文档库 最新最全的文档下载
当前位置:文档库 › 水温自动控制系统设计说明

水温自动控制系统设计说明

水温自动控制系统设计说明
水温自动控制系统设计说明

水温自动控制系统设计

摘要

水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。

温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。

为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。

关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control

System

ABSTRACT

The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system.

In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value.

Keywords:AT89S52; temperature control; PT1000; PID

目录

1 引言 (1)

1.1 课题背景 (1)

1.2 国外研究现状 (1)

1.3 研究方法 (1)

2 系统方案 (2)

2.1 水温控制系统设计任务和要求 (2)

2.2 水温控制系统 (2)

2.2.1 方案选择 (2)

2.2.2 温度控制系统算法分析 (4)

3 系统硬件设计 (9)

3.1 总体设计框图及说明 (9)

3.2 外部电路设计 (9)

3.2.1 温度采集电路 (9)

3.2.2 温度控制电路 (11)

3.3 单片机系统电路设计 (11)

3.3.1 A/D转换电路 (11)

3.3.2 串口通讯部分电路 (14)

3.3.3 数码显示电路 (16)

4 系统软件设计 (17)

4.1 程序框架结构 (17)

4.2 程序流程图及部分程序 (17)

4.2.1 主程序模块 (17)

4.2.2 系统初始化 (19)

4.2.3 按键程序 (19)

4.2.4 A/D采样数据处理 (21)

4.2.5 PID计算 (24)

4.2.6 继电器控制 (25)

5 系统安装调试与测试 (27)

5.1 串口调试 (27)

5.2 继电器测试 (27)

5.3 温度采集与测试 (27)

6 结论 (28)

参考文献 (29)

致 (30)

1 引言

1.1 课题背景

温度控制是无论是从工业生产过程中,还是在日常生活中都起着至关重要的作用,过低的温度或者过高的温度都会使水资源失去应用的作用,从而造成水资源的巨大浪费。特别是在当前全球水资源极度匮乏的情况下,我们就更应该掌握好对水温的控制,在环境恶劣或温度较高等场合下,为了保证生产过程正常安全地进行,提高产品的质量和数量,及减轻工人的劳动强度、节约能源,要求对加热炉炉温进行测示、显示、控制,使之达到工艺标准,以单片机为核心设计的水温控制系统,可以同时采集多个数据,并将数据通过通讯口送至上位机进行显示和控制。

1.2 国外研究现状

目前,国外温度控制系统及仪表正朝着高精度智能化、小型化等方面快速发展。温度控制系统在国各行各业的应用虽然已经十分广泛,但从国生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。目前,我国在这方面总体技术水平处于20世纪80年代中后期水平。成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。现在,我国在温度等控制仪表业与国外还有着一定的差距。

随着嵌入式系统开发技术的快速发展及其在各个领域的广泛应用,人们对电子产品的小型化和智能化要求越来越高,作为高新技术之一的单片机以其体积小、价格低、可靠性高、适用围大以及本身的指令系统等诸多优势,在各个领域、各个行业都得到了广泛应用。

1.3 研究方法

本文主要介绍单片机温度控制系统的设计过程,其中涉及系统结构设计、元器件的选取和控制算法的选择、程序的调试和系统参数的整定。以AT89S52为CPU,温度信号由Pt1000和电压放大电路提供。电压放大电路用超低温漂移高精度运算放大器OP07将温度-电压信号进行放大,用单片机控制SSR固态继电器的通断时间以控制水温,系统控制对象为1升净水,容器为搪瓷器皿。水温可以在环境温度降低时实现自动控制,以保持设定的温度基本不变,具有较好的快速性与较小的超调。

2 系统方案

2.1 水温控制系统设计任务和要求

该系统设计任务:

设计一个水温自动控制系统,控制对象为1升净水,容器为搪瓷器皿。水温可以在一定围由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。

系统设计具体要求为:

温度设定围为40~90℃;

环境温度降低时温度控制的静态误差≤1℃;

采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量;

用十进制数码管显示水的实际温度。

2.2 水温控制系统

水温控制系统是一个过程控制系统,组成框图如图2-1所示,由控制器、执行器、被控对象及反馈作用的测量变送组成。

图2-1 控制系统框图

除了以上的组成元件以外,还需要选择合适的算法以实现所要求的控制精度,以下我会对关键的元件以及电路的确定进行详细的分析。因为方案选取的好坏将直接影响着整个系统实现效果的优劣。

2.2.1 方案选择

方案一:采用8031作为控制器,使用最为普遍的器件ADC0804作模数转换,控制上使用对电阻丝加电使其升温和开动风扇使其降温。此方案简易可行,器件的价格便宜,但8031部没有程序存储器,需要扩展,增加了电路的复杂性。

