文档库 最新最全的文档下载
当前位置:文档库 › 太阳光模拟光源

太阳光模拟光源

太阳光模拟光源
太阳光模拟光源

PL-XQ500W 氙灯光源

产品概述产品概述::

PL-XQ500W 系列氙灯光源内部安装500W 高压短弧球形氙灯,在高压激发下形成弧光放电。高压短弧球形氙灯是发光点很小的光源,在点燃时辐射出的光波从紫外到近红外的连续光谱强而稳定。可见区光色温极近似于日光,是模拟AM1.5标准日光的理想光源,不仅应用于太阳能电池研究、还可用于光电响应型器件测试、表面光电压谱、生物光照、光催化、光学检测、各类模拟日光可见光加速实验、表面缺陷分析等领域。该系列光源可以兼容多种规格滤光片。

仪器特点仪器特点::

◆采用大口径优质紫外石英透镜,提高光收集效率。◆采用背面光反射镜结构,进一步提高光收集效率。

◆内置触发器,避免光源室与电源之间传递高压造成安全隐患。◆色温高达6000K ,适合模拟太阳光AM1.5标准。◆数字电流表显示电流,输出光强可调。◆有滤光片安装位,可串联多级滤光片。

◆可选配防紫外护目镜及滤光片等配件。技术指标技术指标::

型号PL-XQ500W

输入功率220W-500W (可调)输出光斑直径60mm (也可定制大光斑)电源稳定性≤1%

光柱输出角度水平照射及垂直向下/上照射照射高度

可调节

平均输出功率(Watts)500w-1800w/㎡(可调)发光总输出功率15w 电流调节范围14-25A 电流显示精度0.1A 发光光谱范围(nm)300-2500nm 色温6000K

电控箱尺寸

370mmx300mmx170mm

灯头部分连接示意图

灯头箱尺寸400mmx120mmx160mm 底座尺寸400mmx350mmx650mm 灯泡寿命>1000H 冷却方式风冷

滤光片接口

可兼容多规格滤光片

太阳能跟踪器

现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比较器的上偏置电阻,另一只为下偏置电阻;一只检测太阳光照,另一只则检测环境光照,送至比较器输人端的比较电平始终为两者光照之差。所以,本控制器能使太阳能接收装置四季全天候跟踪太阳,而且调试十分简单,成本也比较低。 电路原理

电路原理图如图1所示(点击下载原理图),双运放LM358与R1、R2构成两个电压比较器,参考电压为VDD(+12V)的1/2。光敏电阻RT1、RT2与电位器RP1和光敏电阻RT3、RT4与电位器RP2分别构成光敏传感电路,该电路的特殊之处在于能根据环境光线的强弱进行自动补偿。如图2所示,将RT1和RT3安装在垂直遮阳板的一侧,RT4和RT2安装在另一侧。当RT1、RT2、RT3和RT4同时受环境自然光线作用时,RP1和RP2的中心点电压不变。如果只有RT1、RT3受太阳光照射,RT1的内阻减小,LM358的③脚电位升高,①脚输出高电平,三极管VT1饱和导通,继电器K1导通,其转换触点3与触点1闭合。同时RT3内阻减小,LM358的⑤脚电位下降,K2不动作,其转换触点3与静触点2闭合,电机M正转;同理,如果只有RT2、RT4受太阳光照射,继电器K2导通,K1断开,电机M反转。当转到垂直遮阳板两侧的光照度相同时,继由器K1、

太阳能模拟器操作规程

1. 目的 规范OPTOSOLAR太阳模拟器的操作,确保太阳模拟器处于良好的运行状态。 2. 适用范围 适用于对OPTOSOLAR太阳模拟器的操作。 3. 内容 3.1 操作过程 3.1.1 按照顺序依次接通电源,打开电脑、测量单元、补偿电源、脉冲电源的电源开关。在启动这个系统前请确保没有光伏组件连接在太阳模拟器上。 3.1.2 在桌面上打开名为“start module tester”的测试软件,出现对话框(见图一),按“OK”键进入光伏组件测试程序。 图一 3.1.3 进入测试程序后会出现以下的界面: 图二

a)单击菜单“Production control”,出现一系列子菜单。 b)首先单击其子菜单“Load recipe”选择太阳模拟器的校准设置,每个用来校准模拟器的标准组件对应着与各自序列号相同的设置,校准太阳模拟器的时候请注意标准组件和校准设置的匹配。 C)其次单击子菜单“Optimise Ranges”,测试软件将自动优化测试范围。 d)再次单击子菜单“Intensity calibration”校准光强。单击“Intensity calibration”后系统会给出提示“Please connect reference module ,then press ”。这个时候请将标准组件连接到模拟器上,连接好后按“OK”按钮。光强校准完成后,如果光强曲线的重叠性不好,可以再校准一次,直到满意为止。 e) 最后单击子菜单“Measure”进行测试,如果测试出功率在标准组件标定功率的(1±0.5%)之间,则校准完成,并将测试的结果记录到《太阳模拟器点检表》中。 3.1.4 单击子菜单“Measure”后系统将给出提示: “Production control: Automatic mode: YES Manual mode: NO ” 如选择自动操作按“YES”,如选择手动操作按“NO”,一般情况下选择自动操作。做出选择后出现如下对话框: 图三 对话框上“(Save) or next module ”按钮用于保存测试数据并进入下一个组件的测试。点击此按钮,系统将给出提示“Please connect module and press OK!”,这个时候将需要测试的光伏组件连接到太阳模拟器上,连接好后按“OK”按钮。测试完成后系统会给出对话框,在对话框中输入光伏组件的序列号。按“OK”按钮保存。 “Change serial number ”按钮用于改变输入的光伏组件的序列号。 “End”按钮用于结束测试。 “Options”按钮用于进入下一级菜单(见图四),下一级菜单将给出更多的选项。

