文档库 最新最全的文档下载
当前位置:文档库 › 微积分-第六章练习题答案

微积分-第六章练习题答案

微积分-第六章练习题答案
微积分-第六章练习题答案

第六单练习题

一、选择题

1、在球x 2+y 2+z 2-2z =0内部的点是( C )

A 、(0,0,0)

B 、(0,0,-2)

C 、111,,222?? ???

D 、111,,222??

-- ???

2、点(1,1,1)关于xy 平面的对称点是( B )

A 、(-1,1,1)

B 、(1,1,-1)

C 、(-1,-1,-1)

D 、(1,-1,1) 3、设函数z =f (x ,y )在点(x 0,y 0)处存在对x ,y 的偏导数,则00(,)x f x y '=( B ) A 、00000

(2,)(,)lim x f x x y f x y x ?→-?-? B 、00000(,)(,)

lim x f x y f x x y x ?→--??

C 、00000

(,)(,)

lim

x f x x y y f x y x

?→+?+?-? D 、0000(,)(,)lim x x f x y f x y x x →--

4、函数z =f (x ,y )在点(x 0,y 0)处可微的充分条件是( D ) A 、f (x ,y )在点(x 0,y 0)处连续 B 、f (x ,y )在点(x 0,y 0)处存在偏导数 C 、00000

lim (,)(,)0x y z f x y x f x y y ρ→''???-?-?=??

D 、00000(,)(,)lim 0x y z f x y x f x y y ρρ→''?-?-???=????

其中ρ=5、已知函数22(,)f x y x y x y +-=-,则

(,)(,)

f x y f x y x y

??+=??( B ) A 、22x y - B 、x y + C 、22x y + D 、x y -

6、平行于z 轴且过点(1,2,3)和(-1,4,5)的平面方程是( A ). A 、03=-+y x B 、03=++y x C 、01=+-z y D 、5=z

7、二元函数224),(y x y x f z +==在点(0,0)处( D ) A 、连续、偏导数不存在 B 、不连续、偏导数存在 C 、连续,偏导数存在但不可微 D 、可微

8、若可微函数),(y x f z =在点),(000y x P 有极值,则( C ). A 、两个偏导数都大于零 B 、两个偏导数都小于零

C 、两个偏导数在点),(000y x P 的值都等于零

D 、两个偏导数异号

9、二重积分??+=D

dxdy y x I )sin(1,??+=D

dxdy y x I )(sin 22,其中D是由

1,2

1

,0,0=+=

+==y x y x y x 围成,则( C )

. A 、21I I = B 、21I I < C 、21I I > D 、以上都不对

10、设方程xyz =z =z (x ,y ),则z =z (x ,y )在点 (1,0,-1)处的全微分dz =( D )

A 、dx +

B 、dx -+

C 、dx --

D 、dx -

11、二元函数3

3

2

2

339z x y x y x =-++-的极小值点是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 12、点00(,)x y 使(,)0x f x y '=且(,)0y f x y '=成立,则( D )

A 、00(,)x y 是(,)f x y 的极值点

B 、00(,)x y 是(,)f x y 的最小值点

C 、00(,)x y 是(,)f x y 的最大值点

D 、00(,)x y 可能是(,)f x y 的极值点

13、设区域D 是单位圆221x y +≤在第一象限的部分,则二重积分D

xyd σ=??

( C )

A 、

xydy B 、1

dx ?

C 、1

dy ? D 、1220

01sin 22d r dr π

θθ??

14、

110

(,)x

dx f x y dy -=??( D )

A 、11

00

(,)x dy f x y dx -?

? B 、1

10

0(,)x

dy f x y dx -??

C 、

1

1

(,)dy f x y dx ??

D 、1

10

(,)y

dy f x y dx -??

15、若1D

dxdy =??,则积分域D 可以是( C ) A 、由x 轴,y 轴及20x y +-=所围成的区域 B 、由x =1,x =2,及y =2,y =4所围成的区域

C 、由11

,22

x y ==所围成的区域

D 、由1,1x y x y +=-=所围成的区域 二、填空题

1、设)ln(22y x z +=,则

x

z

??= .222y x x +

2、交换二次积分的次序??