方案二:此方案采用89S52单片机实现,此单片机软件编程自由度大,可用编程实现各种控制算法和逻辑控制。控制电路部分采用SSR固态继电器控制电炉丝的通断此方

案电路简单并且可以满足题目中的各项要求的精度。

将两个方案相比较后可得出一个结论,采用Atmel单片机来实现本题目,无论是从结构上,还是从工作量上都有很大的优势,所以我最后选择使用AT89S52作为该控制系统的核心。根据水的温度变化慢,并且控制精度不易掌握的特点,我们设计了以AT89S52单片机为检测控制中心的水箱温度自动控制系统,总体框图如图2-2所示。

图2-2 控制器设计总体框图

温度控制采用改进的PID数字控制算法,数码显示采用3位LED静态显示。该设计结构简单,控制算法新颖,控制精度高,有较强的通用性。

图2-3为整个水温控制系统的原理图,分别由测温电路,继电器控制电路,串口通讯电路,LED显示电路等部分组成。

图2-3 水温控制电路原理图

2.2.2 温度控制系统算法分析

系统算法控制采用工业上常用的位置型PID数字控制,并且结合特定的系统加以算法的改进,形成了变速积分PID—积分分离PID控制相结合的自动识别的控制算法。该方法不仅大大减小了超调量,且有效地克服了积分饱和的影响,使控制精度大为提高。长期以来国外科技工作者对温度控制器进行了广泛深入的研究,研究了大批温度控制器,如性能成熟应用广泛的PID调节器、智能控制PID调节器、自适应控制等。此处主要对一些控制器特性进行分析以便选择适合的控制方法应用于改造。

常用的控制算法有以下几种:

1.经典的比例积分微分控制算法;

2.根据动态系统的优化理论得到的自适应控制和最优控制方法;

3.根据模糊集合理论得到模糊控制算法。

自适应控制、最优控制方法以及模糊控制算法是建立在精确的数学模型基础上的,在实时过程控制中,由于控制对象的精确数学模型难于建立,系统参数经常发生变化,运用控制理论进行综合分析要花很大代价。同时由于所得到的数学模型过于复杂难于实现。在实时控制系统中要求信号的控制信号的给出要及时,所以在目前的过程控制系统中较少采用自适应控制、最优控制方法和模糊控制算法。目前在过程控制中应用较多的

还是PI 控制算法、PD 控制算法和PID 控制算法。

水温控制系统的控制对象具有热储存能力大,惯性较大的特点,水在容器的流动或热量传递都存在一定的阻力,因此可以归于具有纯滞后的一阶惯性环节。

对于大惯性系统的过渡过程控制,一般可采用以下几种控制方案: 1.开关量控制

这种方法通过比较给定值与被控参数的偏差来控制输出的状态,开通或关断,因此控制过程十分简单,也容易实现;但由于输出控制量只有两种状态,使被控参数在两个方向上变化的速率均为最大,因此容易引起反馈回路振荡,控制精度不高;这种控制方案一般在大惯性系统对控制精度和动态特性要求不高的情况下采用。如图2-4所示。

图2-4 开关量控制

2.比例控制(P 控制)

比例控制的输出与偏差成比例关系,当负荷变化时,抗干扰能力强,过渡过程时间短,但过程终了存在余差;适用于控制通道滞后较小、负荷变化不大、允许被控量在一定围变化的系统。如图2-3所示。

3.比例积分控制(PI 控制)

控制器的输出与偏差的积分成比例,积分的作用使过渡过程结束时无余差,但降低了系统的稳定性;PI 控制适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统。如图2-4所示。

4.比例积分加微分控制(PID 控制)

微分的作用使控制器的输出与偏差变化的速度成比例,它对克服对象的容量滞后有显著的效果;在比例基础上加入微分作用,使稳定性提高,再加上积分作用,可以消除余差;PID 控制适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。如图2-5所示。

t

t

图2-5 PID 控制

结合本设计任务与要求,由于水温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求;但从以上对控制方法的分析来看,PID 控制方法最适合本例采用:一方面,由于可以采用单片机实现控制过程,无论哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案;另一方面,采用PID 的控制方式可以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。

由图2-6可知PID 调节器是一种线性调节器,这种调节器是将设定值w 与实际输出值y 进行比较构成偏差

y w e -= (2-1) 并将其比例、积分、微分通过线性组合构成控制量。其动态方程为:

dt t de K dt t e K t e K t u d

i p )

()()()(?++= (2-2)

其中

p

K ---为调节器的比例放大系数

i

K ---为积分时间常数

d

K ---为微分时间常数

PID 调节器的离散化表达式为;

)]1()([)()()(--+

+=k e k e T K k Te K k e K k u d

i p (2-3)

其增量表达形式为:

)1()()(--=?k u k u k u

t

t

)]

2()1(2)([/)()]1()([-+--++--=k e k e k e T K k Te K k e k e K d i p (2-4)

