1.以Al-4%Cu合金为例,阐述铝合金的时效过程及主要性能(强度)变化。

1)形成溶质原子(Cu)的富集区—GP[I] 与母相α(Al为基的固溶体)保持共格关系,

引起α的严重畸变,使位错运动受阻碍,从而提高强度;

2)GP[I]区有序化—形成θ’’相化学成分接近CuAl2,具有正方晶格,引起更严重的畸变,

使位错运动更大阻碍,显著提高强度;

3)溶质原子的继续富集,以及过渡相θ’形成已达到CuAl2,且部分地与母相晶格脱离关系,

晶格畸变将减轻,对位错阻碍能力减小,合金趋于软化,强度开始降低。

4)稳定相θ的形成与长大与母相完全脱离晶格关系,强度进一步降低。这种现象称为过时

效。

2.变形铝合金分类,牌号及主要性能特点。

变形铝合金分为两大类:非热处理强化变形铝合金主要有防锈铝合金

热处理强化变形铝合金主要有硬铝、锻铝、超硬铝合金。

防锈铝合金

性能:耐蚀性好;塑性好(易加工成形);焊接性好;可利用冷加工硬化来提高强度

牌号: Al-Mn系 LF21 Al-Mg-(Mn) LF2, 3, 5, 6, 7, 10,11,12等

硬铝

Al-Cu-Mg合金系牌号:LY 具有良好的耐热性,强度高,但塑性及承受冷热加工能

力差

超硬铝合金

Al-Zn-Mg-Cu系牌号:LC3,LC4,LC5,LC6,LC9

性能:强度高(淬火+120℃时效),但抗蚀性差(包铝),组织稳定性不好,工作温度小于

120℃

锻铝合金

普通锻铝合金:Al-Mg-Si;热锻铝合金,Al-Cu-Mg-Ni-Fe

合金系 Al-Mg-Si、Al-Cu-Mg-Ni-Fe 牌号:LD2,LD5,LD6,LD10;LD7,LD8,LD9

性能:良好的热塑性,较高的机械性能

3.铸造铝合金主要分为几类?说明主要铸造铝合金的合金系、牌号及主要性能特点。

答:

合金系牌号主要性能特点

Al-Si系ZL1xx 最好的铸造性能、中等强度和抗蚀性,应用最广泛。

Al-Cu系ZL20x 最高的高温和室温性能,适于制造大负荷或耐热铸件,但铸造性能和抗蚀

性较差。

Al-Mg系ZL30x 有最好的抗蚀性和较高的强度,但铸造、耐热性能差,适于抗蚀、耐冲击

和表面装饰性高的铸件。

Al-Zn系ZL40x 铸态下的高强度铝合金,在强度、抗蚀性和铸造性能,均中等

第八章铜及铜合金

铜合金分为几类,不同铜合金的牌号如何表示,主要性能是什么?

黄铜:二元黄铜:铜-锌合金。H85,H70,H62。塑性好。

多元黄铜:

铝黄铜,HAl77-2,提高耐蚀性,增加强度。

锡黄铜,HSn70-1,提高耐蚀性,增加强度。铅黄铜,提高切削性。

青铜:

锡青铜:铜-锡合金。QZSn10,铸造收缩率小,适于铸造形状复杂,壁厚变化大的工件。多元

锡青铜:

锡磷青铜, QZSn6.5-0.1(P),提高强度锡锌青铜, QSn4-3(Zn),改善力学性能。

铝青铜:铜-铝合金。QAl10,良好的力学性能、耐蚀性和耐磨性。

铝铁镍青铜: QAl10-4-4,强度高,耐热,耐磨性好。

白铜:

普通白铜:铜-镍合金。B20,耐蚀性好,冷热加工性好。

锌白铜: BZn15-20,(Ni:15%,Zn:20%)高强度,高弹性。

铝白铜:高强度,高弹性,高耐蚀性。电工白铜:康铜,考铜,B0.6白铜

第十章钛合金

钛合金分类及牌号:

(1)α钛合金。牌号:TA4,TA5,TA6,TA7,TA8。

(2)α+β钛合金。牌号:TC1,TC2,TC3,……TC10。

(3)β钛合金。牌号:TB1,TB2。

TA8:近α钛合金。Ti-5Al-2.5Sn-3Cu-1.5Cu

良好的热塑性和焊接性;良好的抗氧化性;耐热性较好。

TC4:α+β钛合金。 Ti-6Al-4V。

既有高强度又有好的加工成型性。 400℃以上,蠕变强度稍逊。

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

南航金属材料学期末考试重点(带答案)

