文档库 最新最全的文档下载
当前位置:文档库 › REAL-TIME 引物设计与是否跨内含子的检测方法

REAL-TIME 引物设计与是否跨内含子的检测方法

REAL-TIME 引物设计与是否跨内含子的检测方法
REAL-TIME 引物设计与是否跨内含子的检测方法

REAL-TIME 引物设计与是否跨内含子的检测方法

1.丁香园子里最详细的检测引物是否跨内含子的流程

2.提供多图显示如何找到基因外显子与内含子

3.如何最简便设计跨内含子的引物(利用primer-blast)

感谢隔壁的山西人提出这个问题,以及丁香园,google,百度,PUBMED提供解决问题的方法和线索供我拼凑整理。

问题一:如何在pubmed上找到目标基因的DNA序列以及其内含子和外显子情况。

步骤:

打开NCBI主页面,选GENE,输入基因名称-》显示出很多不同种但名字相同的基因(fig.1)-》找到你要的种属,打开-》显示基因信息,找到”Genomic regions, transcripts, and products”,点击基因名称,links 到geneback(fig.2)-》显示了该基因DNA的信息(fig.3),可以看到这是基因组DNA,从mRNA选项中可以看到JION后面的是外显子的位置,该基因一个共有3个内含子,4个外显子,以及外显子的起至位置,为了以后的操作,可以把这个DNA序列和外显子的起至位置记下来。

Fig.1

Fig.2 0

Fig.3

问题二:如何在pubmed上找到目标基因的mRNA序列。

步骤:打开NCBI主页面,选GENE,输入基因名称-》显示出很多不同种但名字相同的基因-》找到你要的种属,打开-》显示基因信息,找到“mRNA and protein”前面那个NM***********,号码(fig.4),把它记下来(后面的blast要用)并点开-》显示这个基因的mRNA信息(Fig.5),最后的ORIGIN是CDNA序列,把它记下来,一会PRIMER的时候要用。

Fig.4

Fig.5 0

问题三:如何设计跨内含子的引物(利用primer-blast)

1)打开primer-blast网站

(https://www.wendangku.net/doc/6312616691.html,/tools/primer-blast/)

2)将mRNA编号(NM***********)输入序列框中,real time PCR 一般产物长度为80~150bp也可以超一点,但是会影响扩增效率,这样就不能用ddCT法计算了,酌情考虑。温度在55~63和GC含量在40%~60%,两条链不要差太远。点击GET primer

详细的设计方法可以参看https://www.wendangku.net/doc/6312616691.html,/ask/show-2362.html

3)会得到若干条引物(fig。6),红条中的黄圈标记的小白色缺口是内含子所在的位置,跨过小缺口就是跨了内含子。

根据下面列出的引物具体的温度GC含量之类的再进行选择

4)将初步选择的引物用PRIMER 5验证引物二聚体,发卡结构等,方法见下个问题“问题四:用PRIMER 5查找已知引物的产物位置”

引物设计原则见:https://www.wendangku.net/doc/6312616691.html,/experiment/430/457/458/15696.htm

Fig。6

问题四:如何利用MRNA序列和DNA序列,用PRIMER 5查找已知引物的产物位置,并确定其是否跨内含子

1)找到目的引物的DNA序列和MRNA(cdna)序列,以问题三中用primer-blast设计的第8条引物为例(fig。7)

2)打开PRIMER 5,将CDNA序列贴入-》点击primer-》显示primer primer界面-》点击左上方的“S”,再点击EDIT primer -》显示EDIT primer界面,在“5…-3…”框中贴入已知的Forward primer,点击as is,显示序列已被贴入-》点击analyze,再点击primer-》显示输入的序列和已知CDNA良好配对,点击OK->显示“primer primer界面” 点击左上方的“A”,再点击EDIT primer -》显示EDIT primer界面,在“3…-5…”框中贴入已知的REVERSE primer,点击REVERSE,显示序列已被贴入-》点击analyze,再点击primer-》显示输入的序列和已知CDNA良好配对,点击OK->显示“primer primer界面”->在右上角显示PCR产物的起始和结束位点,得到产物长度为145bp(fig。8)。

Fig。8

3)打开PRIMER 5,将DNA序列贴入-》点击primer-》显示primer primer界面-》点击左上方的“S”,再点击EDIT primer -》显示EDIT primer界面,在“5…-3…”框中贴入已知的Forward primer,点击as is,显示序列已被贴入-》点击analyze,再点击primer-》显示输入的序列和已知CDNA良好配对,点击OK->显示“primer primer界面” 点击左上方的“A”,再点击EDIT primer -》显示EDIT primer界面,在“3…-5…”框中贴入已知的REVERSE primer,点击REVERSE,显示序列已被贴入-》点击analyze,再点击primer-》显示输入的序列和已知CDNA良好配对,点击OK->显示“primer primer界面”->在右上角显示PCR产物的起始和结束位点.