太阳能跟踪器工作原理

太阳能跟踪器的工作原理 一工作原理 “太阳光寻迹传感器”安装在太阳能装置上,根据太阳光的位置,驱动电机,带动机械转动机构,始终跟随太阳位置运动。当太阳偏转一定角度时(一般5--10分钟左右),控制器发出指令,转动机构旋转几秒钟,到达正对太阳位置时时停止,等待下一个太阳偏转角度,一直这样间歇性运动;当阴天或晚上没有太阳出现时停止动作;只要出现太阳它就自动寻找并跟踪到位,全自动运行,无需人工干预,东西向、南北向二维控制,也可单方向控制,使用电源直流12伏,技术指标 1. 跟踪起控角度:1°--10°(不同应用类型) 2. 水平(太阳方位角)运行角度:Ⅰ型0°--360°,Ⅱ型-20°-- +200° 3. 垂直(太阳高度角)调整角度:10°--120°(太阳光与地面夹角) 4. 传动方式:丝杠、涡轮蜗杆、齿轮 5. 承载重量:10Kg-- 500Kg 6. 系统重量:2 Kg--500Kg 7. 电机功率:0.4W--15W 8. 电源电压 DC6V--24V 9. 运行环境温度: -40--85℃ 10.运行时间≥10万小时 11.室外全天候条件运行现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比

太阳光自动追踪系统设计方案

太阳光自动追踪系统设计方案 链接:https://www.wendangku.net/doc/6a13728020.html,/tech/12975.html 太阳光自动追踪系统设计方案 为实现太阳能电池板对太阳光能的最高转换率,改变传统太阳能电池板固定安装对太阳光能利用低下的弊端。设计太阳光能自动追踪系统(以下简称:追踪系统)。该追踪系统可实现在有太阳光照的情况下,在任意时刻让太阳光直射太阳能电池板。特此对机械实现方式、电子自动化控制两个方面提出以下设计方案并完成一下技术指标。 机械部分: 为实现太阳光直射太阳能电池板, 太阳光追踪器就需要在有光照情况下使追踪器支撑的太阳能电池板与当前的太阳光始终保持呈垂直角度。 1. 其追踪太阳实时方位的方式为:两电机合成运动使太阳能电池板对准太阳方向; 2. 追踪器实现水平方向200 度旋转,垂直方向15 - 90 度旋转。该运动范围可以满足在地球任意经 度纬度的地区安装,可实现追踪太阳的目的; 3. 垂直方向的运动实现可以选用电动推杆,进行DC 电机线性驱动。 4. 水平方向使用蜗轮蜗杆电机驱动的方式。 5. 由于该太阳能发电系统长期工作在室外,需保证适应各类环境因素,如雷击,温度、湿度、抗 风能力和盐雾等。 电控部份: 1. 追踪器控制系统和太阳传感系统为该监控系统的核心,完成太阳当前位置的检测以及太阳能电池板朝向的控制,以保证太阳能电池板受到太阳垂直辐射。 2. 室内监控系统和无线通信系统方便中央控制和集中监测,集中处理在不同风速的影响下,追踪系统的安全性及正常工作的操作;监控系统完成各单体追踪器的异常状态的实时报警。 3. 当太阳光强很微弱甚至产生电能不能满足自身工作需要的时候,该控制系统将进入休眠,在休眠状态下由备用电池供电并且会被周期性唤醒并检测太阳光强;当光强达到一定程度的时候控制系统将综合所处经纬位置、当前时间和传感器的反馈信息,以GPS 定位追踪得到太阳的准确方位,并且换算为追踪器调整信息,通过电机驱动改变方向,使追踪器平台与太阳光保持垂直,而见不到太阳的阴雨天则会完全根据其经纬位置和当前时间计算太阳的当前位置。配备风速检测系统。 原文地址:https://www.wendangku.net/doc/6a13728020.html,/tech/12975.html 页面 1 / 1

8种常见的LED灯具检测技术

8种常见的LED灯具检测技术 导读:LED光源与传统光源在物理尺寸及光通量、光谱、光强的空间分布等方面均存在很大差异,LED检测不能照搬传统光源的检测标准及方法。小西下面给大家介绍介绍常见LED灯具的检测技术。 一、光学参数 1、发光强度 光强即光的强度,是指在某一特定角度内所放射光的量。因LED 的光线较集中,在近距离情况下不适用平方反比定律,CIE127标准规定对光强的测量提出了测量条件A(远场条件)、测量条件B(近场条件)两种测量平均法向光强的条件,2种条件的探测器面积均为1cm2。通常情况下,使用标准条件B测量发光强度。 2、光通量和光效 光通量是光源所发出的光量之总和,即发光量。检测方法主要包括以下2种: (1)积分法。在积分球内依次点燃标准灯和被测灯,记录它们在光电转换器的读数分别为E S和E D。标准灯光通量为已知Φs,则被测灯的光通量ΦD=E D×Φs/Es。积分法利用“点光源”原理,操作简单,但受标准灯与被测灯的色温偏差影响,测量误差较大。 (2)分光法。通过光谱能量P(λ)分布计算得出光通量。使用单色仪,在积分球内对标准灯的380nm~780nm光谱进行测量,然后在同条件下对被测灯的光谱进行测量,对比计算出被测灯的光通量。 光效为光源发出的光通量与其所消耗功率之比,通常采用恒流方