其中T 为采样周期。

图2-6 模拟PID 控制

温度PID 调节器有三个可设定参数,即比例放大系数p K 、积分时间常数i K 、微分时间常数d K 。

比例调节的作用是使调节过程趋于稳定,但会产生稳态误差;

积分作用可消除被调量的稳态误差,但可能会使系统振荡甚至使系统不稳定; 微分作用能有效的减小动态偏差。 图2-7中,初始水温为26℃。

实现思想:Ui(k)为第k 次采样温度值,Ur 为设定值。 e(k) ≥ε 使用PD 算法;

e(k) <ε使用变速积分PID 算法。

图2-7 温度控制曲线图

该控制系统是把输出量检测出来,经过物理量的转换,再反馈到输入端去与给定量进行比较(综合),并利用控制器形成的控制信号通过执行机构SSR对控制对象进行控制,抑制部或外部扰动对输出量的影响,减小输出量的误差,达到控制目的。自动控制框图如图2-8所示,在此控制系统中单片机就相当于常规控制系统中的运算器控制器,它对过程变量的实测值和设定位之间的误差信号进行运算然后给出控制信息。单片机的运算规则称为控制法则或控制算法。

图2-8 自动控制框图

3 系统硬件设计

3.1 总体设计框图及说明

本系统是一个简单的单回路控制系统。为了实现温度的自动测量和控制,根据系统总体方案,系统由单片机基本系统、前向通道、后向通道和人机对话通道等4个主要功能模块组成。

单片机是整个控制系统的核心,AT89S52可以提供系统控制所需的I/O口、中断、定时及存放中间结果的RAM电路;前向通道是信息采集的通道,主要由传感器、信号放大、A/D转换等电路组成;由于水温变化是一个相对缓慢的过程,因此前向通道中没有使用采样保持电路;信号的滤波可由软件实现,并可以简化硬件、降低硬件成本。

键盘设定:用于温度设定,共三个按键。

数据采样:将由传感器及相关电路采集到的温度转为电压信号,经A/D转换后,送入AT89S52相应接口中,换算成温度值,用于控制和显示。

数据显示:采用了共阴极数码管LED进行显示设置温度与测量温度。

串行口传输:将采样温度值,上传至PC机,可利用PC机的端口下载程序。

继电器/热电管:通过三极管控制继电器的开关来完成对热电炉的功率控制。

图3-1 系统框图

3.2 外部电路设计

3.2.1 温度采集电路

本系统运放采用高精度单片运算放大器OP07,此运放具有很低的输入失调电压和漂移。OP07的优良特性使它特别适合作前级放大器,放大微弱信号。使用OP07一般不用考虑调零和频率问题就可以满足要求。

主要特点:

低输入失调电压:75uV(最大) 低失调电压温漂:1.3uV/℃(最大) 低失调电压时漂:1.5uV/月(最大) 低噪声:0.6uV P-P(最大) 宽输入电压围:±14V 宽电源电压围:3V ~18V

温度采集采用的温度传感器铂电阻Pt1000,对于温度的精密测量而言,温度测量部分是整个系统设计的第一步。温度传感器的选择是这块电路的关键,它是直接影响整个系统的性能与效果的关键因素。这里采用的是精密级铂电阻温度传感器Pt1000,它的金属铂含量达99. 9999%,因为铂电阻的物理和化学性能在高温和氧化介质中都很稳定、价格又便宜,常作为工业测量元件,以铂电阻温度计作基准器线性好,温度系数分散性小,在0~100摄氏度时,最大非线性偏差小于0.5摄氏度,性能稳定,广泛应用于精密温度测量和标定。

铂热电阻与温度关系式:

)

1(20Bt At R R t ++= (3-1)

其中:

t R --温度为t 摄氏度时的电阻; 0R --温度为0摄氏度时的电阻;

A 、B--温度系数 A=3.94*102/℃;其中B=-)

(710*84.5-/℃;

T--任意温度。

图3-2 测温电路

3.2.2 温度控制电路

此部分时通过控制继电器的通断从而控制电加热管(俗称“热得快”),采用对加在电热管两端的电压进行通断的方式进行控制,以实现对水加热功率的调整,从而达到对水温控制的目的,即在闭环控制系统中对被控对象进行控制。

此部分的继电器采用的是SSR继电器,即固态继电器。其工作原理为:固态继电器是一种无触点电子开关,主要由输入(控制)电路,驱动电路和输出(负载)电路三部分组成。固态继电器的输入电路是为输入控制信号提供一个回路,使之成为固态继电器的触发信号源。固态继电器的输入电路多数为直流输入,个别的为交流输入。固态继电器的输出电路是在触发信号的控制下,实现对固态继电器的通断切换。输出电路主要由输出器件(芯片)和起瞬态抑制作用的吸收回路组成,固态继电器是一种全电子电路组合元件,它依靠半导体器件和电子元件的电、磁和光特性来完成隔离和继电切换功能。固态继电器与传统的电磁继电器相比,是一种没有机械、不含运动零部件的继电器,但具有与电磁继电器本质上相同的功能。