4)该引物利用DNA做模板产生的产物从95-1374,长度为1280bp,由上可知120-1254(长度1134)是内含子,那么,扣除内含子的产物应该是145bp。

5)所以,这是一条跨内含子的引物。

fig。9

引物设计的原理与方法

引物设计的原理与方法 This model paper was revised by the Standardization Office on December 10, 2020

PCR引物设计的原理及方法 阎振鑫S111666(四川大学生命科学学院细胞生物学成都 610014) 摘要:自20世纪后期发展了PCR技术以来,PCR已经改变了整个生物学研究的进程。而PCR反应的第一步就是设计引物,引物设计的好坏直接关系到PCR的成败。PCR引物设计有许多的原则必须要遵循:引物与引物之间避免形成稳定的二聚体或发夹结构,引物与模板的序列要紧密互补。引物不能在模板的非目的位点引发DNA聚合反应等。另外,引物的设计方法也越来越多,出现了许多专门的设计软件和网站,如:PrimerPremier5.0等。 关键词:PCR 引物原理方法 NCBI PrimerPremier5.0 PCR primer design principle and method YanZhenxin (sichuan Univercity, Life science college cell biology chengdu 610014 ) Abstract: When PCR technology was find, PCR has changed all of the program in research of biology. The design of primer is the frist step of PCR. It is relation to the fate of PCR. There are some principals must be obey: dipolymer and hairpin structure must be avoid between different primers. The DNA polymerization reaction should not be triggered at the wrong site. Therefore, there are more and more methods of design primer, include the professional softwares and professional web site. Key word: PCR primer principle NCBI PrimerPremier5.0 聚合酶链式反应(Polymerase chain reaction。PCR)是20世纪后期发展起来的 一种体外扩增特异DNA片断的技术。具有快速、简便及高度敏感等优点,能极大地缩短目的基因扩增时间[1]。因此,其一直是生物学者们致力于构建cDNA文库、基因克隆以及表达调控研究的必要前提和基础[2]。PCR的第一步就是引物设计。引物设计的好坏,直接影响了PCR的结果,因此这一步很关键。成功的PCR反应既要高效,又要特异性扩增产物,因此对引物设计提出了较高的要求。引物设计需要注意的地方很多,在大多数情况下,我们都是在知道已知模板序列时进行PCR扩增的。在某些情况比如构建文库的时候也会在不知道模板序列的情况下进行设计。这个时候随机核苷酸序列

引物设计原则(必看)

mi引物设计原则 1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。另外,引物二聚体或发夹结构也可能导致PCR反应失败。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。 4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。 6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。 7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。 8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。 引物序列应该都是写成5-3方向的, Tm之间的差异最好控制在1度之内, 另外我觉得扩增长度大一些比较好,500bp左右。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能

引物的原理

引物的原理 引物是短的寡核苷酸片段,充当DNA复制的起点。因为几乎所有DNA聚合酶都不能从头合成,所以它们需要一个3’-羟基作为DNA合成的起始点。这个3’-羟基由相配的引物提供。在体内,由于DNA聚合酶的忠实性,不能从头合成DNA,因此只能由RNA聚合酶(称为引物酶)生成,采用RNA引物来延伸,在延伸过程中,RNA引物降解并由DNA 取代。在体外PCR反应中所用到的DNA引物,是根据不同的要求及模板序列设计,然后用化学法人工合成的,与模板形成双链后在DNA聚合酶的作用下就可以继续链的延伸;对于大多数PCR反应,决定整个反应成功与否的最重要因素是引物的序列和质量。 1. 不同实验要求的引物选择 在开始设计引物之前,必须弄清以下几点: (1)明确PCR的目的(例如克隆、SNP检测、定量检测等) (2)确定样品材料(基因组DNA、RNA、微小RNA) (3)确定PCR的类型(普通的、定量PCR、RT-PCR、长片段PCR),在查找序列的时候还需要考虑可能存在的问题(如假基因等) 2.引物设计的重要因素 有一些不同的软件工具可用于引物设计和引物分析。引物设计的软件如Oligo 6.22 ,Premier 5.0,Primer Express 3。引物分析常用Primer 5,Oligo 6.22,Primer-Blast。目前生工生物给客户提供的引物设计服务引物用的是在线软件Primer 3 plus, 引物长度和专一性 ?常见的引物长度为18-30个碱基。短的引物(≤15碱基)能非常高效地结合, 但是它们的专一性不够。较长的引物能提高专一性,然而退火效率低,从而导致PCR产量低下。同时应避免编码单一序列和重复序列的引物。 平衡GC含量,避免GC-和AT-富集区域 ?引物的GC含量应介于40%~60%之间。应避免聚-(dC)-或聚(dG)-区域,因为它们会降低退火反应的专一性。聚-(dA)-和聚(dT)-也应避免,因为这样会形成不稳定的引物-模板复合物,从而降低扩增效率。 3’-序列