1.试述碳素钢中C的作用。(书上没有,百度的) 答:随C含量的增加,其强度和硬度增加,而塑性韧性和焊接性下降。当含碳量大于0.25时可焊性变差,故压力管道中一般采用含碳量小于0.25的钢。含碳量的增加,其球化和石墨化的倾向增加。 2.描述下列元素在普通碳素钢的作用:(a)锰、(b)硫、(c)磷、(d)硅。(P5、P6) 答:Mn在碳钢中的含量一般小于0.8%。可固溶,也可形成高熔点MnS(1600℃)夹杂物。 MnS在高温下具有一定的塑性,不会使钢发生热脆,加工后硫化锰呈条状沿轧向分布。 Si在钢中的含量通常小于0.5%。可固溶,也可形成SiO2夹杂物。夹杂物MnS、SiO2将使钢的疲劳强度和塑、韧性下降。S是炼钢时不能除尽的有害杂质。在固态铁中的溶解度极小。 S和Fe能形成FeS,并易于形成低熔点共晶。发生热脆 (裂)。P也是在炼钢过程中不能除尽的元素。磷可固溶于α-铁。但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。磷可以提高钢在大气中的抗腐蚀性能。S和P还可以改善钢的切削加工性能。 3.描述下列元素在普通碳素钢的作用:(a)氮、(b)氢、(c)氧。(P6) 答:N在α-铁中可溶解,含过饱和N的钢经受冷变形后析出氮化物—机械时效或应变时效,降低钢的性能。N可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。H在钢中和应力的联合作用将引起金属材料产生氢脆。常见的有白点和氢致延滞断裂。 O在钢中形成硅酸盐2MnO?SiO2、MnO?SiO2或复合氧化物MgO?Al2O3、MnO?Al2O3。 4.为什么钢中的硫化锰夹杂要比硫化亚铁夹杂好? (P5) 答:硫化锰为高熔点的硫化物(1600),在高温下具有一定的塑性,不会使钢发生热脆。而硫化铁的熔点较低,容易形成低熔点共晶,沿晶界分布,在高温下共晶体将熔化,引起热脆。 5. 当轧制时,硫化锰在轧制方向上被拉长。在轧制板材时,这种夹杂的缺点是什么? (P5) 答:这些夹杂物将使钢的疲劳强度和塑性韧性下降,当钢中含有大量硫化物时,轧成钢板后会造成分层。 6.对工程应用来说,普通碳素钢的主要局限性是哪些? 答:弹性模量小,不能保证足够的刚度;抗塑性变形和断裂的能力较差;缺口敏感性及冷脆性较大;耐大气腐蚀和海水腐蚀性能差;含碳量高,没有添加合金元素,工艺性差. 7.列举五个原因说明为什么要向普通碳素钢中添加合金元素以制造合金钢? 答:提高淬透性;提高回火稳定性;使钢产生二次硬化;(老师课上只说了这三点) 8、哪些合金元素溶解于合金钢的铁素体?哪些合金元素分布在合金钢的铁素体和碳化物相之间?按照形成碳化物的倾向递增的顺序将它们列出。(P17—P18) 答:①Si、Al、Cr、W、Mo、V、Ti、P、Be、B、Nb、Zr、Ta②Ti、Zr、Nb、V、Mo、W、Cr 9、叙述1.0~1.8%锰添加剂强化普通碳素钢的机理。 答:①锰可以作为置换溶质原子形成置换固溶体,通过弹性应力场交互作用、电交互作用、化学交互作用阻碍位错运动;②增加过冷奥氏体稳定性,使C曲线右移,在同样的冷却条件下,可以得到片间距细小的珠光体,同时还可起到细化铁素体晶粒的作用,从而达到晶界强化的目的。③促进淬火效应。淬火后希望获得板条马氏体,造成位错型亚结构。 ④通过降低层错能,使位错易于扩展和形成层错,增加位错交互作用,防止交叉滑移。 10、合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体?(P15-P16) 答:①V、Cr、W、Mo、Ti、Al②Mn、Co、Ni、Cu ③V、Cr、W、Mo、Ti、Al ④Mn、Co、Ni 11、钢中常见的碳化物类型主要有六种,例如M6C就是其中的一种,另外还有其它哪五种?哪一种碳化物最不稳定? 答:①MeX、Me2X、Me3X、Me7X3、Me23X6②Me3X

金属材料学考精彩试题库

第一章钢中的合金元素 1、合金元素对纯铁γ相区的影响可分为哪几种? 答:开启γ相区的元素:镍、锰、钴属于此类合金元素 扩展γ相区元素:碳、氮、铜属于此类合金元素 封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素 缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用 答:合金元素对α-Fe、γ-Fe、和δ-Fe的相对稳定性以及同素异晶转变温度A3和A4均有很大影响 A、奥氏体(γ)稳定化元素 这些合金元素使A3温度下降,A4温度上升,即扩大了γ相区,它包括了以下两种情况:(1)开启γ相区的元素:镍、锰、钴属于此类合金元素 (2)扩展γ相区元素:碳、氮、铜属于此类合金元素 B、铁素体(α)稳定化元素 (1)封闭γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅 (2)缩小γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素 3、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响? 答: 1、改变了奥氏体相区的位置和共析温度 扩大γ相区元素:降低了A3,降低了A1 缩小γ相区元素:升高了A3,升高了A1 2、改变了共析体的含量 所有的元素都降低共析体含量 第二章合金的相组成 1、什么元素可与γ-Fe形成固溶体,为什么? 答:镍可与γ-Fe形成无限固溶体 决定组元在置换固溶体中的溶解条件是: 1、溶质与溶剂的点阵相同 2、原子尺寸因素(形成无限固溶体时,两者之差不大于8%) 3、组元的电子结构(即组元在周期表中的相对位置) 2、间隙固溶体的溶解度取决于什么?举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物 钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素