图3-3 加热棒控制电路

3.3 单片机系统电路设计

3.3.1 A/D转换电路

ADC0804引脚及使用说明:

ADC0804是CMOS集成工艺制成的逐次比较型A/D转换器芯片。ADC0804分辨率为8位,转换时间为100μs,输出电压围为0~5V,在增加某些外部电路后,输入模拟电压可为±5V。该芯片有输出数据锁存器,当与计算机连接时,转换电路的输出可以直接连接到CPU的数据总线上,而不再需要附加逻辑接口电路。

1234

5678910

11

121314151617

181920CS RD WR CLKIN

INTR AGND DGND V CLKR D D D D D D D D IN+IN-REF/2V V V CC 0

1234567ADC0804

100μs

输出

高阻

CS

RD WR

INTR 读数

数据

图3-4 ADC0804引脚图 图3-5 ADC0804控制信号的时序图

ADC0804引脚名称及意义如下:

VIN+、VIN -:ADC0804的两模拟信号输入端,用以接收单极性、双极性和差模输入信号。

D7~D0:A/D 转换器数据输出端,该输出端具有三态特性,能与微机总线相连接。 AGND :模拟信号地。 DGND :数字信号地。

CLKIN :外电路提供时钟脉冲输入端。

CLKR :部时钟发生器外接电阻端,与CLKIN 端配合,可由芯片自身产生时钟脉冲,其频率为1/1.1RC 。

CS :片选信号输入端,低电平有效,一旦CS 有效,就表明A/D 转换器被选中,可启动工作。

WR :写信号输入,接受微机系统或其他数字系统控制芯片的启动输入端,低电平有效,当CS 、WR 同时为低电平时,启动转换。

RD :读信号输入,低电平有效,当CS 、RD 同为低电平时,可读取转换输出数据。 INTR :转换结束输出信号,低电平有效。输出低电平表示本次转换已经完成。该信号经常作为向微机系统发出的中断请求信号。

在使用时我们应注意以下几点: (1)转换时序

ADC0804控制信号的时序图如图3-5所示,由图所示,各控制信号时序关系为:当CS 与WR 同为低电平时,A/D 转换器启动,且在WR 上升沿后100μS 模数转换完成,转换结果存入数据锁存器,同时INTR 自动变为低电平,表示本次转换结束。如果CS 、RD 同时为低电平,则数据锁存器三态门打开,数据信号送出,而RD 高电平到来后三态门处于高阻状态。

(2)参考电压的调节

在使用A/D转换器时,为保证转换精度,要求输入电压满量程使用。如输入电压动态围较小,则可调节参考电压VREF,以确保小信号输入时ADC0804芯片8位的转换精度。

(3)接地

模数、数模转换电路中要特别注意到地线的正确连接,否则将会产生干扰,以致影响转换结果准确性。A/D、D/A及取样-保持芯片上都提供了独立的模拟地(AGND)和数字地(DGND)。在线路设计中,一定要将所有器件的模拟地和数字地分别进行相连,然后将模拟地与数字地仅在一点上相连接。地线的正确连接方法如图3-6所示。

图3-6 正确的地线连接

系统由微处理器、存储器和A/D转换器组成,它们之间通过数据总线(DBUS)和控制总线(CBUS)连接,系统信号采用总线传送方式。

采集数据时,首先微处理器执行一条传送指令,在指令执行过程中,微处理器在控制总线的同时产生CS1、WR1低电平信号,A/D转换器启动开始工作,ADC0804经100μS 后将输入模拟信号转换为数字信号并存于输出锁存器,在INTR端产生低电平表示转换结束,并通知微处理器可来取数。当微处理器通过总线查询到INTR为低电平时,立即执行输入指令,以产生CS、RD2低电平信号到ADC0804相应引脚,将数据取出并存入存储器中。整个数据采集过程中,微处理器有序地将执行若干指令完成。AD0804的连接图如图3-7所示

图3-7 AD0804连接图

3.3.2 串口通讯部分电路

系统设计要求控制系统能同PC联机通信,以利用PC图形处理能力打印显示温度曲线以及下载程序。由于AT89S52串行口电平和PC不一致,AT89S52的I/O为TTL电平,PC串行口为RS232电平利用单片机片串行口外加逻辑电平转换电路组成RS-232C标准接口以实现系统相互通道的扩展,逻辑电平转换电路采用了一片专用芯片MAX232,外加少量电容即可完成TTL到RS-232或RS-232到TTL的逻辑电平转换。