引物设计原则(含Realtime引物)

1.引物最好在模板cDNA的保守区内设计。 DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。 2.引物长度一般在15~30碱基之间。 引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。 3.引物GC含量在40%~60%之间,Tm值最好接近72℃。 GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10℃。若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm 值最好接近72℃以使复性条件最佳。 4.引物3′端要避开密码子的第3位。 如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。 5.引物3′端不能选择A,最好选择T。 引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C 错配的引发效率介于A、T之间,所以3′端最好选择T。 6. 碱基要随机分布。 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。 7. 引物自身及引物之间不应存在互补序列。 引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。 两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。 8. 引物5′ 端和中间△G值应该相对较高,而3′ 端△G值较低。 △G值是指DNA 双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G 值越大,则双链越稳定。应当选用5′ 端和中间△G值相对较高,而3′ 端△G值较低(绝对值不超过9)的引物。引物3′ 端的△G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应。(不同位置的△G值可以用Oligo 6软件进行分析) 9.引物的5′端可以修饰,而3′端不可修饰。 引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。引物的延伸是从3′ 端开始的,不能进行任何修饰。3′ 端也不能有形成任何二级结构可能。 10. 扩增产物的单链不能形成二级结构。

引物设计的原理和程序

1 引物的设计以及初步筛选 引物的设计与初步筛选基本上通过一些分子生物学软件和相关网站来完成的,目前运用软件Primer Premier 5 或美国 whitehead 生物医学研究所基因组研究中心在因特网上提供的一款免费在线PCR引物设计程序 Primer 3来设计引物,再用软件Oligo 6进行引物评估,就可以初步获得一组比较满意的引物。但是对于初学者来说,运用软件和程序来设计引物好象无从着手,其实只要我们掌握了引物设计的基本原则和注意事项,所有问题便迎刃而解。因为无论是软件还是程序,都是以这些基本原则和注意事项为默认标准来进行引物设计的。所以,我们在进行引物设计的时候大可不必在软件和程序的参数上花费过多的时间来思考,如果没有特殊要求我们完全可以把一些参数设为默认值。下面我们主要讨论一下引物设计的原则和注意事项。 ①引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配(False pr iming) 降低特异性,而太长也会降低特异性,并且降低产量[21。 ②引物在模板内最好具有单一性,也就是说在模板内部没有错配。特别是3’端,一定要避免连续4个以上的碱基互补错配。 ③引物序列的GC 含量最好在40%一60%,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。 ④DNA双链形成所需的自由能AG,应该以5’端向3’端递减,3’端AG最好不要高于9.0 keaf mol[31。 ⑤避免形成稳定的引物二聚体(Dimer and Cross DimeO 和发夹结构(Hairpin),AG 高于4.5 keal/mol时易引发上述两种结构的产生。 ⑥引物所在的模板区域应该位于外显子区,最好跨越一个内含子区,这样便于对扩增出来的片段进行功能鉴定和表型分析。 ⑦如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。而以mRNA为模板设计引物时,产物长度在150—300 bp比较理想。 ⑧5’ 端对PCR影响不太大,可以引进修饰位点和标记物[2]。只要掌握了以上原则和注意事项,我们可以在软件和程序设计的一组引物中筛选出几对我们需要的目标引物。Primer Premier 5和Oligo 6可以在https://www.wendangku.net/doc/6312616691.html,/soft/下载,primer3的主页位置在h ttp://https://www.wendangku.net/doc/6312616691.html,。 2 引物的二次筛选 引物的二次筛选是指在初次筛选出的几对引物中进一步筛选出适合我们进行特异、高效PCR扩增的那对引物。本步应注意以下两点,一是得到的一系列引物分别在Genebank 中进行回检。也就是把每条引物在比对工具(https://www.wendangku.net/doc/6312616691.html,/blast/) 的bl astnr中进行同源性检索,弃掉与基因组其它部分同源性比较高的引物,也就是有可能形成错配的引物。一般连续10 bp以上的同源有可能形成比较稳定的错配,特别是引物的3’端应避免连续5-6 bp的同源。二是以mRNA为模板设计引物时要先利用生物信息学的知识大致判断外显子与内含子的剪接位点(例如https://www.wendangku.net/doc/6312616691.html,/GENESCAN.html的GENESCA N工具或者GeneParser软,然后弃掉正好位于剪接位点的引物。

荧光定量PCR引物设计原则.