最新金属材料学课后习题总结

习题 第一章 1、何时不能直接淬火呢?本质粗晶粒钢为什么渗碳后不直接淬火?重结晶为什么可以细化晶粒?那么渗碳时为什么不选择重结晶温度进行A化? 答:本质粗晶粒钢,必须缓冷后再加热进行重结晶,细化晶粒后再淬火。晶粒粗大。A 形核、长大过程。影响渗碳效果。 2、C是扩大还是缩小奥氏体相区元素? 答:扩大。 3、Me对S、E点的影响? 答:A形成元素均使S、E点向左下方移动。F形成元素使S、E点向左上方移动。 S点左移—共析C量减小;E点左移—出现莱氏体的C量降低。 4、合金钢加热均匀化与碳钢相比有什么区别? 答:由于合金元素阻碍碳原子扩散以及碳化物的分解,因此奥氏体化温度高、保温时间长。 5、对一般结构钢的成分设计时,要考虑其M S点不能太低,为什么? 答:M量少,Ar量多,影响强度。 6、W、Mo等元素对贝氏体转变影响不大,而对珠光体转变的推迟作用大,如何理解? 答:对于珠光体转变:Ti, V:主要是通过推迟(P转变时)K形核与长大来提高过冷γ的稳定性。 W,Mo: 1)推迟K形核与长大。 2)增加固溶体原子间的结合力,降低Fe的自扩散系数,增加Fe的扩散激活能。 3)减缓C的扩散。 对于贝氏体转变:W,Mo,V,Ti:增加C在γ相中的扩散激活能,降低扩散系数,推迟贝氏体转变,但作用比Cr,Mn,Ni小。 7、淬硬性和淬透性 答:淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。 淬透性:指由钢的表面量到钢的半马氏体区组织处的深度。 8、C在γ-Fe与α-Fe中溶解度不同,那个大? 答:γ-Fe中,为八面体空隙,比α-Fe的四面体空隙大。 9、C、N原子在α-Fe中溶解度不同,那个大? 答:N大,因为N的半径比C小。 10、合金钢中碳化物形成元素(V,Cr,Mo,Mn等)所形成的碳化物基本类型及其相对稳定性。 答:V:MC型;Cr:M7C3、M23C6型;Mo:M6C、M2C、M7C3型;Mn:M3C型。 复杂点阵:M23C6、M7C3、M3C、稳定性较差;简单点阵:M2C、MC、M6C稳定性好。 11、如何理解二次硬化与二次淬火? 答:二次硬化:含高W、Mo、Cr、V钢淬火后回火时,由于析出细小弥散的特殊碳化物及回火冷却时A’转变为M回,使硬度不仅不下降,反而升高的现象称二次硬化。 二次淬火:在高合金钢中回火冷却时残余奥氏体转变为马氏体的现象称为二次淬火。

金属材料学复习资料

金属材料学复习资料 题型:判断,选择,简答,问答 第一章 1.要清楚的三点: 1)同一零件可用不同材料及相应工艺。例:调质钢;工具钢 代用 调质钢:在机械零件中用量最大,结构钢在淬火高温回火后具有良好的综合力学性能,有较高的强韧性。适用于这种处理的钢种成为调质钢。调质钢的淬透性原则,指淬透性相同的同类调质钢可以互相代用。 2)同一材料,可采用不同工艺。例:T10钢,淬火有水、水- 油、分级等。强化工艺不同,组织有差别,但都能满足零件要求。力求最佳的强化工艺。 淬火冷却方式常用水-油双液淬火、分级淬火。成本低、工艺性能好、用量大。 3)同一材料可有不同的用途。例:602有时也可用作模具。低合 金工具钢也可做主轴,15也可做量具、模具等。 602是常用的硅锰弹簧钢,主要用于汽车的板弹簧。低合金工具钢可制造工具尺寸较大、形状比较复杂、精度要求相对较高的模具。15只在对非金属夹杂物要求不严格时,制作切削

工具、量具和冷轧辊等。 2.各种强化机理(书24页) 钢强化的本质机理:各种途径增大了位错滑移的阻力,从而提高了钢的塑性变形抗力,在宏观上就提高了钢的强度。 1)固溶强化:原子固溶于钢的基体中,一般都会使晶格发生畸 变,从而在基体中产生弹性应力场,弹性应力场与位错的交互作用将增加位错运动的阻力。从而提高强度,降低塑韧性。 2)位错强化:随着位错密度的增大,大为增加了位错产生交割、 缠结的概率,所以有效阻止了位错运动,从而提高了钢的强度。但在强化的同时,也降低了伸长率,提高了韧脆转变温度。 3)细晶强化:钢中的晶粒越细,晶界、亚晶界越多,可有效阻 止位错运动,并产生位错塞积强化。细晶强化既提高了钢的强度,又提高了塑性和韧度,所以是最理想的强化方法。 4)第二相强化:钢中微粒第二相对位错有很好的钉扎作用,位 错通过第二相要消耗能量,从而起到强化效果。 根据位错的作用过程,分为切割机制和绕过机制。 根据第二相形成过程,分为回火时第二相弥散沉淀析出强化; 淬火时残留第二相强化。

金属材料学总结

第一章 1、为什么钢中的硫和磷一般情况下总是有害的?控制硫化物形态的方法有哪些? 答:S与Fe形成FeS,会导致钢产生热脆;P与形成Fe3P,使钢在冷加工过程中产生冷脆性,剧烈降低钢的韧性,使钢在凝固时晶界处发生偏析。 硫化物形态控制:a、加入足量的锰,形成高熔点MnS;b、控制钢的冷却速度;c、改善其形态最好为球状,而不是杆状,控制氧含量大于0.02%;d、加入变形剂,使其在金属中扩散开防止聚焦产生裂纹。 2、钢的强化机制有哪些?为什么一般钢的强化工艺采用淬火加回火?答:a、固溶强化(合金中形成固溶体、晶格畸变、阻碍位错运动、强化) b、细晶强化(晶粒细化、晶界增多、位错塞积、阻碍位错运动、强化) c、加工硬化(塑性变形、位错缠绕交割、阻碍位错运动、强化) d、弥散强化(固溶处理的后的合金时效处理、脱溶析出第二相、弥散分布在基体上、与位错交互作用、阻碍位错运动、强化) 淬火处理得到强硬相马氏体,提高钢的强度、硬度,使钢塑性降低;回火可有效改善钢的韧性。淬火和回火结合使用提高钢的综合性能。 3、按照合金化思路,如何改善钢的韧性? 答:a、加入可细化晶粒的元素Mo、W、Cr; b、改善基体韧性,加Ni元素;