1

01),(x

dy y x f dx = .??

1

2),(y dx y x f dy

3、若??=--D

dxdy y x a π222,则=a ,其中D是由222a y x =+围成的区

域.3

2

3

4、??D

d y x f σ),(在极坐标系下的二次积分为 ,其中D是由422=+y x 围成的

区域.??πθθθ20

2

)sin ,cos (rdr r r f d

四、计算题

1、.求由方程xyz e z

=所确定的函数),(y x f z =的偏导数x z ??,y

x z

???2

解:设xyz e z y x F z -=),,(,则

yz F x -=,xy e F z z -=

xy

e yz

F F x z z z x -=-=?? 2

2)

()())(()(xy e x y

z

e yz xy e y z y

z xy

e yz

y x z z z z y z --??--??+='-=???

3

22322)

(xy e e z y z xy z y e xyz e z e z z

z z z ---+-= 2、设v

u

z arctan =,其中y x v y x u -=+=,23,求全微分dz

解: x

v v z x u u z x z ????+????=?? 2

2223v u u v u v +-+?+=

2

222)

()23(23)()23()(3y x y x y

x y x y x y x -+++--++-=

y

v v z y u u z y z ????+????=?? )1(22

222-?+-+?+=

v u u

v u v

2

222)()23(23)()23()(2y x y x y

x y x y x y x -++++-++-=

dy y z

dx x z dz ??+??=

dx y x y x y x y x y x y x ])

()23(23)()23()(3[2

222-+++--++-= dy y x y x y

x y x y x y x ])()23(23)()23()(2[2

222-++++-++-+

3、设2z u v =,其中y x v y x u -=+=,23,求全微分dz 解:

x

v

v z x u u z x z ????+

????=?? 232u uv +?=

2)23())(23(6y x y x y x ++-+=

y

v v z y u u z y z ????+????=?? )1(222-?+?=u uv 2)23())(23(4y x y x y x +--+=

dy y

z

dx x z dz ??+??=

dx y x y x y x ])23())(23(6[2++-+= dy y x y x y x ])23())(23(4[2+--++ 4、求函数22(,)4()f x y x y x y =---的极值

解:x f x 24-=,y f y 24--= 令0,0==y x f f 得2,2-==y x

由2,0,2-====-==yy xy xx f C f B f A 知0>-B AC 且0

5、、计算二重积分??+D

dxdy y x )23(,其中D是由X 轴、Y 轴及直线2=+y x 所围

成的区域

解:??+D

dxdy y x )23( ?

?-+=x dy y x dx 20

2

)23(

?++-=2

2)422(dx x x

3

20

解法二:原式?

?-+=y dx y x dy 20

2

)23(

?+--=2

02)622

1

(dy y y 3

20

=

6、、计算二重积分??

D

dxdy x

x

sin ,其中D是由直线x y =和曲线2x y =所围成的闭区域. 解:??

D

dxdy x x

sin ??=x x dy x

x dx 2sin 10

dx x x x

x

)(sin 210-=?

dx x x x )sin (sin 10

-=?

1sin 1-=

7、计算二重积分2D

x ydxdy ??,其中D是由X 轴、Y 轴及直线2x y +=所围成的区

解:??D

ydxdy x 2 ?

?-=x ydy x dx 20

22

?+-=20234

)44(21dx x x x =

15

8

解法二:原式?

?-=y ydx x dy 20

22

?-+-=2

432)6128(31dy y y y y 15

8

=

8、计算二重积分2

y D

e dxdy ??,其中D是由直线,1,0y x y x ===所围成的闭区域

解: 本题只能先对x 积分再对y 积分

??D

y dxdy e 2

??=y

y

dx e dy 0

102

dy ye y 2

10

?

=

)(2

12

102y d e y ?=

)1(2

1

-=e 五、应用题

1.求由曲线3x y =及直线0,2==y x 所围成的图形的面积以及由该图形绕y 轴

旋转一周所产生的旋转体的体积(要求作出草图). 阴影部分面积?=2

03dx x S

2

414x =

= 4

旋转体的体积?-=8

0231

2])(2[dy y V y π

08

)5

34(35y y -=π

π5

64

=

2、求由曲线2y x =和2x y =所围成的图形的面积以及由该图形绕Y轴旋转 一周所产生的旋转体的体积(要求作出草图).