式测量LED的光效。 3、光谱特性 LED的光谱特性检测包括光谱功率分布、色坐标、色温、显色指数等内容。 光谱功率分布表示光源的光是许多不同波长的色辐射组成的,各个波长的辐射功率大小也不同,这种不同随波长顺序排列就称为光源的光谱功率分布。利用光谱光度计(单色仪)和标准灯对光源进行比对测量获得。

太阳光自动跟踪系统设计

摘要 随着以常规能源为基础的能源结构随着资源的不断耗用将越来越适应可持续发展的需要,包括太阳能在内的可再生资源将会越来越受到人们的重视。利用洁净的太阳光能,以半导体光生伏打效应为基础的光伏发电技术有这十分广阔的应用前景。 本设计尝试设计一种能够自动跟踪太阳光照射角度的双轴自动跟踪系统以提高太阳能电池的光-电转化率。该系统是以单片机为核心,利用太阳轨道公式进行太阳高度角及方位角计算,并利用计时芯片以及步进电机驱动双轴跟踪系统,使太阳能电池板始终垂直于太阳入射光线,从而提高太阳能的吸收效率。 目前本设计仅通过简单的计算公式得到的数据,对东西向进行每小时一次的角度改变,南北向进行每天一次的角度改变,再通过单片机的判断进行每晚的东西向回归控制以及每半年的南北向跟踪方向的改变控制。 由于时间及作者目前的知识限制,跟踪系统只是进行粗略的角度跟踪,有较大误差,今后如有机会再进行改进。 关键词:太阳能电池太阳照射角自动跟踪单片机步进电机

Abstract With the conventinuous consumption of resources , the conventional enenrgy-based energt strcucture has not already more and more adapt to the needs for sustainable development,sppeing-up the development of and utilization of solar energy , the photovoltaic technology based on the photovoltaic effect has a very bord application prospect. In the design , we try to design an automatic tracking system with Biaxial in order to enhance solar light - electricity conversion efficiency. The system is based on single-chip, orbit the sun elevation angle formula using the sun and calculating azimuth and take the time chip advantage of dual-axis stepper motor driven tracking system, make the solar panels perpendicular to the solar incidence line, to improve the absorption efficiency of solar energy. At present, the design of a simple formula was only for calculating the data, the east-west to the point of view will be changed once an hour, the north-outh perspective will be changed once a day, and then the MCU to return to control things through the night to determine, as well as every haif a year to track the direction of the north-south change in control. Because of the time and the current limitations of the knowledge of the author’s , the tracking system to track the point of view is rough , there are many errors , if the opportunity arised the design will be iomproved in the future. Keywords:solar cells Inrradiation angle of sun tracking automatically single-chip Stepping motor

太阳追踪器设计

太阳追踪器设计 Design of solar tracker 姚阿庆1 牛宗超2 Y AO Aqing 1 NIU Zong-chao 2. (南京化工职业技术学院) 摘要:本设计是基于STC89C52单片机的步进电机控制太阳追踪器。它通过两个光敏电阻采集到的将光照强度再转化成电压信号,其中用到LM358放大模块和TLC1543A/D 转换芯片,通过控制步进电机的正反转来控制电池板保持与阳光垂直。光电信号采集电路带有两个变阻器可以进行微调节,保持与太阳准确对准。 关键词:STC89C52、步进电机、光敏传感器、自动对准 [中图分类号] TP273.52 [文献标识码]B 1、引言 太阳能是一种清洁而且无污染的能源,有着巨大的开发前景。同时我国是一个太阳能资源比较丰富的国家,提高太阳能利用效率可极大缓解能源短缺的问题。利用太阳能的关键不仅需要改进太阳能电池板,如何能让电池板发挥最大的作用也是必要的,这样才能让电池板得到太阳最大光照强度,从而最大限度的采集太阳能。因此太阳自动追踪器设计就应运而生。 2、系统方案设计原理 本设计主要由单片机最小系统、光电采集电路、信号放大模块、A/D 转换模块、步进电机执行部分组成,采用8位的STC89C52单片机做控制器,程序采用C 语言编程。利用步进电机的正反转,实现对太阳的追踪提高太阳能的利用。采集电路主要由光敏电阻组成,由惠斯通电桥转化成电压信号,再经过放大和A/D 转换送至单片机进行分析输出控制信号,实现对太阳的追踪。系统框图如下图(1): 图(1)系统框图 3、硬件电路设计 1、光电转换模块 在可见光范围内,该器件的输出电流与外界光照强度有良好的线性关系,这样我们就可以方便地通过惠斯通电桥将其转换成电压信号,该电桥具有良好的灵敏度,可使该系统更加灵敏。 (仿真中的光敏电阻用变阻器代替) 图(2)信号采集电路 2、放大电路设计