c、提高冲击韧性,加Mn、Si元素; d、调整化学成分; e、形变热处理; f、提高冶金质量; g、加入合金元素提高耐回火性,以提高韧性。 4、试解释40Cr13属于过共析钢,Cr12钢中已出现共晶组织,属于莱氏体钢。 答、Cr元素使共析点左移,当Cr量达到一定程度时,共析点左移到碳含量小于0.4%,所以40Cr13属于过共析钢;Cr12中含有高于12%的Cr元素,缩小Fe-C平衡相图的奥氏体区,使共析点右移。 5、试解释含Mn钢易过热,而含Si钢高淬火加热温度应稍高,且冷作硬化率高,不利于冷变性加工。 答:Mn在一定量时会促使晶粒长大,而过热就会使晶粒长大。 6、合金钢中碳化物形成规律①②③④⑤⑥⑦ 答:①、K类型:与Me的原子半径有关;②、相似相容原理;③、强碳化物形成元素优先于碳结合形成碳化物;④、NM/NC比值决定了K类型;⑤、碳化物稳定型越好,溶解越难,析出越难,聚集长大也越难。 第二章 1、简述工程钢一般服役条件、加工特点和性能要求。 答:服役条件:静载、无相对运动、受大气腐蚀。 加工特点:简单构件是热轧或正火状态,空气冷却,有焊接、剪切、

金属材料学复习思考题及答案

第一章钢的合金化原理 1.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B, 0.001%;V,0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 3)奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ相;如 Mn, Ni, Co, C, N, Cu; 4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V, Nb, Ti 等。5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-Fe x C→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出:在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使硬度和强度提高(二次硬化效应)。如 V,Nb, Ti等都属于此类型。 2.合金元素V、Cr、W、Mo、Mn、Co、Ni、Cu、Ti、Al中哪些是铁素体形成元素?哪些是奥氏体形成元素?哪些能在α-Fe中形成无限固溶体?哪些能在γ-Fe 中形成无限固溶体? 答:铁素体形成元素:V、Cr、W、Mo、Ti、Al; 奥氏体形成元素:Mn、Co、Ni、Cu; 能在α-Fe中形成无限固溶体:V、Cr; 能在γ-Fe 中形成无限固溶体:Mn、Co、Ni 3.简述合金元素对扩大或缩小γ相区的影响,并说明利用此原理在生产中有何意义?(1)扩大γ相区:使A3降低,A4升高一般为奥氏体形成元素 分为两类:a.开启γ相区:Mn, Ni, Co 与γ-Fe无限互溶. b.扩大γ相区:有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区,构成了钢的热处理的基础。 (2)缩小γ相区:使A3升高,A4降低。一般为铁素体形成元素 分为两类:a.封闭γ相区:使相图中γ区缩小到一个很小的面积形成γ圈,其结果使δ相区与α相区连成一片。如V, Cr, Si, A1, Ti, Mo, W, P, Sn, As, Sb。 b.缩小γ相区:Zr, Nb, Ta, B, S, Ce 等 (3)生产中的意义:(请补充)。 4.简述合金元素对铁碳相图(如共析碳量、相变温度等)的影响。 答:1)改变了奥氏体区的位置:(请补充) 2)改变了共晶温度:(l)扩大γ相区的元素使A1,A3下降;如:(请补充)

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

金属材料学思考题标准答案2

金属材料学思考题答案2 绪论、第一章、第二章 1.钢中的碳化物按点阵结构分为哪两大类,各有什么特点? 答:分为简单点阵结构和复杂点阵结构,前者熔点高、硬度高、稳定性好,后者硬度低、熔点低、稳定性差。 2.何为回火稳定性、回火脆性、热硬性?合金元素对回火转变有哪些影响? 答: 回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解、残余奥氏体的分解、碳化物的析出与铁素体的再结晶)的抵抗能力 回火脆性:在200-350℃之间和450-650℃之间回火,冲击吸收能量不但没有升高反而显著下降的现象 热硬性:钢在较高温度下,仍能保持较高硬度的性能 合金元素对回火转变的影响:①Ni、Mn影响很小,②碳化物形成元素阻止马氏体分解,提高回火稳定性,产生二次硬化,抑制C和合金元素扩散。③Si比较特殊:小于300℃时强烈延缓马氏体分解, 3.合金元素对Fe-Fe3C相图S、E点有什么影响?这种影响意味着什么? 答:凡是扩大奥氏体相区的元素均使S、E点向左下方移动,如Mn、Ni等; 凡是封闭奥氏体相区的元素均使S、E点向左上方移动,如Cr、Si、Mo等? E点左移:出现莱氏体组织的含碳量降低,这样钢中碳的质量分数不足2%时就可以出现共晶莱氏体。S点左移:钢中含碳量小于0.77%时,就会变为过共析钢而析出二次渗碳体。 4.根据合金元素在钢中的作用,从淬透性、回火稳定性、奥氏体晶粒长大倾向、韧性和回火脆性等方面比较下列钢号的性能:40Cr、40CrNi、40CrMn、40CrNiMo。 1)淬透性:40CrNiMo 〉40CrMn 〉 40CrNi 〉 40Cr 2)回火稳定性:40CrNiMo 〉40CrNi 〉 40CrMn 〉 40Cr 3)奥氏体晶粒长大倾向:40CrMn 〉 40Cr 〉 40CrNi 〉 40CrNiMo 4)韧性:40CrNiMo 〉40CrNi 〉40Cr〉40CrMn (Mn少量时细化组织) 5)回火脆性: 40CrMn 〉40CrNi> 40Cr 〉40CrNiMo 5.怎样理解“合金钢与碳钢的强度性能差异,主要不在于合金元素本身的强化作用,而在于合金元素对钢相变过程的影响。并且合金元素的良好作用,只有在进行适当的热处理条件下才能表现出来”?从强化机理和相变过程来分析(不是单一的合金元素作用) 合金元素除了通过强化铁素体,从而提高退火态钢的强度外,还通过合金化降低共析点,相对提高珠光体的数量使其强度提高。其次合金元素还使过冷奥氏体稳定性提高,C曲线右移,在相同冷却条件下使铁素体和碳化物的分散度增加,从而提高强度。 然而,尽管合金元素可以改善退火态钢的性能但效果远没有淬火回火后的性能改变大。 除钴外,所有合金元素均提高钢的淬透性,可以使较大尺寸的零件淬火后沿整个截面得到均匀的马氏体组织。大多数合金元素都有阻止奥氏体晶粒长大的倾向(Mn除外),从而细化晶粒,使淬火后的马氏体组织均匀细小。