解:阴影部分面积?-=1

02)(dx x x S

01

)3

132(323

x x -=

= 3

1

旋转体的体积?-=1

222])()[(dy y y V y π

01)5

1

21(52y y -=π

π10

3

=

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

微积分第4章习题解答(上)

第四章 习题参考解答 习题4-1 1、下列各方程中,哪些是微分方程,哪些不是微分方程?若是微分方程,请指出其阶数 (1)是一阶微分方程; (2)不是微分方程; (3)是一阶微分方程; (4)是二阶微分方程; (5)是一阶微分方程; (6)是一阶微分方程。 2、在下列各题所给的函数中,检验其中哪个函数是方程的解?是通解还是特解? (1)(B )是特解 (C )是通解; (2)(A)是特解 (B )是通解; (3)(A )是通解(B )是特解 3、求下列各微分方程在指定条件下的特解 (1)解:x x x y xe dx xe e dx ==-?? (1)x y e x C ∴=-+ 将(0)1y =代入上式,得2C = 故满足初始条件的特解为:2)1(+-=x e y x (2)解:C x x dx y +==? ln 将(1)1y =代入上式,得1C = 故满足初始条件的特解为:1ln +=x y 4、写出由下列条件确定的曲线所满足的微分方程 (1)解:设曲线为)(x y y = 由条件得2x y =' (2) 解:设曲线为)(x y y =,则曲线上点),(y x P 处的法线斜率为y k '- =1 由条件知PQ 中点的横坐标为0,所以Q 点的坐标为)0,(x -,从而有 01 ()y x x y -=-' --

即:20yy x '+= 注:DQ PD k = 习题4-2 1、求下列微分方程的通解 (1)sec (1)0x ydx x dy ++= 解:原方程变形为:cos 1x ydy dx x =- + 积分:11 cos 1 x ydy dx x +-=-+?? 得:sin ln 1y x x C =-+++ 所求的通解为:C y x x =++-sin 1ln (2) 10x y dy dx += 解:原方程变形为: 1010 x y dy dx = 积分:1010x y dy dx =? ? 得:1111010ln10ln10 y x C -=+ 所求的通解为:1010x y C --= (3)ln y y y '= 解:原方程变形为: ln dy dx y y = 积分:1ln dy dx y y =? ? 得:ln ln y x C =+,2ln x y C e = 所求的通解为:x Ce y e = 注:21,2C C e C e C ==; (4)tan cot ydx xdy = 解:原方程变形为:cot tan ydy xdx =

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理 1.由曲线,直线轴所围成的图形的面积为() A.B.4C.D.6 【答案】A 【解析】 联立方程得到两曲线的交点(4,2), 因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为: S. 故选:A. 2.设f(x)=|x﹣1|,则=() A.5 B.6 C.7 D.8 【答案】A 【解析】 画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为 ,故选A.

3.曲线与直线围成的封闭图形的面积是() A.B.C.D. 【答案】D 【解析】 令,则,所以曲线围成的封闭图形面积为 ,故选D 4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为 A.B.C.1D. 【答案】C 【解析】 直线与函数的图象围成区域的面积S dx =

∴ 故选:C 5.由直线与曲线所围成的封闭图形的面积为( ) A.B.1C.D. 【答案】B 【解析】 题目所求封闭图形的面积为定积分,故选B. 6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( ) A.B.C.D. 【答案】A 【解析】 依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A. 7.() A.B.-1C.D. 【答案】C 【解析】 解:

. 故选:C. 8.,则T的值为 A.B.C.D.1 【答案】A 【解析】 由题意得表示单位圆面积的四分之一,且圆的面积为π, ∴, ∴. 故选A. 9.下列计算错误 ..的是() A.B. C.D. 【答案】C 【解析】 在A中,, 在B中,根据定积分的几何意义,, 在C中,, 根据定积分的运算法则与几何意义,易知,故选C.