1.引物应用核酸系列保守区内设计并具有特异性。最好位于编码区5’端的300-400bp区域 内,可以用DNAman,Alignment 软件看看结果。 2. 产物不能形成二级结构(自由能小于58.61KJ/mol)。 3.引物长度一般在17-25碱基之间,上下游引物不能相差太大。 4.G+C含量在40%~60%之间,45-55%最佳。 5.碱基要随机分布,尽量均匀。 6.引物自身不能有连续4个碱基的互补。 7.引物之间不能有连续4个碱基的互补。 8.引物5′端可以修饰。 9.3′端不可修饰,而且要避开AT,GC rich的区域,避开T/C,A/G连续结构(2-3个)。 10. 引物3′端要避开密码子的第3位。 11.引物整体设计自由能分布5‘端大于3’端,且3‘端自由能最好小于9KJ/mol。 可用oligo 6 软件进行比对看结果的情况。 12.做荧光定量产物长度80-150bp最好,最长是300bp. 13.引物设计避免DNA污染,最好跨外显子接头区。 14.引物与非特异性扩增序列的同源性最好小于70%或者有8个互补碱基同源。 15.查看有无假基因的存在。假基因就是无功能的DNA序列,与需要扩增的目的片段长 度相似。 16.TM值在58-62度之间。 17.引物设计的软件Primer 5.0 有专门针对荧光的。 设计的目的是在两个目标间取得平衡:扩增特异性和扩增效率。引物分析软件将试图通过使用每一引物设计变化的预定值在这两个目标间取得平衡。设计引用有一些需要注意的基本原理: ①引物长度 一般引物长度为18~30碱基。总的说来,决定引物退火温度(Tm值)最重要的因素就是引物的长度。有以下公式可以用于粗略计算引物的退火温度。 在引物长度小于20bp时:[4(G+C)+2(A+T)]-5℃ 在引物长度大于20bp时:62.3℃+0.41℃(%G-C)-500/length-5℃ 另外有许多软件也可以对退火温度进行计算,其计算原理会各有不同,因此有时计算出的数值可能会有少量差距。为了优化PCR反应,使用确保退火温度不低于54℃的最短的引物可获得最好的效率和特异性。

简并引物设计原则

The central role of UDPGDH played in capsule and other polysaccharides synthesis. KPS, capsule polysaccharide; LPS,lipopolysaccharide 简并引物设计方法 (1)利用NCBI搜索不同物种中同一目的基因的蛋白质或cDNA编码的氨基酸序列因为密码子的关系,不同的核苷酸序列可能表达的氨基酸序列是相同的,所以氨基酸序列才是真正保守的。首先利用NCBI的Entrez检索系统,查找到一条相关序列即可。随后利用这一序列使用BLASTP(通过蛋白查蛋白),在整个NR数据库中查找与之相似的氨基酸序列。 (2)对所有的序列进行多序列比对将搜索到的同一基因的不同氨基酸序列进行多序列比对,可选工具有Clustal W/X,也可在线分析。所有序列的共有部分将会显示出来。“*”表示保守,“:”表示次保守。 (3)确定合适的保守区域设计简并引物至少需要上下游各有一个保守区域,且两个保守区域相距50~400个氨基酸残基为宜,使得PCR产物在150~1200bp 之间,最重要的是每一个保守区域至少有6个氨基酸的保守区,因为每条引物至少18bp左右。 若比对结果保守性不是很强很可能找不到6个氨基酸序列的保守区,这时可以根据物种的亲缘关系,选择亲缘关系近的物种进行二次比对,若保守性仍达不到要求,则需进行三次比对,总之,究竟要选多少序列来比对,要根据前一次的结果反复调整。最终目的就是有两个6个氨基酸且两者间距离合适的保守区域。 (4)利用软件设计引物当得到保守区域后,就可以利用专业的软件来设计引物了,其中Primer 5.0 支持简并引物的设计,将参与多序列比对的序列中的任一条导入Primer 5.0 中,将其翻译成核苷酸序列,该序列群可用一条有简并性的核苷酸链来表示(其中R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T,该具有简并性的核苷酸链必然包含上一步中找到的氨基酸保守区域的对应部分,在Primer 5.0 中修改参数,令其在两个距离合适的保守的nt区域内寻找引物对,总之要保证上下游引物都落在该简并链的保守区域内,结果会有数对,分数越高越好。 (5)对引物的修饰若得到的引物为: 5-NAGSGNGCDTTANCABK-3 则简并度=4×2×4×3×4×3×2=2304,很明显该条引物的简并度很高不利于PCR,可以通过次黄嘌呤代替N(因为次黄嘌呤可以很好的和4种碱基配对)和根据物种密码子偏好这两种方法来降低简并度。 这样设计出来的简并引物对,适用于比对的氨基酸序列所属物种及与这些物种分类地位相同的其他物种。 简并引物设计原则