金属材料学 简要总结

《金属材料学》复习总结 第1章:钢的合金化概论 一、名词解释: 合金化:未获得所要求的组织结构、力学性能、物理性能、化学性能或工艺性能而特别在钢铁中加入某些元素,称为合金化。 过热敏感性:钢淬火加热时,对奥氏体晶粒急剧长大的敏感性。 回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力。 回火脆性:淬火钢回火后出现韧性下降的现象。 二、填空题: 1.合金化理论是金属材料成分设计和工艺过程控制的重要原理,是材料成分、工艺、组织、 性能、应用之间有机关系的根本源头,也是重分发结材料潜力和开发新材料的基本依据。 2.扩大A相区的元素有:Ni、Mn、Co(与Fe -γ无限互溶);C、N、Cu(有限互溶); α无限互溶);Mo、W、Ti(有限互溶); 扩大F相区的元素有:Cr、V(与Fe - 缩小F相区的元素有:B、Nb、Zr(锆)。 3.强C化物形成元素有:Ti、Zr、Nb、V; 弱C化物形成元素有:Mn、Fe; 4.强N化物形成元素有:Ti、Zr、Nb、V; 弱N化物形成元素有:Cr、Mn、Fe; 三、简答题: 1.合金钢按照含量的分类有哪些?具体含量是多少?按含碳量划分又如何? ●按照合金含量分类:低合金钢:合金元素总量<5%; 中合金钢:合金元素总量在5%~10%; 高合金钢:合金元素总量>10%; ●按照含碳量的分类:低碳钢:w c≤0.25%; 中碳钢:w c=0.25%~0.6%; 高碳钢:w c>0.6%; 2.加入合金元素的作用? ①:与Fe、C作用,产生新相,组成新的组织与结构; ②:使性能改善。 3.合金元素对铁碳相图的S、E点有什么影响?这种影响意味着什么? (1)A形成元素均使S、E点向左下方移动,如Mn、Ni等; F形成元素均是S、E点向左上方移动,如Cr、V等 (2)S点向左下方移动,意味着共析C含量减小,使得室温下将得到A组织; E点向左上方移动,意味着出现Ld的碳含量会减小。 4.请简述合金元素对奥氏体形成的影响。 (1)碳化物形成元素可以提高碳在A中的扩散激活能,对A形成有一定阻碍作用; (2)非碳化物形成元素Ni、Co可以降低碳的扩散激活能,对A形成有一定加速作用。 (3)钢的A转化过程中存在合金元素和碳的均匀化过程,可以采用淬火加热来达到成 分均匀化。 5.有哪些合金元素强烈阻止奥氏体晶粒的长大?组织奥氏体晶粒长大有什么好处? (1)Ti、Nb、V等强碳化物形成元素会强烈阻止奥氏体晶粒长大,因为:Ti、Nb、V等

(完整版)金属材料学复习答案(完整)

第一章答案 1、为什么说钢中的S、P杂质元素总是有害的? 答:S容易和Fe结合成熔点为989℃的FeS相,会使钢产生热脆性;P和Fe结合形成硬脆的Fe3P相使钢在冷加工过程中产生冷脆性。 2、合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:凡是扩大γ相区的元素均使S、E点向左下方移动,如Mn、Ni; 凡是封闭γ相区的元素均使S、E点向左上方移动,如Cr、Si、Mo。E点左移意味着出现莱氏体的碳含量减小;S点左移意味着共析碳含量减小。 3、那些合金元素能够显著提高钢的淬透性?提高钢的淬透性有什么作用? 答:B、Mn、Mo、Cr、Si、Ni等元素能够显著提高钢的淬透性。提高钢的淬透性一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面在淬火时,可以选用比较缓和的冷却介质以减小零件的变形和开裂的倾向。 4、为什么说合金化的基本原则是“复合加入”?举二例说明合金复合作用的机 理。 答:1.提高性能,如淬透性;2.扬长避短,合金元素能对某些方面起积极作用,但往往还有些副作用,为了克服不足,可以加入另一些合金元素弥补,如Si-Mn,Mn-V;3.改善碳化物的类型和分布,某些合金元素改变钢中碳化物的类型和分布或改变其他元素的存在形式和位置,从而提高钢的性能,如耐热钢中Cr-Mo-V,高速钢中V-Cr-W。 5、合金元素提高钢的韧度主要有哪些途径? 答:1.细化A晶粒;2.提高钢的回火稳定性;3.改善机体韧度;4.细化碳化物;5.降低或消除钢的回火脆性;6.在保证强度水平下适当降低碳含量;7.提高冶金质量;8.通过合金化形成一定量的残余A,利用稳定的残余A提高钢的韧度。 6、钢的强化机制有那些?为什么一般的强化工艺都采用淬火-回火? 答:固溶强化、细晶强化、位错强化、第二相强化。因为一般的钢的强化都要求它有一定的强度的同时又要保持一定的任性,淬火后钢中能够形成M,这给了钢足够的强度,但是带来的后果就是韧度不够,而回火能够在强度降低不大的情况下给淬火钢以足够的韧性,这样能够得到综合力学性能比较优良的材料,所以一般钢的强化工艺都采用淬火加回火。 7、铁置换固溶体的影响因素? 答:1.溶剂与溶质的点阵结构;2.原子尺寸因素;3.电子结构。 第二章 1、叙述构件用钢一般的服役条件、加工特点、性能要求? 答:服役条件:工程结构件长期受静载荷;互相无相对运动;受大气(海水)侵蚀;