微积分第五章第六章习题答案

习题5.1 1.(1) sin x x ;3sin x (2)无穷多 ;常数(3)所有原函数(4)平行 2. 23x ;6x 3.(1)3223 x C --+(2)323sin 3x x e x C +-+(3)3132221(1565(2))15x x x x C -++-+ (4 2103)x x C -++ (5)4cos 3ln x x C -++(6)3 23 x x ex C +-+ (7) sin 22 x x C -+(8 )5cos x x C --+ 4. 3113y x =+ 5. 32()0.0000020.0034100C x x x x =-++;(500)1600;(400)(200)552C C C =-= 习题5.2 1.(1)1a (2)17(3)110(4)12-(5)112(6)12(7)2-(8)15(9)-(10)12 - 2. (1)515t e C + (2)41(32)8x C --+(3)1ln 122x C --+(4)231(23)2 x C --+ (5 )C -(6)ln ln ln x C +(7)111tan 11x C +(8)212 x e C --+ (9)ln cos ln sin x x C -++(10 )ln C -+(11)3sec sec 3 x x C -++ (12 )C (13)43ln 14x C --+(14)2sec 2 x C + (15 12arcsin 23x C + (16)229ln(9)22 x x C -++ (17 C (18)ln 2ln 133 x x C -+-+ (19)2()sin(2())4t t C ?ω?ωω++++ (20)3cos ()3t C ?ωω +-+ (21)cos 1cos5210x x C -+ (22)13sin sin 232x x C ++(23)11sin 2sin12424 x x C -+ 习题5.3 1.(1)arcsin ,,u x dv dx v x === (2),sin ,cos u x dv xdx v x ===-

高等数学(同济大学版)第四章练习(含答案)

第四章 不定积分 一、学习要求 1、理解原函数与不定积分的概念及性质。 2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。 二、练习 1.在下列等式中,正确的结果是( C ). A. '()()f x dx f x =? B.()()df x f x =? C. ()()d f x dx f x dx =? D.[()]()d f x dx f x =? 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2 x 3.设()f x 的一个原函数是2x e -,则()f x =( B ); A. 2x e - B. 22x e -- C. 24x e -- D. 24x e - 4.'' ()xf x dx =? ( C ). A.'()xf x C + B. '()()f x f x C -+ C. '()()xf x f x C -+ D. '()()xf x f x C ++. 5 .将 化为有理函数的积分,应作变换x =( D ). A. 3t B. 4 t C. 7 t D. 12 t 6.dx = 1/7 ()73d x -, 2cos 2dx x = 1/2 ()tan 2d x ,2 19dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =1 3 3x e c ++. 8.设()f x 是可导函数,则'()d f x x ?为()f x C +. 9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+ 10.已知()cos xf x dx x C =+?,则()f x =sin x x - 11.求下列不定积分 解: (1) 22 32tan 1tan tan tan 1sin 3 x dx xd x x c x ==+-?? (2) 22arctan 11 x x x x x x x dx e dx de e c e e e e -===++++??? 5 34 2 (3)t a n s e c t a n s e c s e c x x d x x x d x ? =??? 22 2(s e c 1)s e c s e c x x d x =-?? ()642sec 2sec sec sec x x x d x =-+?753121 sec sec sec 753 x x x c = -++

微积分二课后题答案,复旦大学出版社第五章

第五章 习题5-1 1.求下列不定积分: (1) 2 5)x -d x ; (2) 2 x ; (3) 3e x x ?d x ; (4) 2cos 2 x ?d x ; (5) 23523x x x ?-??d x ; (6) 22cos 2d cos sin x x x x ?. 解 5 15173 2 2222 22210 (1) 5)(5)573d d d d x x x x x x x x x x C -=-=-=-+??? 2. 解答下列各题: (1) 一平面曲线经过点(1,0),且曲线上任一点(x ,y )处的切线斜率为2x -2,求该曲线方程; (2) 设sin x 为f (x )的一个原函数,求 ()f x '?d x ; (3) 已知f (x )的导数是sin x ,求f (x )的一个原函数; (4) 某商品的需求量Q 是价格P 的函数,该商品的最大需求量为1000(即P=0时,Q =1000),已知需求量的变化率(边际需求)为Q ′(P )=-10001( )3 P ln3,求需求量与价格的函数关系. 解 (1)设所求曲线方程为y =f (x ),由题设有f′(x )=2x -2, 又曲线过点(1,0),故f (1)=0代入上式有1-2+C =0得C =1,所以,所求曲线方程为 2()21f x x x =-+. (2)由题意有(sin )()x f x '=,即()cos f x x =, 故 ()sin f x x '=-, 所以 ()sin sin cos d d d f x x x x x x x C '=-=-=+???. (3)由题意有()sin f x x '=,则1()sin cos d f x x x x C ==-+? 于是 1 2 ()(cos )sin d d f x x x C x x C x C =-+=-++??. 其中12,C C 为任意常数,取120C C ==,得()f x 的一个原函数为sin x -. 注意 此题答案不唯一.如若取121,0C C ==得()f x 的一个原函数为sin x x --. (4)由1()1000( )ln 33 P Q P '=-得 将P =0时,Q =1000代入上式得C =0