microRNA反转和定量引物设计原理、实验方法

microRNA的引物设计 以ssc-miR-222-3p为例设计引物,其成熟体序列为:AGCTACATCTGGCTACTGGGTCT 反向引物:每个反向引物的都带有一段固定的序列,可以形成一个茎环, 固定的序列为:5,-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG-3, 在这个序列后加上八个碱基,这八个碱基是ssc-miR-222-3p从后面数八个碱基的反向互补序列,就是CTGGGTCT的反向互补:AGACCCAG ,最后得到的反向引物的序列为 5,-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG AGACCCAG -3, 正向引物:每个正向引物也带有一段固定的序列,固定的序列为:ACACTCCAGCTGGG 在这个序列后加上于成熟体除后面六个外剩下的碱基序列,成熟体除掉后面六个碱基后序列为:AGCTACATCTGGCTACT 5,-ACACTCCAGCTGGG AGCTACATCTGGCTACT -3, URP:统一反向引物,也是一段固定的序列,TGGTGTCGTGGAGTCG U6引物F-CTCGCTTCGGCAGCACA ,R-AACGCTTCACGAATTTGCGT 使用方法: 1逆转的引物:所有要做的miRNA反向引物的混合,每个10微升 2PCR的引物:50微升的体系,30微升的水,10微升的正向引物,10微升的URP

2.hsa-miR-124(hsmq-0032 引物) 推荐退火温度:60℃ hsa-miR-124 扩增曲线示意图hsa-miR-124 融解曲线示意图 3.hsa-miR-125b(hsmq-0034 引物) 推荐退火温度:60℃ hsa-miR-125b 扩增曲线示意图hsa-miR-125b 融解曲线示意图

LAMP技术原理和引物设计

LAMP原理及引物设计与实例 .LAMP引物的设计 LAMP引物的设计主要是针对靶基因的六个不同的区域,基于靶基因3' 端的F3c、F2c和Flc区以及5' 端的Bl、B2和B3区等6个不同的位点设计4种引物。 FIP(Forward Inner Primer):上游内部引物,由F2区和F1C区域组成,F2区与靶基因3’端的F2c区域互补,F1C区与靶基因5' 端的Flc区域序列相同。 F3引物:上游外部引物(Forward Outer Primer),由F3区组成,并与靶基因的F3c区域互补。 BIP引物:下游内部引物(Backward Inner Primer ),由B1C和B2区域组成,B2区与靶基因3' 端的B2c区域互补,B1C域与靶基因5' 端的Blc区域序列相同. B3引物:下游外部引物(Backward Outer Primer ),由B3区域组成,和靶基因的B3c区域互补。 2.扩增原理 60-65℃是双链DNA复性及延伸的中间温度,DNA在65℃左右处于动态平衡状态。因此,DNA在此温度下合成是可能的。利用4种特异引物依靠一种高活性链置换DNA聚合酶。使得链置换DNA合成在不停地自我循环。扩增分两个阶段。 第1阶段为起始阶段,任何一个引物向双链DNA的互补部位进行碱基配对延伸时,另一条链就会解离,变成单链。上游内部引物FIP的F2序列首先与模板F2c结合(如图B所示),在链置换型DNA聚合酶的作用下向前延伸启动链置换合成。外部引物F3与模板F3c结合并延伸,置换出完整的FIP连接的互补单链(如图C所示)。FIP上的F1c与此单链上的Fl 为互补结构。自我碱基配对形成环状结构(如图C所示)。以此链为模板。下游引物BIP与B3先后启动类似于FIP和F3的合成,形成哑铃状结构的单链。迅速以3' 末端的Fl区段为起点。以自身为模板,进行DNA合成延伸形成茎环状结构。该结构是LAMP基因扩增循环的起始结构。 第2阶段是扩增循环阶段。以茎环状结构为模板,FIP与茎环的F2c区结合。开始链置换合成,解离出的单链核酸上也会形成环状结构。迅速以3’末端的B1区段为起点,以自身为模板。进行DNA合成延伸及链置换.形成长短不一的2条新茎环状结构的DNA,BIP引物上的B2与其杂交。启动新一轮扩增。且产物DNA长度增加一倍。在反应体系中添加2条环状引物LF和LB,它们也分别与茎环状结构结合启动链置换合成,周而复始。扩增的最后产物是具有不同个数茎环结构、不同长度DNA的混合物。且产物DNA为扩增靶序列的交替反向重复序列。 https://www.wendangku.net/doc/6312616691.html,MP的特点 LAMP与以往的核酸扩增方法相比具有如下优点: (1)操作简单,LAMP核酸扩增是在等温条件下进行,对于中小医院只需要水浴锅即可,产