LED光源的利与弊

LED 光源的利与弊 LED 被称为第四代照明光源或绿色光源,具有节能、环 保、寿命长、体积小等特点,广泛应用于各种指示、显示、装饰、背光源、普通照明和城市夜景等领域。根据使用功能的不同,可以将其划分为信息显示、信号灯、车用灯具、液晶屏背光源、通用照明五大类。LED 产品主要应用于背光源、彩屏、室内照明三大领域。LED 构成和相关知识LED (Light Emitting Diode ),发光二极管,主要由支架、银胶、晶片、金线、环氧树脂五种物料所组成。LED(Light-Emitting-Diode 中文意思为发光二极管)是一种能够将电能转化为光能的半导体,它改变了白炽灯钨丝发光与 节能灯三基色粉发光的原理,而采用电场发光。据分析,LED 的特点非常明显,寿命长、光效高、低辐射与低功耗。白光LED 的光谱几乎全部集中于可见光频段,其发光效率可超过150lm/W (2010 年)。将LED 与普通白炽灯、螺旋节能灯及T5 三基色荧光灯进行对比,结果显示:普通白炽灯的光效为12lm/W ,寿命小于2000小时,螺旋节能灯的光效为60lm/W ,寿命小于8000 小时,T5 荧光灯则为96lm/W ,寿命大约为10000 小时,而直径为5 毫米的白光LED 光效理论上可以超过150lm/W ,寿命可大于100000 小时。有人还预测,未来的LED 寿命上限将无穷大。随着近来LED 散热技术的改进, 室外照明的大功率LED 路灯、投光灯等LED 大功率照明灯具已

经实现工业化生产并开始被大量应用。对色温和显色性要求很高的室内照明的舞台灯、影棚灯等也已实现量产并投入应用。适用范围最大、用量也最大的通用照明的T8、T5、T4、灯管和代替白炽灯和节能灯的螺口球泡灯以形成系列化,使用寿命已高达5万小时。LED照明已进入高速发展期。LED (Light Emitting Diode ),发光二极管,是一种固态的半导体器件,它可以直接把电能转化为光能。LED 的心脏是一个半导体的晶片,晶片的一端附着在一个支架上,是负极,另一端连接电源的正极,整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P 型半导体,在它里面空穴占主导地位,另一端是N 型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个“P-N 结”。当电流通过导线作用于这个晶片的时候,电子就会被推向P 区,在P 区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED 发光的原理。而光的波长决定光的颜色,是由形成P-N结材料决定的。LED是由川-W族化合物,女口GaAs (砷化镓)、GaP(磷化镓)、GaAsP (磷砷化镓)等半导体制成的,其核心是PN 结。因此它具有一般P-N 结的I-N 特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N 区注入P 区,空穴由P 区注入N 区。进入对方区域的少数载 流子(少子)一部分与多数载流子(多子)复合而发光。优点 一、体积小LED 基本上是一块很小的晶片被封装在环氧树脂里

太阳自动追踪器设计

太阳自动追踪器设计 二章 太阳能电池板的自动寻光电路 2.1寻光元件 光敏电阻器又叫光感电阻,是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。 通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。一般光敏电阻器结构如图2.1所示。根据光敏电阻的光谱特性,可分为三种光敏电阻器: 紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、 硒化镉光敏电阻器等,用于探测紫外线。 红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。锑化铟等光敏电阻器,广泛用于导弹制导、天文探测、非接触测量、人体病变探测、红外光谱,红外通信等国防、科学研究和工农业生产中。可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。主要用于各种光电控制系统,如光电自动开关门户,航标灯、路灯和其他照明系统的自动亮灭,自动给水和自动停水装置,机械上的自动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机自动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等方面。 2.2 电压比较元件 图2.1 光敏电阻器结构

2.2.1 LM358 双运算放大器概述 LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 LM358 的封装形式有塑封8引线双列直插式和贴片式。 2.2.2 LM358特性 ?内部频率补偿 ?直流电压增益高(约 100dB) ?单位增益频带宽(约 1MHz) ?电源电压范围宽:单电源(3—30V); 双电源(±1.5 一±15V) ?低功耗电流,适合于电池供电 ?低输入偏流 ?低输入失调电压和失调电流 ?共模输入电压范围宽,包括接地 ?差模输入电压范围宽,等于电源电压范围 ?输出电压摆幅大(0 至Vcc-1.5V) 图2.2 LM358引脚图 2.3 继电器工作原理 2.3.1继电器(relay)的工作原理和特性

第三章 太阳电池测试

第三章太阳电池测试 3.1太阳模拟器 3.1.1概述 太阳电池是将太阳能转变成电能的半导体器件,从应用和研究的角度来考虑,其光电转换效率、输出伏安特性曲线及参数是必须测量的,而这种测量必须在规定的标准太阳光下进行才有参考意义。如果测试光源的特性和太阳光相差很远,则测得的数据不能代表它在太阳光下使用时的真实情况,甚至也无法换算到真实的情况,考虑到太阳光本身随时间、地点而变化,因此必须规定一种标准阳光条件,才能使测量结果既能彼此进行相对比较,又能根据标准阳光下的测试数据估算出实际应用时太阳电池的性能参数。 3.1.2太阳辐射的基本特性 3.1.2.1几个描述光的物理概念: (1)发光强度。按照1979年第16届国防计量会议(CGPN)确定,以坎德拉(cd)为发光强度的计量单位。坎德拉是一光源在给定的方向上的光强度,该光源发出频率为5401012Hz的光学辐射,且在此方向上的辐射强度为1/683WSr-1 (2)光通量。光通量的单位是流明(lm),它用来计量所发出的总光量,发光强度为1cd的点光源,向周围空间均匀发出4流明的光能量。 (3)光强度。指照射于一表面的光强度,它用勒克斯(lx)作为单位,当1lm光通量的光强射到1m2面积上时,该面积所受的光照度(简称照度)就是1lx。 (4)辐射度,通常称为光强,即入射到单位面积上的光功率,单位是W/m2或mw/cm2。 3.1.2.2辐照度及其均匀性