最新金属材料学考试题库资料

精品文档钢中的合金元素第一章 相区的影响可分为哪几种?1、合金元素对纯铁γ相区的元素:镍、锰、钴属于此类合金元素答:开启γ相区元素:碳、氮、铜属于此类合金元素扩展γ相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅属于此类合金元素封闭γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素缩小γ 2、合金元素对钢γ相区和共析点会产生很大影响,请举例说明这种影响的作用均A4δ-Fe的相对稳定性以及同素异晶转变温度A3和答:合金元素对α-Fe、γ-Fe、和有很大影响)稳定化元素A、奥氏体(γ它包括了以下两种情况:温度上升,即扩大了γ相区,A4 这些合金元素使A3温度下降,相区的元素:镍、锰、钴属于此类合金元素(1)开启γ相区元素:碳、氮、铜属于此类合金元素(2)扩展γ)稳定化元素B、铁素体(α相区的元素:钒、鈦、钨、钼、铝、磷、铬、硅1)封闭γ()缩小2γ相区的元素:硼、锆、铌、钽、硫属于此类合金元素(、请举例说明合金元素对Fe-C相图中共析温度和共析点有哪些影响?3 答: 1、改变了奥氏体相区的位置和共析温度A1 A3,降低了γ扩大相区元素:降低了A1 A3,升高了缩小γ相区元素:升高了 2、改变了共析体的含量所有的元素都降低共析体含量 合金的相组成第二章 形成固溶体,为什么?1、什么元素可与γ-Fe 形成无限固溶体答:镍可与γ-Fe 决定组元在置换固溶体中的溶解条件是:、溶质与溶剂的点阵相同1 )2、原子尺寸因素(形成无限固溶体时,两者之差不大于8% 、组元的电子结构(即组元在周期表中的相对位置)3 2、间隙固溶体的溶解度取决于什么?举例说明 答:组元在间隙固溶体中的溶解度取决于: 1、溶剂金属的晶体结构 2、间隙元素的尺寸结构 例如:碳、氮在钢中的溶解度,由于氮原子小,所以在α-Fe中溶解度大。 3、请举例说明几种强、中等强、弱碳化物形成元素 答:铪、锆、鈦、铌、钒是强碳化物形成元素;形成最稳定的MC型碳化物 钨、钼、铬是中等强碳化物形成元素 锰、铁、铬是弱碳化物形成元素 精品文档. 精品文档 第四章合金元素和强韧化 1、请简述钢的强化途径和措施 答:固溶强化 细化晶粒强化 位错密度和缺陷密度引起的强化 析出碳化物弥散强化 2、请简述钢的韧化途径和措施 答:细化晶粒 降低有害元素含量 调整合金元素含量 降低钢中含碳量

金属材料学重点

1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?有什么特点?简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?A形成元素均使S、E点向左下方移动,F形成元素使S、E点向左上方移动。S点左移意味着共析碳量减小,E点左移意味着出现莱氏体的碳量降低。 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。优先形成碳化物,余量溶入基体。淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处?Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用?在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用?Cr、Mn、Ni、Mo、W、V、Si作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样碳含量的碳钢具有更高的硬度和强度;或者在保证相同强度的条件下,可在更高的温度下回火,而使韧性更好些。 9.第一类回火脆性和第二类回火脆性是在什么条件下产生的?如何减轻和消除?第一类回火脆性:脆性特征:①不可逆;②与回火后冷速无关;③断口为晶界脆断。产生原因:钢在200-350℃回火时,Fe3C 薄膜在奥氏体晶界形成,削弱了晶界强度;杂质元素P、S、Bi等偏聚晶界,降低了晶界的结合强度。防止措施:①降低钢中杂质元素的含量;②用Al脱氧或加入Nb(铌)、V、Ti等合金元素细化奥氏体晶粒;③加入Cr、Si调整温度范围;④采用等温淬火代替淬火回火工艺。第二类回火脆性:脆性特征:①可逆;②回火后满冷产生,快冷抑制;③断口为晶界脆断。产生原因:钢在450-650℃回火时,杂质元素Sb、S、As或N、P等偏聚于晶界,形成网状或片状化合物,降低了晶界强度。高于回火脆性温度,杂质元素扩散离开了晶界或化合物分解了;快冷抑制了杂质元素的扩散。防止措施:①降低钢中的杂质元素;②加入能细化A晶粒的元素(Nb、V、Ti)③加入适量的Mo、W元素;④避免在第二类回火脆性温度范围回火 14.合金元素V在某些情况下能起到降低淬透性的作用,为什么?而对于40Mn2和42Mn2V,后者的淬透性稍大,为什么?钒和碳、氨、氧有极强的亲和力,与之形成相应的稳定化合物。钒在钢中主要以碳化物的形式存在。其主要作用是细化钢的组织和晶粒,降低钢的强度和韧性。当在高温溶入固溶体时,增加淬透性;反之,如以碳化物形式存在时,降低淬透性。 19.试解释40Cr13已属于过共析钢,而Cr12钢中已经出现共晶组织,属于莱氏体钢。①因为Cr属于封闭y相区的元素,使S点左移,意味着共析碳量减小,所以钢中含有Cr12%时,共析碳量小于0.4%,所以含0.4%C、13%Cr的40Cr13不锈钢就属于过共析钢。②Cr使E点左移,意味着出现莱氏体的碳含量减小。在Fe-C相图中,E点是钢和铁的分界线,在碳钢中是不存在莱氏体组织的。但是如果加入了12%