表3-1 RS-232C引脚型号定义

图3-8 串口通讯电路

UART模块提供了一个全双工标准通信口,用于完成AT89S52与外设之间的串行通信。根据RS-232的标准,AT89S52单片机是按照字节传输数据的。

图3-9 单片机连接电路

单片机上的P25口接S1,P26口接S2,P27口接S3。

S1:设置温度的十位数:0—9

S2:设置温度的个位数:0—9

S3:工作模式选择键,两种工作模式为:正常工作状态、温度重新设置。

系统上电后,数码管全部显示为零,根据按S1次数,十位的数码管顺序增加。同样

S2,也如此。按S3后,系统开始测温,并与采集的温度进行比较,通过软件来控制电炉的开关。

3.3.3 数码显示电路

数码管作为单片机系统中最常用的输出器件,在显示时可以由数字和少量字母组合完成输出功能的系统中应用十分方便。图3-10为一个四位共阴数码管,DIG0、DIG1、DIG2、DIG3分别与单片机的P21、P22、P23、P24相连,每一个都拥有一个共阴级的位选端。从而可以通过单片机选通所需显示的数码管。SegA--SegDp口传输要显示的数据,利用其串/并转换功能,送入数码管显示。在此外接了一个10K的电阻来保护LED。

图3-10 数码管显示电路

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

热水供应自动控制系统的实现

热水供应自动控制系统的实现 【摘要】本文阐述了如何解决企业集中热水供应中的问题,热水供应自动控制系统的功能、组成结构、重点说明了系统使用单片机控制系统的控制设置及软件编写流程,为企业提供必要的技术服务。 【关键词】热水供应系统;温度;控制 企业集中热水供应是降低成本、减少污染的有效方法,长期以来为人们提供了良好的服务。但在整体热水供应系统中仍然是人工控制各环节,不仅增加工人的劳动强度,同时对控制各环节的准确度也不高。利用单片机实现热水供应的自动控制,可以实现降低工人劳动强度、提高人身安全系数、提高控制准确度、提高劳动效率,大幅度提高经济效益等目的。 一、系统组成与功能概述 热水供应系统的结构如图1所示。该系统有由三部分组成:控制部分、加热部分和用水计量部分。控制部分由相关控制开关、液晶显示器、数码管显示器和相关指示灯等部分组成,其主要功能有:控制炉内水加热的开始、暂停或继续,预设热水温度、指示热水温度和炉内水量等信息。加热部分由燃炉、加热炉、水量检测、温度检测、燃料以及运送等部分组成,其主要功能有:在控制部分指挥下把燃料运到燃炉内,同时将水温、水量等信息传递给控制部分。用水计量部分的主要器件是各出水管的水表,计量每个出水口的用水量,并通过转换查询到每个用户对应的水费。 二、自动控制系统说明 系统使用单片机控制系统进行控制,具体要求如下: 1.数码管显示 使用8位数码管显示器,各位的显示内容与现实位置对应关系见表1。 2.液晶显示 使用128*64液晶显示模块,显示各水表的计量信息。 3.按键功能 设置7个按键从左到右分别设置为“开始”键、“停止”键、“暂停/继续”键、“确认”键、“水量/水费”键、温度设置“+”键和温度设置“-”键。 4.功能指示灯

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

基于三菱PLC的太阳能热水器自动控制系统的设计说明

基于PLC的太阳能热水器自动控制系统的设计 摘要 本课题研究了可编程控制器(PLC)在太阳能热水器自动控制系统中的应用。重点研究了系统的硬件构成及系统软件的设计过程。指出了 PLC 设计的关键主要是能满足基本控制功能, 并考虑维护的方便性、系统可扩展性等。在本文中经研究确定出了系统的各个工序,绘制了系统的工艺流程图;进行了系统的I/O分配和PLC的选型;根据系统设计要求设计绘制了系统的控制梯形图;绘制出了控制系统电气原理图和接线图等。 通过用PLC对太阳能热水器自动控制系统的改造,大大减少了系统对其它元器件的使用,使系统接线简单、检修维护方便快捷、可靠性提高,增进了系统的先进性。 关键词: PLC;太阳能;自动控制系统;热水器

Design of Solar Water Heater Automatic Control System Based on PLC Abstract Application of PLC in solar water heater automatic control system is researched in this paper. The content of this paper on the process of system hardware constitution and the system software design is emphasized . And the key of PLC design that is to satisfy the basic control function is pointed out , meanwhile maintenance convenience and system extension are also considerated. The content of this paper is divided into four parts. In the first part, the procedure of the system is established, and then the treatment flow chart is drawed out; In the second part, The address of I/O is resigned .and the suitable PLC type is choosed. The third part, the control ladder diagram is designed according to the requirement; In the end, the electrical principle diagram and the interconnection diagram are drawn. Through the design of the solar water heater automatic control system, the components that is used in the solar water heater automatic control system are decreased. The performance of the system is lifted, and it has the feature such as simply interconnection, rapid and easy fault detecting and maintenance, and high reliability. In a word, the system becomes more advanced because of my design. Keywords: PLC; solar; automatic control system; water heater