微积分刘迎东编第四章习题4.6答案

微积分刘迎东编第四章习题4.6答案

4.6 有理函数的积分 习题4.6 求下列不定积分: (1)3 3 x dx x +? 解: ()()()33223227939272727ln 33239327327ln 3.32 x t t dxx t t t dt t t C x t x x x x C ??+=-+-=-+-+ ?+?? ++=-++-++?? (2)223310 x dx x x ++-? 解:()2222231310ln 310.310310 x dx d x x x x C x x x x +=+-=+-++-+-?? (3)2125x dx x x +-+? 解: ()()()()22222222511122412252252251211ln 25arctan .22 d x x d x x x dx dx x x x x x x x x x x C -+-+-+==+-+-+-+-+-=-+++???? (4)() 21dx x x +? 解:()()()()22 222222211111ln .2212111d x dx x d x C x x x x x x x ??==-=+ ?++++????? (5)331 dx x +? 解:

( )( )322222223121213ln 1111211131ln 1212121ln 1ln 1.2x x dx dx x dx x x x x x x d x x x dx x x x x x x C ---??=+=+- ?++-+-+?? -+=+-+-+??-+ ?? ???=+--+++????? (6)()() 221 11x dx x x ++-? 解:()()()222211111122ln 1.1121111x dx dx x C x x x x x x ?? ?+=+-=-++ ?-+++-+ ??? ?? (7)()()() 123xdx x x x +++? 解: ()()()13222123123132ln 2ln 1ln 3.22 xdx dx x x x x x x x x x C ??-- ?=++ ?++++++ ??? =+-+-++?? (8)5438x x dx x x +--? 解: ()()542233232 8811184332118ln 4ln 13ln 1.32x x x x dx x x dx x x x x x x x x dx x x x x x x x x x C ??+-+-=+++ ? ?-+-?? ??=+++-- ?+-?? =+++-+--+??? (9)()() 221dx x x x ++?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

微积分总复习题与答案

第五章 一元函数积分学 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写 出cos t a == 邻边斜边,于是21arcsin(/)22a x a C =+ 例3:求不定积分sin x xdx ? 分析:如果被积函数()sin f x x x =中没有x 或sinx ,那么这个积分很容易计算出来,所以可以考虑用分部积分求此不定积分,如果令u=x ,那么利用分部积分公式就可以消去x (因为' 1u =) 解令,sin u x dv xdx ==,则du dx =,cos v x =-. 于是sin (cos )(cos )cos sin x xdx udv uv vdu x x x dx x x x C ==-=---=-++???? 。熟悉分部积分公式以后,没有必要明确的引入符号,u v ,而可以像下面那样先凑微分,然后直接用分部积分公式计算: sin cos (cos cos )cos sin x xdx xd x x x xdx x x x C =-=--=-++???

高等数学第四章不定积分课后习题详解

高等数学第四章不定 积分课后习题详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)

思路: 被积函数52 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C ---=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到22222 1111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★ (8)23(1dx x -+? 思路:分项积分。 解 :2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★ (9) 思路 = 11172488x x ++==,直接积分。 解 :715888.15x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。 解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)211 x x e dx e --?