对空间应用,规定的标准辐照度为1367w/m2(另一种较早的标准规定为1353 w/m2),对地面应用,规定的标准辐照度为1000 w/m2。实际上地面阳光和很多复杂因素有关,这一数值仅在特定的时间及理想的气候和地理条件下才能获得。地面上比较常见的辐射照度是在600~900 w/m2范围内,除了辐照度数值范围以外,太阳辐射的特点之一是其均匀性,这种均匀性保证了同一太阳电池方阵上各点的辐照度相同。 3.1.2.3光谱分布 太阳电池对不同波长的光具有不同的响应,就是说辐照度相同而光谱成分不同的光照射到同一太阳电池上,其效果是不同的,太阳光是各种波长的复合光,它所含的光谱成分组成光谱分布曲线,而且其光谱分布也随地点、时间及其它条件的差异而不同,在大气层外情况很单纯,太阳光谱几乎相当于6000K的黑体辐射光谱,称为AMO光谱。在地面上,由于太阳光透过大气层后被吸收掉一部分,这种吸收和大气层的厚度及组成有关,因此是选择性吸收,结果导致非常复杂的光谱分布。而且随着太阳天顶角的变化,阳光透射的途径不同吸收情况也不同。所以地面阳光的光谱随时都在变化。因此从测试的角度来考虑,需要规定一个标准的地面太阳光谱分布。目前国内外的标准都规定,在晴朗的气候条件下,当太阳透过大气层到达地面所经过的路程为大气层厚度的1.5倍时,其光谱为标准地面太阳光谱,简称AM1.5标准太阳光谱。此时太阳的天顶角为48.19,原因是这种情况在地面上比较有代表性。 3.1.2.4总辐射和间接辐射 在大气层外,太阳光在真空中辐射,没有任何漫射现象,全部太阳辐射都直接从太阳照射过来。地面上的情况则不同,一部分太阳光直接从太阳照射下来,而另一部分则来自大气层或周围环境的散射,前者称为直接辐射,后者称为天空辐射。二部分合起来称为总辐射,在正常的大气条件下,直接辐射占总辐射的75%以上,否则就是大气条件不正常所致,例如由于云层反射或严重的大气污染所致。 3.1.2.5辐照稳定性 天气晴朗时,阳光辐照是非常稳定的,仅随高度角而缓慢的变化,当天空有浮云或严重的气流影响时才会产生不稳定现象,这种气候条件

太阳光自动跟踪设计_图文(精)

摘要 通过分析全国日照时数表得出:开环系统在太阳能光伏工程中效率不高而并不适合采用。为合理地利用太阳能,提高其跟踪效率而采用混合控制系统。文中着重分析了双轴跟踪的原理,提出了手动式方位角跟踪和自动式八方位高度角跟踪,引出了分级接收跟踪原理,设计了软件流程并和一套任意方位跟踪系统。运行结果表明,该系统能实现太阳光任意方位检测并迅速跟踪,有效降低系统运行功耗,减少机械结构损耗,跟踪精度可调,可望在太阳能光伏工程中获得应用。并促进太阳光的接收效率。 【关键词】太阳能跟踪系统;时空控制;光强控制;跟踪传感器 Abstract The open system is not suitable for adoption in solar photovoltaic engineering because of its inefficiency through analyzing the national sunshine duration https://www.wendangku.net/doc/6a13728020.html,ing the mixture control system can enhance its track efficiency and make full use of solar energy reasonably.The paper analyzed the two axle track principle emphatically,then proposed the manual azimuth tracking and the automatic altitude angle tracking of 8 positions,educed hierarchical receive track principle,designed the software flow and a suit of arbitrariness azimuth track system.Running results indicated that the system can accomplish solar arbitrariness azimuth detection and tracking rapidly,fall running power consume efficiently,reduce consume of mechanical structure,and have adjustable tracking precision.It may obtain applications in solar photovoltaic engineering. 【Key words】 solar Automatic tracking system;time and space control;light intensity control;solar tracking sensor 目录 第一章引言 1