计算机温度控制系统课程设计

目录摘要2 1.设计目的3 2.设计要求和设计指标3 3. 总体方案设计 3 4.硬件选择以及相关电路设计3 温度传感器的选择3 模数转换器4 内部结构4 信号引脚5 工作时序与使用说明6 控制器89C51 7 数码管显示电路8 LED数码管的组成8 数码管显示方式9 控制算法10 6. 各子程序流程图11 PID控制程序流程图11 A/D转换程序流程图11 显示程序流程图11 温度控制总程序流程图12 心得体会12

参考文献13 附录1:温度控制系统总电路图14 附录2:温度控制系统程序清单16 摘要 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本设计介绍了以AD590集成温度传感器为采集器、AT89C51为控制器、ADC0809为A/D转换器对温度进行智能控制的温度控制系统。其主要过程如下:利用传感器对将非电量信号转化成电信号,转换后的电信号再入A/D转换成数字量,传递给单片机进行数据处理,并向外围设备发出控制信号。 论文首先介绍了单片机控制系统的整体方案设计及原理,然后具体介绍了控制系统的温度传感器部分、A/D转换部分、控制器89C51部分以及数码管显示和键盘控制部分,接着相信介绍了温度控制系统各个单元电路的设计,最后阐述了温度控制系统软件设计的主程序和各个子程序。 关键字:单片机89C51 温度传感器A/D转换器温度控制

计算机温度测控系统 1.设计目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过实践过程掌握温度的几种控制方法,了解利用计算机进行自动控制的系统结构。 2.设计要求和设计指标 1、每组4~5同学,每个小组根据设计室提供的设备及设计要求,设计出实际电路组成一个完整的计算机温度测控系统。 2、根据设备情况以及被控对象,选择1~2种合适的控制算法, 框图和源程序,并进行实际操作和调试通过。 编制程序温度指标:60~80℃之间任选;偏差:1℃。 总体方案设计 本系统主要由数据采集、信号放大、模数转换等模块构成。设计思想是通过温度传感器将温度信号转变为电流(电压)信号,但我们要知道经温度变化引起电流(电压)信号的改变是非常小的,此时如果被模数转换器采集的话效果是非常不明显的,因此我们将其通过一个信号放大模块进行放大。再通过模数转换器后送入单片机AT89C51,而单片机通过PID算法控制烘箱的电炉加热,并且使数码管显示实时温度,从而实现温度的高精度控制。 4.硬件选择以及相关电路设计 温度传感器的选择 传感器的选取目前市场上温度传感器繁多就此我们提出了以下三种选取方案:方案一:选用铂电阻温度传感器,此类温度传感器在各方面特性都比较优秀,但其成本较高。 方案二:采用热敏电阻,选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:选用美国Analog Devices 公司生产的二端集成电流传感器AD590,此器件具有体积小、质量轻、线形度好、性能稳定等优点。其测量范围在-50℃--+150℃,满刻度范围误差为±℃,当电源电压在5—10V之间,稳定度为1﹪时,误差只有±℃,其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此此次设计选用方案三。

水温自动控制系统设计

水温自动控制系统设计 摘要 水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System ABSTRACT The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

水温自动控制系统毕业设计论文(DOC)

毕业设计论文 水温自动控制系统 钟野 院系:电子信息工程学系 专业:电气自动化技术 班级: 学号: 指导教师: 职称(或学位): 2011年5 月

目录 1 引言 (2) 2 方案设计 (2) 2.1 总体系统的设计思路 (2) 2.2 部分外围系统的设计思路 (3) 3 硬件电路设计 (3) 3.1 单片机最小系统的设计 (3) 3.2 温度检测电路的设计与论证 (4) 3.3 显示功能电路的设计与论证 (5) 3.4 温度报警提示功能电路的设计与论证 (5) 3.5 外围电路控制设计 (6) 3.6 扩展部分方案设计 (7) 4 软件设计 (7) 4.1 控制主程序设计 (7) 4.2 温度设置程序设计 (8) 4.3 上下限报警程序设计 (8) 5 结论 (9) 结束语 (9) 致谢 (10) 参考文献 (10) 附录............................................................................................................... 错误!未定义书签。

水温自动控制系统 钟野 (XXXX电子信息工程学系指导教师:CXJ) 摘要:本文设计主要是采用A T89C51单片机为控制核心、以温度传感器(DS18B20)为温度采集元件, 外加温度设置电路、温度采集电路、显示电路、报警电路和加热电路来实现对水温的显示同时自动检测及线性化处理,其误差小于±0.5℃。本文重点介绍硬件设计方案的论证和选择,以及各部分功能控制的软件的设计。本次设计的目标在于:由单片机来实现水温的自动检测及自动控制,实现设备的智能化。 关键词:单片机;温度传感器;自动控制 Abstract: This paper is designed AT89C51 microcontroller as control core and temperature sensor DS18B20) for (temperature gathering element, plus the temperature setting circuit, temperature gathering electriccircuit, display circuit, alarm circuit and heating circuit to achieve water temperature display while automatically detecting and linearization, its error is less than 0.5 + ℃. This paper mainly introduces the hardware design argumentation and choice, and some functional control software design. This design goal is: by single-chip microcomputer to realize the automatic detection and automatic temperature control, realize the intellectualized equipment. Keywords: Microcontroller; Temperature sensors; Automatic control