定积分与微积分含答案

定积分与微积分基本定理 基础热身 1.已知f (x )为偶函数,且 ??0 6f(x)d x =8,则? ?6-6f(x)d x =( ) A .0 B .4 C .8 D .16 2. 设f(x)=??? x 2,x ∈[0,1], 1 x ,x ∈1,e ] (其中e 为自然对数的底数),则??0 e f(x)d x 的值为( ) B .2 C .1 3.若a =??0 2x 2d x ,b =??0 2x 3d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关 系是( ) A .a

A .0 B .1 C .0或1 D .以上均不对 9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( ) A . J B . J C . J D . J 10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函 数f K (x )=????? K ,fx ≤K ,fx ,fx >K , 则当函数f (x )=1x ,K =1时,定积分??214f K (x)d x 的值为________. (x -x 2)d x =________. 12. ∫π 20(sin x +a cos x)d x =2,则实数a =________. 13.由抛物线y 2 =2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________. 14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围 成的区域(阴影)面积为27 4,求f(x)的解析式. 图K 15-2 15.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t (00),

微积分(曹定华)(修订版)课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+1 31 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+1 1 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2 ) (1n S n =++ ++ 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4) 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而1112 n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5) ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+ ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6) 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7) 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8) (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:(1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且 其和为1+ 12=3 2 . (2) 11121(1)(2)212n n n n n n ?? =-+ ?++++??

微积分定积分练习题(有答案)

1利用定积分的几何意义计算」''1 - x2dx. 2. 计算定积分"2(x+ 1)dx. J i 3. 定积分"bf(x)dx的大小() ?a A .与f(x)和积分区间[a, b]有关,与E的取法无关 B.与f(x)有关,与区间[a,b]以及&的取法无关 C .与f(x)以及8的取法有关,与区间[a, b]无关 D .与f(x)、区间[a,b]和8的取法都有关 4. 在求由x= a,x= b(a

8. 10 利用定积分的几何意义求 —9 — x — 3 2dx. (1)| 2(x 2+ 2x + 1)dx ; 广n (2) 1 (sinx — cosx)dx ; (3)| J* 2 / 、 1 x — X 2 +_ 1 丿。 1 < X 丿 (4) 0-?cosx + e x )dx. ⑹p (2x + 1)dx ; ⑺ 丿0 1 2x + 一 dx x 广1 ⑺f; x (8) 1x 3dx ; ■ 0 (9) 1e x dx. 11 求 y = — x 2与 y = x — 2围成图形的面积S. 15 A.— 4 17 B.— 4 1 C.—|n 2 2 D . 2ln2 已知"2 f(x)dx = 3,贝U 2 [f(x) + 6]d 1 1 12 .由直线x =2,x =2,曲线y =严x 轴所围图形的面积为 13.已知 f 1— 1(x 3 + ax + 3a — b)dx= 2a + 6 且 f(t) = f (x 3 + ax + 3a — b)dx 为偶函数, 求下列定积分: dx ; 2 1 x 2dx

微积分(经管类)第五章答案

微积分(经管类)第五章答案 5.1 定积分的概念与性质 一、1、∑=→?n i i i x f 1 )(lim ξλ; 2、被积函数,积分区间,积分变量; 3、介于曲线)(x f y =,x 轴,直线b x a x ==,之间各部分面积的代数和; 4、? b a dx ; 5、 ?? +b c c a dx x f dx x f )()(; 6、b a a b M dx x f a b m b a <-≤≤-? ,)()()(; 7、 ? b a dx x f )( ?-=a b dx x f )(; 8、)(ξf 与a b -为邻边的矩形面积;二、略. 三、 ? -231 cos xdx . 四、略。 五、(1)+; (2)-; (3)+. 六、(1)<; (2)<. 七、略。 5.2. 微积分基本定理 一、1、0; 2、)()(a f x f -; 3、 )1ln(23 +x x ; 4、 6 5 ; 5、(1)ππ,; (2)0,0; 6、(1)0; (2)0。 7、;6 1 45 8、 6 π ; 9、1. 二、1、 1 sin cos -x x ;2、)sin cos()cos (sin 2 x x x π?-; 3、2-.