PCR引物设计原则

PCR引物设计原则 引物(Primer)是人工合成的两段寡核苷酸序列。 1、引物的长度一般为15-30bp,常用的是18-27bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2、G十C含量:应在40%-60%之间,PCR扩增中的复性温度一般是较低Tm 值引物的Tm值减去5-10度。引物长度小于20时,其Tm恒等于4(G十C)十2(A十T)。 3、碱基分布的随机性:应避免连续出现4个以上的单一碱基。尤其是不应在其3’端出现超过3个的连续G或C,否则会使引物在G十C富集序列区错误引发. 4、引物自身:不能含有自身互补序列,否则会形成发夹样二级结构. 5、引物之间:两个引物之间不应有多于4个的互补或同源碱基,不然会形成引物二聚体,尤应避免3’端的互补重叠。引物3’端最好选T,错配的几率与A 相比大大的降低了。G、C之间错配的概率小于A、T. 6、引物的5’端可以修饰,而3’端不能进行修饰。5’端的修饰包括:加酶切位点,标记生物素,荧光,地高辛、Eu3+等,引入蛋白质结合的DNA序列,引入点突变,插入突变、缺失突变序列、引入启动子序列。因为引物的延伸是从3’端开始的,因而3’端不能进行任何修饰,另外3’端也不能有形成任何二

级结构的可能。 如何设计引物 不同的核苷酸序列表达的氨基酸氨基酸序列是相同的,所以氨基酸序列才是真正保守的。 引物最好在模板cDNA的保守区域内设计(DNA的保守区是通过物种间相似序列的比较确定的,在NCBI上搜索不同物种的同一基因,通过序列分析软件比对(Alignment),各基因相同的序列就是该基因的保守区)。 PCR引物设计 PCR反应中有两条引物,即5′端引物和3′引物。设计引物时以一条DNA单链为基准(常以信息链为基准),5′端引物与位于待扩增片段5′端上的一小段DNA序列相同;3′端引物与位于待扩增片段3′端的一小段DNA序列互补。 引物设计软件 Primer Premier5.0 (自动搜索)* vOligo6 (引物评价) vVector NTI Suit vDNAsis vOmiga vDNAstar vPrimer3 (在线服务)

microRNA(miRNA)引物设计及过程原理说明

microRNA(miRNA)引物设计及过程原理说明microRNAs的平均长度23nt左右,所以miRNA引物设计与常规引物设计存在很大差别,以下讲解一下整个miRNA引物设计的过程加上实验流程,以帮助大家对各方面的学习。 首先,引物设计之前先介绍miRNA反转录合成cDNA的过程。我们拿经典颈环序列GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT ACGAC作介绍。打开DNAstar软件的PrimerSelect;file打开下拉菜单;打开Enter New Primer…;粘贴颈环序列;点击OK。

颈环结构已经输入,下面查看颈环结构回形成的那些发夹结构。选择颈环结构(鼠标点一下);点击Report下拉菜单;选择Primer Hairpins。 第一个发夹结构是实验所需的结构(dG=-20.4kc/m)。 下面结合has-miR-122-5P合成cDNA的具体过程讲解 has-miR-122-5P:UGGAGUGUGACAAUGGUGUUUGU 将U转T,方便后面使用:TGGAGTGTGACAATGGTGTTTGT

miRNAs的颈环结构引物:是将miRNAs的3’端后6位碱基反向互补添加到经典颈环结构的3’端形成的结构。(自己根据后面图片想一下原因,加6个碱基为经验所授) has-miR-122-5P的后6位:GTTTGT has-miR-122-5P的后6位的反向互补序列:ACAAAC 颈环引物序列: 5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGG ATACGACACAAAC -3’ 查看形成的发夹结构(方法前面有讲) 看一下miRNA和颈环引物在一起会是怎么样子: 在含反转录酶及适当的条件下,miRNA和其颈环引物将会合成cDNA链:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT ACGACACAAACACCATTGTCACACTCCA