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

水温自动控制系统

《电子技术综合设计》 设计报告 设计题目:水温自动控制系统 组长姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 时间: 2016 ~ 2017 学年第(1)学期指导教师:陈烨成绩:评阅日期:

一、课题任务 设计并制作一个水温自动控制系统,对1.5L净水进行加。水温保持在一定范围内且由人工设定。 细节要求如下: 1.温度设定范围为40℃~90℃,最小分辨率为0.1℃,误差≤1℃。 2.可通过LCD显示屏显示温度目标值与实时温度。 3.可以通过键盘调整目标温度的数值。 二、方案比较 1.系统模块设计 为完成任务目标,可以将系统分为如下几个部分:5V直流电供电模块、测温模块、80C52单片机控制系统、键盘控制电路、温度显示模块、继电器控制模块、强电加热电路。通过各模块之间的相互配合,可以完成水温检测、液晶显示、目标值设置、水温控制等功能。 系统方框图如下:

2.5V直流电供电模块 方案一:直接用GP品牌的9v电池,然后接通过三端稳压芯片7805稳压成5伏直流电源提供给单片机系统使用,接两个5伏电源的滤波电容后输出。 方案二:通过变压器,将220v的市电转换成9v左右的交流电,变压器输出端的9V电压经桥式整流并电容滤波。要得到一个比较稳定的5v电压,在这里接一个三端稳压器的元件7805。 由于需要给继电器提供稳定的5V电压,而方案一中导致电池的过度损耗,无法稳定带动继电器持续工作,所以我们选用能够提供更加稳定5v电源的方案二。 3.测温模块 经查阅资料,IC式感温器在市场上应用比较广泛的有以下几种: AD590:电流输出型的测温组件,温度每升高1 摄氏度,电流增加1μA,温度测量范围在-55℃~150℃之间。其所采集到的数据需经A/D 转换,才能得到实际的温度值。 DS18B20:内含AD转换器,所以除了测量温度外,它还可以把温度值以数字的方式(9 B i t ) 送出,因此线路连接十分简单,它无需其他外加电路,直接输出数字量,可直接与单片机通信,读取测温数据。它能够达到0.5℃的固有分辨率,使用读取温度暂存寄存器的方法还能达到0.0625℃以上精度,温度测量范围在-55℃~125℃之间,应用方便。 SMARTEC感温组件:这是一只3个管脚感温IC,温度测量范围在 -45℃~13℃,误差可以保持在0.7℃以内。 max6225/6626:最大测温范围也是-55~+125℃,带有串行总线接口,测量温度在可测范围内的的误差在4℃以内,较大,故舍弃该方案。 本设计选用DS18B20感温IC,这是因其性能参数符合设计要求,接口简单,内部集成了A/D 转换,测温更简便,精度较高,反应速度快,且经过市场考察,该芯片易购买,使用方便。 下面是DS18B20感温IC的实物和接口图片

热水给水系统自动控制的设计

成绩 _______ 楼宇自动化系统与应用原理 课程设计报告 题目热水给水系统自动控制的设计 系别 专业名称 班级 学号 姓名 指导教师

热水给水系统自动控制的设计 1、热水给水系统运行参数与状态监控点版/位及常用传感器,电 气控制一、二次接线图和原理图设计。 2、热水给水系统连锁控制; 3、热水给水系统运行与调节控制; 4、热水给水系统连锁控制流程图; 5、热水给水系统PID调节原理框图; 6、使用西门子PLC STEP7完成热水给水系统连锁控制和PID调节编程及仿真。