金属材料学复习 文九巴

1.钢中的杂质元素:O H S P 2.合金元素小于或等于5%为低合金钢,在5%-10%之间为中合金钢,大于10%为高合 金钢 3.奥氏体形成元素:Mn Ni Co(开启γ相区) C N Cu(扩展γ相区) 4.铁素体形成元素:Cr V Ti Mo W 5.间隙原子:C N B O H R溶质/R溶剂<0.59 6.碳化物类型:简单间隙碳化物MC M2C 复杂间隙碳化物M6C M23C M2C3 7.合金钢中常见的金属间化合物有σ相、AB2相和B2A相 8.二次硬化:淬火钢在回火时在一定温度下,由于特殊碳化物的析出的初期阶段,形 成[M-C]偏聚团,硬度不降低,反而升高的现象。 9.二次淬火:淬火钢在回火时,冷却过程残余奥氏体转变为马氏体的现象。 10.合金元素对铁碳相图的影响 1.改变奥氏体相区位置 2.改变共析转变温度 3.改变S和E等零界点的含碳量 11.合金元素对退火钢加热转变的影响 1.对奥氏体形成速度的影响中强碳化物形成元素与碳形成难溶于奥氏体的合金碳 化物,减慢奥氏体的形成速度 2.对奥氏体晶粒大小的影响大多数合金元素都有阻止奥氏体晶粒长大的作用,影 响程度不同。V Ti强碳化物和适量的AL强烈阻碍晶粒长大,他们的碳化物或氮化物熔点高,高温下稳定,不易聚集长大,能强烈阻碍奥氏体晶粒长大。 Wu Mo Cr中强碳化物也有阻碍作用,但是影响程度中等。Si Ni非碳化物形成

元素影响不大。Mn P等元素含量在一定限度下促进奥氏体晶粒长大 12.合金元素对淬火钢回火转变的影响 1.提高耐回火性合金元素在回火过程中推迟马氏体分解和残留奥氏体的转变;提 高铁素体在结晶温度,使碳化物难以聚集长大,从而提高钢的耐回火性。 2.淬火钢在回火时产生二次硬化和二次淬火,提高钢的性能。 3.对回火脆性的影响产生第一类回火脆性和第二类回火脆性,降低晶界强度,从 而使钢的脆性增加 13.钢的强化机制:固溶强化、细晶强化、形变强化和第二相强化 14.合金元素对钢在淬火回火状态下力学性能的影响 1.合金元素一般均能减缓钢的回火转变过程,特别是阻碍碳化物的聚集长大,相对 的提高钢中组成相的弥散度 2.合金元素溶解于铁素体,是铁素体强化,并提高了铁素体的再结晶温度。 3.强碳化物形成元素提高了钢的耐回火性,并产生沉淀强化的作用 4.钼、钨等有利于防止或消除第二类回火脆性 15.合金元素对钢高温力学性能的影响 1.可以净化晶界,使易熔杂质元素从晶界转移到晶界内,强化晶界 2.可以提高合金原子间的结合力,增大原子自扩散激活能 3.强碳化物形成元素的加入,可以对位错运动有阻碍作用,可提高合金的高温性能16.合金元素对钢热处理性能的影响 淬透性、淬硬性、变形开裂性、过热敏感性、氧化脱碳倾向和回火脆化倾向 17.合金元素对钢的焊接性能影响

金属材料学复习思考题及答案

安徽工业大学材料学院金属材料学复习题 一、必考题 1、金属材料学的研究思路是什么?试举例说明。 答:使用条件→性能要求→组织结构→化学成分 ↑ 生产工艺 举例略 二、名词解释 1、合金元素:添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能 的含量在一定范围内的化学元素。(常用M来表示) 2、微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%, V 0.2 %)时,会显著地影响钢的组织与性能,将这些化学元素称为微合金元素。 3、奥氏体形成元素:使A3温度下降,A4温度上升,扩大γ相区的合金元素 4、铁素体形成元素:使A3温度上升,A4温度下降,缩小γ相区的合金元素。 5、原位析出:回火时碳化物形成元素在渗碳体中富集,当浓度超过溶解度后,合金渗碳体在原位 转变为特殊碳化物。 6、离位析出:回火时直接从过饱和α相中析出特殊碳化物,同时伴随有渗碳体的溶解。 7、二次硬化:在含有Mo、W、V等较强碳化物形成元素含量较高的高合金钢淬火后回火,硬度不 是随回火温度的升高而单调降低,而是在500-600℃回火时的硬度反而高于在较