引物设计的原理与方法

PCR引物设计的原理及方法 阎振鑫S111666(四川大学生命科学学院细胞生物学成都610014) 摘要:自20世纪后期发展了PCR技术以来,PCR已经改变了整个生物学研究的进程。而PCR反应的第一步就是设计引物,引物设计的好坏直接关系到PCR的成败。PCR引物设计有许多的原则必须要遵循:引物与引物之间避免形成稳定的二聚体或发夹结构,引物与模板的序列要紧密互补。引物不能在模板的非目的位点引发DNA聚合反应等。另外,引物的设计方法也越来越多,出现了许多专门的设计软件和网站,如:PrimerPremier5.0等。 关键词:PCR 引物原理方法NCBI PrimerPremier5.0 PCR primer design principle and method YanZhenxin (sichuan Univercity, Life science college cell biology chengdu 610014 ) Abstract: When PCR technology was find, PCR has changed all of the program in research of biology. The design of primer is the frist step of PCR. It is relation to the fate of PCR. There are some principals must be obey: dipolymer and hairpin structure must be avoid between different primers. The DNA polymerization reaction should not be triggered at the wrong site. Therefore, there are more and more methods of design primer, include the professional softwares and professional web site. Key word: PCR primer principle NCBI PrimerPremier5.0 聚合酶链式反应(Polymerase chain reaction。PCR)是20世纪后期发展起来的一种体外扩增特异DNA片断的技术。具有快速、简便及高度敏感等优点,能极大地缩短目的基因扩增时间[1]。因此,其一直是生物学者们致力于构建cDNA文库、基因克隆以及表达调控研究的必要前提和基础[2]。PCR的第一步就是引物设计。引物设计的好坏,直接影响了PCR的结果,因此这一步很关键。成功的PCR反应既要高效,又要特异性扩增产物,因此对引物设计提出了较高的要求。引物设计需要注意的地方很多,在大多数情况下,我们都是在知道已知模板序列时进行PCR扩增的。在某些情况比如构建文库的时候也会在不知道模板序列的情况下进行设计。这个时候随机核苷酸序列就与模板不是完全匹配。我们通常指的设计引物都是在已知模板序列的情况下进行。设计的目的是在两个目标间取得平衡:扩增特异性和扩增效率。

引物设计原则必看

mi引物设计原则 1、引物的长度一般为15-30 bp,常用的就是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2、引物序列在模板内应当没有相似性较高,尤其就是3’端相似性较高的序列,否则容易导致错配。引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。 3、引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其她3个碱基,因此应当避免在引物的3’端使用碱基A。另外,引物二聚体或发夹结构也可能导致PCR反应失败。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。 4、引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。 5、引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的就是最邻近法(the nearest neighbor method)。 6、ΔG值就是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端与中间ΔG值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。 7、引物二聚体及发夹结构的能值过高(超过4、5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。 8、对引物的修饰一般就是在5’端增加酶切位点,应根据下一步实验中要插入PCR产物的载体的相应序列而确定。 引物序列应该都就是写成5-3方向的, Tm之间的差异最好控制在1度之内, 另外我觉得扩增长度大一些比较好,500bp左右。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链就是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不

引物设计的原理与方法

引物设计的原理与方法 The latest revision on November 22, 2020

PCR引物设计的原理及方法 阎振鑫S111666(四川大学生命科学学院细胞生物学成都 610014) 摘要:自20世纪后期发展了PCR技术以来,PCR已经改变了整个生物学研究的进程。而PCR反应的第一步就是设计引物,引物设计的好坏直接关系到PCR的成败。PCR引物设计有许多的原则必须要遵循:引物与引物之间避免形成稳定的二聚体或发夹结构,引物与模板的序列要紧密互补。引物不能在模板的非目的位点引发DNA聚合反应等。另外,引物的设计方法也越来越多,出现了许多专门的设计软件和网站,如:PrimerPremier5.0等。 关键词:PCR 引物原理方法 NCBI PrimerPremier5.0 PCR primer design principle and method YanZhenxin (sichuan Univercity, Life science college cell biology chengdu 610014 ) Abstract: When PCR technology was find, PCR has changed all of the program in research of biology. The design of primer is the frist step of PCR. It is relation to the fate of PCR. There are some principals must be obey: dipolymer and hairpin structure must be avoid between different primers. The DNA polymerization reaction should not be triggered at the wrong site. Therefore, there are more and more methods of design primer, include the professional softwares and professional web site. Key word: PCR primer principle NCBI PrimerPremier5.0 聚合酶链式反应(Polymerase chain reaction。PCR)是20世纪后期发展起来的 一种体外扩增特异DNA片断的技术。具有快速、简便及高度敏感等优点,能极大地缩短目的基因扩增时间[1]。因此,其一直是生物学者们致力于构建cDNA文库、基因克隆以及表达调控研究的必要前提和基础[2]。PCR的第一步就是引物设计。引物设计的好坏,直接影响了PCR的结果,因此这一步很关键。成功的PCR反应既要高效,又要特异性扩增产物,因此对引物设计提出了较高的要求。引物设计需要注意的地方很多,在大多数情况下,我们都是在知道已知模板序列时进行PCR扩增的。在某些情况比如构建文库的时候也会在不知道模板序列的情况下进行设计。这个时候随机核苷酸序列