摘要 本文针对居民住宅小区的供水要求,设计了一套由PLC、传感器、远传压力表、多台水泵机组等主要设备构成的全自动恒压供水系统,具有全自动变频恒压运行、自动工频运行等功能。通过内置PID模块的变频器,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。 给排水系统是任何建筑必不可少的重要组成部分。一般建筑物的给排水系统包括生活给水系统、生活排水系统和消防水系统。这里主要介绍生活热水给水自动控制的设计。 随着电气控制技术的发展, 现代楼宇小区大都属于高层建筑, 其供水系统都向智能化方向发展.高层建筑高度大,一般的城市管网中的水压不能满足其用水要求,除了最下面几层可由城市管网供水外, 其余上部各层均需提升水压供水. 由于过高的水压对使用, 材料设备, 维修管理均不利,因此必须进行合理的竖向分区供水. 为了节省能量,应充分利用室外管网中的水压,在最地区可直接采用城市网管供水,并将大用水户如洗衣房,餐厅,理发室,浴室等布置在低区,以便城市管网直接供水,充分利用室外管道的压力,可以节省电能. 根据建筑给水高度,要求,分区压力等情况,进行合理分区,然后布置供水系统.供水系统形式有多种,各有其优缺点,但基本上可划分为两大类,即重力供水系统和压力供水系统.重力供水系统的特点是以水泵将水提升到最高水箱中,以重力给水管网配水,对楼顶水池水位的监测当高/低水位超限时报警,根据水箱的高/低水位控制水泵的启动/停止,监测给水泵的工作状态喝故障,如果当使用水泵出现故障时,备用水泵投入工作.重力供水系统供水压力稳定,且有水箱储水,供水较为安全,但水箱重量大,增加建筑符合,占用楼层建筑面积,且有产生噪声振动之弊,应根据具体情况使用.考虑到重力供水系统的缺点,为此可考虑压力供水系统. 不在楼层中或屋顶上设置水箱, 仅在地下室或者空余之处设置水泵机组, 气压水箱等设备, 采用压力供水满足供水要求. 压力供水系统可用并联的气压水箱给水系统, 也可采用无水箱的几台水泵并联供水系统.并联气压水箱需要金属制造,投资比较大,且运行效率低,还需设置空气压缩机为水箱补气,因此耗费动力较多,近年来有的采用密封式弹性隔膜气压水箱,可以不用空气压缩机充气,既节省了电能又防止了空气污染水质,有利于环境卫生. 水泵直接供水系统, 一般不采用水箱, 而是采用多台可自动控制的水泵并联运行, 根据用水量的变化,开停不同的水泵来满足用水要求,也可节省电能,如用计算机控制更为理想.一般采用调速水泵供水,即根据水泵出水量与转速成正比的关系的特性,调整水泵的转速满足用水量的变化, 同时可节省动力. 水泵的调速一般是采用水泵电动机可调速的联轴器或者采用调速电动机, 不过近年来国外研究一种自动控制水泵叶片角度的水泵, 即随着用水量的变化控制叶片角度来改变调节水泵的出水量, 以满足用水量的需要, 这种供水系统设备简单,使用方便,是一种恨有前途的新型水泵供水系统.不过无水箱的水泵供水系统,最好是用于水量变化不太大的建筑, 因为水泵要长时间不停的工作, 即便在夜间用水量不大的情况下,也要消耗动力,且水泵机组投资较高. 以上几个比较有代表性的供水系统,如何选用,应在使用要求,用水量大小,建筑物结构以及材料设备供应等具体问题上全面考虑.在用水安全可靠的前提下,考虑技术先进,经济上最合理的供水系统.

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

自动温度控制系统的设计开题报告

附表1 铜陵学院学生毕业论文(设计)选题审批表院部:专业:

附表2 铜陵学院毕业论文(设计)任务书 同学:你好! 你所预选的毕业论文(设计)题目自动温度控制系统的设计经审定已通过,你可以进入研究(设计)阶段,请你按照以下进程要求完成毕业论文(设计)的研究设计任务。 一、在指导教师的指导下,进一步明确所选课题的目的和意义。 二、根据选题进行广泛调研,并检索主要参考文献。 三、拟定研究(设计)方案(包括内容、方法、预期目标、进度安排等)。 四、毕业论文(设计)的主要内容(或主要技术要求与数据):主要 是设计一个温度自动控制系统,用单片机控制,数字温度传感器采集数据, 并用LCD液晶显示器模块显示。它属于一个恒温系统。通过单片机处理,并 发出指令,使用继电器控制、隔离。 五、编写毕业论文(设计)提纲。 六、将包含上述内容的开题报告于 2015 年 1 月 6 日前送 交指导老师,并于 2015 年 1 月 15 日前完成开题。 七、请你于 2015 年 4 月 20 日前完成毕业论文(设计)的初 稿。 八、请你在 2015 年 4 月 22 日至 5 月 31 日之间反复修改 初稿(要求不少于三次)。 九、请你于 2015 年 6 月 20 日前把符合铜陵学院毕业论文(设 计)撰写格式要求的纸质定稿和相关的附件等材料,按要求装订一式三份, 连同对应的电子文档送交指导老师。 十、你的毕业论文(设计)如果通过了答辩资格审查,请于 2015 年 6月 20 日前准备参加本学院统一组织的毕业论文(设计)答辩(具体答辩

时间另行通知)。 十一、如果你的联系方式发生变动,应及时通知你的指导老师。 指导教师电话: E-mail: 学生电话: E-mail: 指导教师签名:学生签名: 下达任务日期: 2014 年 12 月 23 日接受任务日期: 2014 年 12 月24 日注:本任务书一式两份,一份交给学生,一份指导教师留存。 附表3 铜陵学院毕业论文(设计)开题报告

相关文档