低 温度下回火硬度的现象。 8、二次淬火:在强碳化物形成元素含量较高的合金钢中淬火后残余奥氏体十分稳定,甚至加热到 500-600℃回火时仍不转变,而是在回火冷却时部分转变成马氏体,使钢的硬度提高的现象。 9、液析碳化物:钢液在凝固时产生严重枝晶偏析,使局部地区达到共晶成分。当共晶液量很少时, 产生离异共晶,粗大的共晶碳化物从共晶组织中离异出来,经轧制后被拉成条带 状。由于是由液态共晶反应形成的,故称液析碳化物。 10、网状碳化物:过共析钢在热轧(锻)后缓慢冷却过程中,二次碳化物沿奥氏体晶界析出呈网 状分布,称为网状碳化物。 11、水韧处理:将高锰钢加热到高温奥氏体区,使碳化物充分溶入奥氏体中,并在此温度迅速水 冷,得到韧性好的单相奥氏体组织的工艺方式。 12、晶间腐蚀:金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。 13、应力腐蚀:金属材料在特定的腐蚀介质和拉应力共同作用下发生的脆性断裂。 14、n/8规律:当Cr的摩尔分数每达到1/8,2/8,3/8……时,铁基固溶体的电极电位跳跃式地 增加,合金的腐蚀速度都相应有一个突然的降低,这个定律叫做n/8规律。 15、碳当量:将铸铁中的石墨元素(Si、P)都折合成C的作用所相当的总含碳量。 16、共晶度:铸铁实际含碳量与其共晶含碳量之比,它放映了铸铁中实际成分接近共晶成分的程度。 17、黄铜:以Zn为主要合金元素的铜合金。 18、锌当量系数:黄铜中每质量分数1%的合金元素在组织上替代Zn的量。 19、青铜:是Cu和Sn、Al、Si、Be、Mn、Zr、Ti等元素组成的合金的通称。 20、白铜:是以Ni为主要合金元素的铜合金。

金属材料学

名词解释 合金元素:特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机 械性能的化学元素。(常用Me表示) 微合金元素:有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。 奥氏体形成元素:在γ-Fe中有较大的溶解度,且能稳定γ-Fe的元素C,N,Cu,Mn,Ni,Co,W 等 铁素体形成元素:在α-Fe中有较大的溶解度,且能α-Fe稳定的元素Cr,V,Si,Al,Ti,Mo等 原位析出:指在回火过程中,合金渗碳体转变为特殊碳化物。碳化物形成元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物。如Cr 钢碳化物转变 异位析出:含强碳化物形成元素的钢,在回火过程中直接从过饱和α相中析出特殊碳化物,同时伴随着渗碳体的溶解,如V,Nb,Ti。(W和Mo既有原味析出又有异位析出) 网状碳化物:热加工的钢材冷却后,沿奥氏体晶界析出的过剩碳化物(过共析钢)或铁素 体(亚共析钢)形成的网状碳化物。 水韧处理:高锰钢铸态组织中沿晶界析出的网状碳化物显著降低钢的强度、韧性和抗磨性。将高锰钢加热到单相奥氏体温度范围,使碳化物完全溶入奥氏体,然后在水中快冷,使碳化 物来不及析出,从而获得获得单相奥氏体组织。(水韧后不再回火) 超高强度钢:用回火M或下B作为其使用组织,经过热处理后抗拉强度大于1400 MPa (或屈服强度大于1250MPa)的中碳钢,均可称为超高强度钢。 晶间腐蚀:沿金属晶界进行的腐蚀(已发生晶间腐蚀的金属在外形上无任何变化,但实际 金属已丧失强度) n/8规律:随着Cr含量的提高,钢的的电极电呈跳跃式增高。即当Cr的含量达到1/8,2/8,3/8,……原子比时,Fe的电极电位就跳跃式显著提高,腐蚀也跳跃式显著下降。这个定律 叫做n/8规律。 黄铜: Cu与Zn组成的铜合金 青铜: Cu与Zn、Ni以外的其它元素组成的铜合金 白铜: Cu与Ni组成的铜合金 灰口铸铁:灰口铸铁中碳全部或大部分以片状石墨形式存在,其断口呈暗灰色。(片状石墨 对基体产生割裂作用,并在尖端造成应力集中,故灰口铸铁力学性能较差) 可锻铸铁:可锻铸铁中的碳全部以或大部分以图案絮状的石墨形式存在,它是由一定成分的 白口铸铁经长时间高温石墨化退火而形成的。又称韧性铸铁。 蠕墨铸铁:蠕墨铸铁中的碳大部分以蠕虫状石墨形式存在。(高耐热性) 麻口铸铁::麻口铸铁中的碳一部分以渗碳体形式存在,另一部分以石墨形式存在,端口呈 黑白相间。(无实用价值)。 基体钢:指其成分含有高速钢淬火组织中除过剩余碳化物以外的基体化学成分的钢种。(高 强度高硬度,韧性和疲劳强度优于高速钢,可做冷热变形模具刚,也可作超高强度钢) 双相钢:是指显微组织主要是由铁素体和5%-20%体积分数的马氏体所组成的低合金高 强度结构钢,即在软相铁素体基体上分布着一定量的硬质相马氏体。 黑色组织:高速钢在实际铸锭凝固时,冷速>平均冷速。合金元素来不及扩散,在结晶和固 态相变过程中转变不能完全进行,共析转变形成δ共析体为两相组织,易被腐蚀,在金相组 织上呈黑色,而称作黑色组织。 低(中高)合金钢:合金元素总量小于5%的合金钢叫低合金钢。合金含量在5%-10%

相关文档
相关文档 最新文档