LED背光源技术分类及优缺点对比

LED背光源技术分类及优缺点对比 目前LED背光源技术在液晶电视领域的应用主要有三种方式:直下式三原色RGB-LED 光源、直下式白色LED光源和侧入式白色LED光源。直下式RGB-LED光源技术在综合显示优势中绝对第一,但是价格成本也是最高的,不具有市场普及的可能。目前市场上销售的LED电视普遍是采用直下式白色LED光源和侧入式白色LED光源的产品。三星、SONY采用的是侧入式白光LED技术,而夏普、海信则采用了直下式白光LED技术。 直下式:强调画质表现优异 采用直下式LED技术的企业认为,直下式LED技术在画面调控上的优势要出色于侧入式LED技术,而且侧入式LED电视价格虚高。“两种方式相比,‘直下式’对画质的表现更加完美。”以55英寸的LED电视为例,直下式产品将3000多个LED灯均匀地分布在了面板的背后,使得背光可以均匀传达到整个屏幕上,画面细节更加细腻逼真。而侧入式则是在面板的边框处安装了400多个LED灯,使光源从侧面照出。这虽然可以最大限度地降低厚度,但是由于减少了近7倍的LED灯数量,因此容易使画面亮度以“X”的形态减少(即四周比中央位置要亮)。 此外,采用了直下式的LED电视还把LED背光划分为若干单元格,在显示黑色的时候,直接关掉其对应LED区域的光,就能够表现出非常完美的黑色。因此,采用直下式LED技术的企业认为直下式LED背光可以更准确地呈现图像,并展现出优秀的色彩和明暗对比效果。 侧入式:强调超薄节能领先 “相比直下式背光源技术而言,侧入式背光源技术对企业整体系统设计和集成能力要求更高。另外,从制造成本来看,采用侧入式白光LED技术要考虑整机(主机电源、电路、屏幕电源和散热等)轻薄化的需要,往往造成多方面的成本增加,因此其整机成本高于直下式白光LED产品。”三星电视技术人员对于价格虚高作出这样的解释。 更加纤薄的体积成为侧入式LED电视最大的亮点。据记者了解,目前市面上侧入式LED 电视最薄的产品厚度仅为2.99cm,而直下式LED最薄的产品厚度为5.5cm。 “轻薄”到底重要不重要?有家电行业专家表示,消费者更在乎电子产品的“轻薄”特性,因为这是显而易见的产品品质提升,是一个品牌和企业研发能力和制造技术的最终直观体现,产品外观的每一寸减小都意味着技术的提升。此外,侧入式LED 电视相对而言更加节能。以52英寸LED电视为例,侧入式LED的开机功耗仅为186.5W,而直下式LED的开机功耗高达304W。 整体差异不大 究竟是直下式好,还是侧入式好,似乎是个无解的问题。 国家广播电视产品质量监督检验中心进行的一项LED技术测试,给出了一个有趣的答案。“我们对同一品牌侧入式LED电视和直下式LED电视的亮度、色度参数等技术指标进行了全面的测试对比,从结果来看,直下式与侧入式LED电视在画面色彩表现、亮度均匀性、对比度三个参数指标水平略有不同,但整体差异不大。”国家广播电视产品质量监督检验中心整机检测室博士温娜表示。 对于LED背光源技术的发展,有业内人士认为“任重而道远”,毕竟消费者刚刚接触“LED”这个新鲜词汇,还并未理解其真正意义和优势。“今年下半年以来,众多厂家纷纷推出了自己品牌的LED电视。LED是未来的发展方向,LED会有很美好的前景,而作为消费者,冷静对待各种评论,不跟风,看准了下手,了解透彻些再购买总不会吃亏的。” 两种技术方式优劣简要对比 优点不足

光电式太阳光跟踪传感器的应用

光电式太阳光跟踪传感器的应用 摘要提出了一种应用于光纤太阳光照明系统的光电式太阳光跟踪传感器。详细叙述了光电传感器的结构、光电器件板的结构、光电探测与信号转换处理电路。通过验证表明,传感器有效地提高了系统的跟踪精度,且结构简单,易加工,具有较高的应用价值和使用前景 目前大多数太阳能接收器被安装在聚焦器上,并且是将太阳能转换为热能、化学能或电能之后进行间接利用,由于聚焦器通常是安装在屋顶等室外的地方,造成设备复杂昂贵,维护困难等问题。如果将太阳能聚焦后由光纤将收集到的太阳能传输到远处,既可以直接利用太阳光进行照明,也可以在远程工作地点(如在室内、地而上或在受控制的条件下)将太阳能转化为热能、电能或化学能,而且由于光纤柔韧、径细、质轻,能自由弯曲,具有良好的可埋入性,并且光纤损耗低,传输距离长,因此可以在建筑施工或房屋装修过程中将光纤像电线一样埋入,这样可大大增加自然光传光系统的灵活性,使人们很容易将自然光引入到所需的任意位置,且具有结构简单经济、灵活方便等优点。 由于地球自转同时围绕太阳公转,而太阳光采集跟踪装置聚光器的汇聚光束与传输光纤 端而只有在垂直的条件下,太阳光才能高效的藕合进入光纤,因此太

阳光的跟踪精度便成为 了光纤太阳光照明技术中的一项关键技术。笔者提出了一种应用于光纤太阳光照明系统的光电式太阳光跟踪传感器。 1光纤太阳光跟踪技术 太阳光采集跟踪装置机械结构如图1所示,其为双轴跟踪装置,底部为支撑基座,用于固定在水平平而上,基座中心是竖轴轴套,它与基座固连在一起,而竖轴YY’与支架固定在一起,马达1可以驱动支架沿水平方向旋转。在XX’处有一个横轴;马达2可以驱动聚光器板沿垂直方向旋转。为了精确地跟踪太阳光,让聚光器板跟踪太阳光线,在聚光器板中间设置 了一个光电跟踪传感器。 经过聚光器汇聚后太阳光束将藕合进入光纤,但是当太阳光线与聚光器板的法线成θ角时(如图2所示),一部分太阳光线在光纤入射端而附近泄漏掉,当入射角θ满足条件θ<2arcsin(NA)时,对于阶跃型光纤,太阳光藕合进入光纤的效率为:

太阳自动跟踪系统剖析

绪论 21世纪是太阳能时代。在未来的40年中,人类可以实现100%的可再生能源供电。不再需要中东的石油、西伯利亚的天然气以及澳大利亚的铀。实际上,目前在我们家门口就已经获得了未来能源的载体:太阳、风力、水力、地热能,以及来自农田和林地的生物能。根据欧盟报告,2050年全球能源供给分配应当为:40%太阳能,30%生物能,巧%风能,10%水能,5%原油。报告论述了如何达到这种经济、环保、和平并且可持续的能源供给状态。跨国石油公司,比如壳牌、惠普等,已经在向着这种能源供给状态发展。 地球上的万物生长都依赖于太阳的存在,太阳给我们提供了巨大的能量源,地球上大部分的能源归根结蒂也来自于太阳。比如石油、煤炭等化石能源都是过去的动植物通过吸收太阳能不断的生长,后来这些动植物被掩埋在土壤下形成的能源,这其实是太阳能一种形式的转换,并被存储了下来,直到今天被人类开采使用。太阳能开发利用的潜力是相当巨大,据统计,全世界人们一年所使用的能量总和仅仅相当于太阳辐射到地球能量的数万分之一。在化石能源即将枯竭的未来,在未来能源方面,太阳能给人类带来新的生机。 太阳在一天中不断改变位置,这造成太阳能存在着密度低、间歇性的特点,且光照方向和度随时间不断变化。传统太阳能电池板固定在一个角度,不能时刻工作在最大效率处,而采用双轴太阳能跟踪系统的太阳能电池板在功率保持一定的情况下可以提升36% 的发电量,提高太阳能的利用率。

第一章跟踪系统的控制方案 目前光跟踪技术主要是两种方法:1.视日运行轨道跟踪方法。2.光电自动跟 踪方法。 1.1视日运行轨道跟踪 视日运行轨道跟踪技术是一种根据理论计算的太阳运行的轨迹而采取的一 种跟踪技术,根据跟踪的方位它主要分为两种:单轴跟踪和双轴跟踪。 1.1.1单轴跟踪 单轴跟踪分为三种方式:1.倾斜布置东西追踪;2.焦线南北水平布置,东西跟踪;3.焦线东西水平布置,南北跟踪。它们跟踪原理是相同,即电池阵列绕单一轴转动,其转动方向为自东向西或者南北方向,自东向西单轴跟踪方式是跟踪太阳方位角变化,驱动电池阵列转动,使电池阵列方位角与太阳方位角相同。这类跟踪方式结构简单,控制容易,在光照强度大和光照相当稳定的地方实施这类跟踪方式比较适宜。但这类跟踪方式存在一个最大缺点是除了正午这个时刻外在其他时侯不能保持电池阵列接收光辐射面与太阳光线垂直,这样大大降低了光的吸收效率,造成了能量的流失大,影响了整个光伏发电的效率。 1.1.2双轴跟踪 双轴跟踪是一种全方位的跟踪技术,它弥补了单轴跟踪的不足之处,目前视日运动轨迹的双轴跟踪主要分为两种方式:极轴跟踪方式,高度一方位角太阳轨迹跟踪方式。 极轴跟踪方式:是聚光镜的一轴指向地球北极,即与地球自转轴相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。工作时反射镜面绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以追踪太阳的视日运动;反射镜围绕赤纬轴作俯仰转动是为了适应赤纬角的变化,通常根据季节的变化定期调整。这种追踪方式并不复杂,但在结构上反射镜的重量不通过极轴轴线,极轴支承装置的设计比较困难。 高度一方位角太阳轨迹跟踪是一种地平坐标系统跟踪方式,它是当今比较先进的一种跟踪方式,跟踪精度较高。高度一方位角跟踪方式通过计算具体地点和具体时刻的太阳运动轨迹(高度角和方位角表示运行轨迹),根据光伏电池阵列的具体位置,先沿着垂直轴转动弥补方位角偏差,然后沿水平轴转动弥补高度角偏差,以保证电池阵列与太阳运行轨迹一致。这种方式受天气季节性影响较小属于一种理论计算轨迹程序控制跟踪方式。由于理论计算轨迹与实际运行轨道误差小,因此该跟踪方式跟踪精度较高,这种方式缺点是受跟踪系统机械影响比较大,在系统长期运行或者外力影响造成机械误差后,会造成跟踪偏差变大,影响了跟踪精度。

LED背光源技术分类及对比

LED背光源技术分类及对比 目前LED 背光源技术在液晶电视领域的应用主要有三种方式:直下式三原色RGB-LED 光源、直下式白色LED 光源和侧入式白色LED 光源。直下式RGB-LED 光源技术在综合显示优势中绝对第一,但是价格成本也是最高的,不具有市场普及的可能。目前市场上销售的LED 电视普遍是采用直下式白色LED 光源和侧入式白色LED 光源的产品。三星、SONY 采用的是侧入式白光LED 技术,而夏普、海信则采用了直下式白光LED 技术。 直下式:强调画质表现优异 采用直下式LED 技术的企业认为,直下式LED 技术在画面调控上的优势要出色于侧入式LED 技术,而且侧入式LED 电视价格虚高。“两种方式相比,‘直下式’对画质的表现更加完美。”以55 英寸的LED 电视为例,直下式产品将3000 多个LED 灯均匀地分布在了面板的背后,使得背光可以均匀传达到整个屏幕上,画面细节更加细腻逼真。而侧入式则是在面板的边框处安装了400 多个LED 灯,使光源从侧面照出。这虽然可以最大限度地降低厚度,但是由于减少了近7 倍的LED 灯数量,因此容易使画面亮度以“X”的形态减少(即四周比中央位置要亮)。 此外,采用了直下式的LED 电视还把LED 背光划分为若干单元格,在显示黑色的时候,直接关掉其对应LED 区域的光,就能够表现出非常完美的黑色。因此,采用直下式LED 技术的企业认为直下式LED 背光可以更准确地呈现图像,并展现出优秀的色彩和明暗对比效果。 侧入式:强调超薄节能领先 “相比直下式背光源技术而言,侧入式背光源技术对企业整体系统设计和集成能力要求更高。另外,从制造成本来看,采用侧入式白光LED 技术要考虑