三、 1、852; 2、3 π; 3、14+π ; 4、4. 四、1、0; 2、10 1 . 五、略。 六、 3 35π , 0. 七、???? ???>≤≤-<=π πφx x x x x ,10,)cos 1(210,0)(. 5.3. 定积分的换元积分法与分部积分法 一、1、0; 2、34-π; 3、2π; 4、32 3 π; 5、0. 6、e 21- ; 7、)1(412+e ; 8、2 3 ln 21)9341(+-π. 二、1、 41; 2、3 322-; 3、1-2ln 2; 4、34; 5、22; 6、 8 π;7、417;8、2ln 21 ; 9、1-e . 10、211cos 1sin +-e e ; 11、)11(2e -; 12、21 2ln -; 13、 2ln 3 3 -π; 14、22+π;15、3ln 24-;16、2+)2ln 3(ln 21-。 三、 )1ln(1 -+e . 六、2. 八、8. 5.5 反常积分 一、1、1,1≤>p p ;2、1,1≥k k ; 4、发散, 1; 5、过点x 平行于y 轴的直 线左边,曲线)(x f y =和x 轴所围图形的面积 . 二、1、 1 2 -p p ; 2、π; 3、!n ; 4、发散;

高等数学 第四章不定积分课后习题详解

第4章不定积分 内容概要 课后习题全解 习题41 1、求下列不定积分: 知识点:直接积分法得练习——求不定积分得基本方法。 思路分析:利用不定积分得运算性质与基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 ,由积分表中得公式(2)可解。 解: ★(2)

思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3) 思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解: ★(4) 思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解: ★★(5) 思路:观察到后,根据不定积分得线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6) 思路:注意到,根据不定积分得线性性质,将被积函数分项,分别积分。 解: 注:容易瞧出(5)(6)两题得解题思路就是一致得。一般地,如果被积函数为一个有理得假分式,通常先将其分解 为一个整式加上或减去一个真分式得形式,再分项积分。 ★(7) 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134(- +-)2 ★(8) 思路:分项积分。 解: 2231( 323arctan 2arcsin .11dx dx x x C x x -=-=-+++? ? ★★(9) 思路:?瞧到,直接积分。

第五章习题与答案高等数学

第五章 定积分 一、填空题 1. [)_____)2(1)(0)(30 2 =+=∞+?f x dt t f x f x ,则上连续,且, 在设 [) 02. ()0()(1cos ) , ()_____2 x f x f t dt x x f π +∞=+=?在,上连续,且则 3. 4 1 =dx ?   -4. 31d =x x +?0 1 1 5. =-? 6. 1?= 7. []_____)()(=-? -a a dx x f a a x f 上连续的奇函数,则,为设 8. []______)()(=-? -a a dx x f a a x f 上连续的偶函数,则,为设 9. ? =-210 2 _______1x xdx 10. ? =+-1 0 ______11dx x x

11. ________a -=? 12. _______cos 0 2=? π xdx 13. ________sin 1 2 2=-? dx x π π 14. []_________) (1) (31)(3 1 2=+''?dx x f x f x f 上连续,则, 在设 15. __________11 2 =-? x dx 16. _________2cos 40 5=?dx x π 17. ? =20 4_________sin π xdx 18. ___________321 =?? dx x x

二、选择题 []{}[]1 11110 1 1.1()lim ()()lim ()()lim ()() ()lim ()(max 12)n n n n i i n i i i i i n i n i i i i i i i b a i b a i A f b a B f b a n n n n C f x x x D f x x i n x x λξξξλξ→∞→∞==-→∞ =-→=---?? ??--?????? ?? ?∈?=?=∈∑∑∑∑L 定积分所表示的和式极限是( ) . .. ,. ,,,,  [][]2.()()() ()() ()f x a b f x a b A B C D 函数在闭区间,上连续是在,上可积的()  .必要条件 .充分条件  .充分必要条件.既非充分也非必要条件 [][]3.()()()()d ()()d ()()()()()d ()2 b b a a b a a b y f x x a x b a b x S A f x x B f x x f b f a b a C f x x D ===<=+-???由,上连续曲线,直线,和轴围成图形面积( )  . . . .  2 1110 4.()()d 0 ()3()3()3()3x x x f x f x x e x A e B e C e D e ---≥?==?=+=+-? 设连续,,且,则 . ..

相关文档
相关文档 最新文档