PCR引物设计原理及原则

PCR引物设计原理及原则 PCR引物设计原理 PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可以在这一区域设计引物。 现在可以在这一保守区域里设计一对引物。一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。 让我们先看看P1引物。一般引物序列中G+C含量一般为40%~60%。而且四种碱基的分布最好随机。不要有聚嘌呤或聚嘧啶存在。否则P1引物设计的就不合理。应重新寻找区域设计引物。 同时引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。 引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特异性影响不大。但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。 PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。 ⑩引物3′端要避开密码子的第3位。 PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。如前述,引物的优劣直接关系到PCR的特异性与成功与否。对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。 1.引物的特异性 引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。 2.避开产物的二级结构区 某些引物无效的主要原因是引物重复区DNA二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关计算机软件可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。 3.长度 寡核苷酸引物长度为15~30bp,一般为20~27mer。引物的有效长度:Ln=2(G+C)+(A+T+,Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。 4.G+C含量

PCR引物的设计原则

PCR引物的设计原则: ①引物应用核酸系列保守区内设计并具有特异性。 ②产物不能形成二级结构。 ③引物长度一般在15~30碱基之间。 ④G+C含量在40%~60%之间。 ⑤碱基要随机分布。 ⑥引物自身不能有连续4个碱基的互补。 ⑦引物之间不能有连续4个碱基的互补。 ⑧引物5′端可以修饰。 ⑨引物3′端不可修饰。 ⑩引物3′端要避开密码子的第3位。 1.引物的特异性 引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。 2.避开产物的二级结构区 某些引物无效的主要原因是引物重复区DNA二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关计算机软件可以预测估计mRNA 的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。 3.长度

寡核苷酸引物长度为15~30bp,一般为18~27mer。引物的有效长度:Ln=2(G+C)+(A+T),Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。 4.G+C含量 G+C含量一般为40%~60%。其Tm值是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度,有效启动温度,一般高于Tm值5~10℃。若按公式Tm=4(G+C)+2(A+T)估计引物的Tm 值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。上下游引物的GC含量不能相差太大。 5.碱基随机分布 引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在G+C富集序列区错误引发。 6.引物自身 引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。若用人工判断,引物自身连续互补碱基不能大于3bp。 7.引物之间 两引物之间不应具有互补性,尤应避免3′端的互补重叠以防引物二聚体的形成。一对引物间不应多于4个连续碱基的同源性或互补性。

引物设计原则

引物设计原则: 引物的3’端决定着PCR反应产物的特异性,而5’端限定着PCR产物的长度。 (1)引物序列应位于基因组DNA的高度保守区,且与非扩增区无同源序列。这样可以减少引物与基因组的非特异结合,提高反应的特异性。 在模板内最好具有单一性,也就是说在模板内部没有错配,特别是3’ 端,一定要避免连续4个以上的碱基互补错配。 (2)引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配,降低特异性,而太长也会降低特异性,并且影响PCR反应效率。 引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的 互补。 (3)引物的碱基应尽可能随机分布,避免出现数个嘌呤或嘧啶的连续排列,G+C含量在40%~75%之间,且上下游引物序列GC含量的差异不要 太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或 C。DNA双链形成所需的自由能AG,应该以5’端向3’端递减 (4)引物的内部应避免形成稳定的引物二聚体和发夹结构,特别是引物的末端应无回文结构。上下游引物不应有互补序列,特别是3’端应避免 互补,以免形成引物二聚体。 (5)如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。 而以mRNA为模板设计引物时,产物长度在150—300 bp比较理想。(6)5’ 端对PCR影响不太大,可以引进修饰位点和标记物。 (7)引物3’端的头1~2个碱基会影响T aqDNA聚合酶的延伸效率,从而影响PCR反应的扩增效率及特异性。一般的PCR反应中,引物3’末端 的碱基最好选T、C、G而不选A,A错配时会影响合成效率。 (8)引物3’端应为保守氨基酸序列,即采用简并密码子少的氨基酸如Met、Trp,且避免三联体密码第三个碱基的摆动未知位于引物的3’端。3’ 端不应终止于密码子的简并碱基。

相关文档