LED日光灯亮度与传统荧光灯对比

LED日光灯亮度与传统荧光灯对比 10Wled日光灯亮度要比传统40W日光灯还要亮, 16W led日光灯要比传统64W日光灯还要亮,LED日光灯亮度尤其显得更柔和更使人们容易接授。使用寿命在5万-8万小时供电电压为为AC85V-260V(交流),无需起辉器和镇流器,启动快,功率小,无频闪,不容易视疲劳。它不但超强节能更为环保。是国家绿色节能照明工程重点开发的产品之一,是目前取代传统的日光灯的主要产品。 LED日光灯安装比较简单,它分电源内置和外置两种,电源内置的LED日光灯安装时,将原有的日光灯取下换上LED日光灯,并将镇流器和起辉器去掉,让220V交流市电直接加到LED日光灯两端即可。电源外置的LED日光灯一般配有专用灯架,更换原来的就可以使用了。 LED日光灯节电高达80%以上,寿命为普通灯管的10倍以上,几乎是免维护,不存在要经常更换灯管、镇流器、起辉器的问题,约半年下来节省的费用就可以换回成本。绿色环保型的半导体电光源,光线柔和,光谱纯,有利于工人的视力保护及身体健康,6000K的冷光源给人视觉上清凉的感受,有助于集中精神,提高效率。 发光原理: PN结的端电压构成一定势垒,当加正向偏置电压时势垒下降,P区和N区的多数载流子向对方扩散。由于电子迁移率比空穴迁移率大得多,所以会出现大量电子向P区扩散,构成对P区少数载流子的注入。这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放出去。这就是PN结发光的原理。 LED日光灯 发光效率: 一般称为组件的外部量子效率,其为组件的内部量子效率与组件的取出效率的乘积。子效率,其实就是组件本身的电光转换效率,主要与组件本身的特性(如组件材料的能带、缺陷、杂质)、组件的垒晶组成及结构等相关。而组件的取出效率则指的是组件内部产生的光子,在经过组件本身的吸收、折射、反射后,实际在组件外部可测量到的光子数目。因此,关于取出效率的因素包括了组件材料本身的吸收、组件的几何结构、组件及封装材料的折射率差及组件结构的散射特性等。而组件的内部量子效率与组件的取出效率的乘积,就是整个组件的发光效果,也就是组件的外部量子效率。早期组件发展集中在提高其内部量子效率,主要方法是通过提高垒晶的质量及改变垒晶的结构,使电能不易转换成热能,进而间接提高LED的发光效率,从而可获得70%左右的理论内部量子效率,但是这样的内部量子效率几乎已经接近理论上的极限。在这样的状况下,光靠提高组件的内部量子效率是不可能提高组件的总光量的,因此提高组件的取出效率便成为重要的研究课题。目前的方法主要是:晶粒外型的改变——TIP结构,表面粗化技术。 电气特性: 电流控制型器件,负载特性类似PN结的UI曲线,正向导通电压的极小变化会引起正向电流的很大变化(指数级别),反向漏电流很小,有反向击穿电压。在实际使用中,应选择。

自制太阳能自动跟踪控制器

自制太阳能自动跟踪控制器 现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比较器的上偏置电阻,另一只为下偏置电阻;一只检测太阳光照,另一只则检测环境光照,送至比较器输人端的比较电平始终为两者光照之差。所以,本控制器能使太阳能接收装置四季全天候跟踪太阳,而且调试十分简单,成本也比较低。 电路原理

电路原理图如图1所示,双运放LM358与R1、R2构成两个电压比较器,参考电压为VDD(+12V)的 1/2。光敏电阻 RT1、RT2与电位器 RP1和光敏电阻RT3、RT4与电位器RP2分别构成光敏传感电路,该电路的特殊之处在于能根据环境光线的强弱进行自动补偿。如图2所示,将RT1和 RT3安装在垂直遮阳板的一侧,RT4和RT2安装在另一侧。当RT1、RT2、RT3和RT4同时受环境自然光线作用时,RP1和RP2的中心点电压不变。如果只有RT1、RT3受太阳光照射,RT1的内阻减小,LM358的③脚电位升高,①脚输出高电平,三极管VT1饱和导通,继电器K1导通,其转换触点3与触点1闭合。同时RT3内阻减小,LM358的⑤脚电位下降,K2不动作,其转换触点3与静触点2闭合,电机M正转;同理,如果只有RT2、 RT4受太阳光照射,继电器K2导通,K1断开,电机M反转。当转到垂直遮阳板两侧的光照度相同时,继由器K1、K2都导通,电机M才停转。在太阳不停地偏移过程中,垂直遮阳板两侧光照度的强弱不断地交替变化,电机M转——停、转——停,使太阳能接收装置始终面朝太阳。4只光敏电阻这样交叉安排的优点是: (l)LM358的③脚电位升高时,⑤脚电位则降低,LM358的⑤脚电位升高时,③脚电位则降低,可使电机的正反转工作既干脆又可靠;(2)可直接用安装电路板的外壳兼作垂直遮阳板,避免将光敏电阻RT2、RT3引至蔽阴处的麻烦。 使用该装置,不必担心第二天早晨它能否自动退回。早晨太阳升起时,垂直遮阳板两侧的光照度不可能正好相等,这样,上述控制电路就会控制电机,从而驱动接收装置向东旋转,直至太阳能接收装置对准太阳为止。 安装调试

相关文档