文档库 最新最全的文档下载
当前位置:文档库 › 固态变压器概述

固态变压器概述

固态变压器概述
固态变压器概述

固态变压器研究概述

1.。概念。固态变压器又称电力电子变压器(Electronic Power Transformer,

EPT),是一种将电力电子变换技术和基于电磁感应原理的高频电能变换技术相结合,实现将一种电力特征的电能转变为另一种电力特征的电能的静止电气设备。与常规变压器相比,EPT有很多优点,其突出特点在于可以实现原方电流、副方电压以及功率的灵活控制。EPT应用于电力系统后将会改善电能质量,提高系统稳定性,实现灵活的输电方式以及电力市场下对功率潮流的实时控制。

2.。基本原理。电子电力变压器的基本原理如图所示,首先通过电力电子变

换技术将入信号变换为较高频率信号,经高频变压器耦合到二次侧,然后再通过电技术将高频信号还原成工频交流输出。总的来说,按照变频部分的实现方法分为两大类:第一种是变换过程不存在中间直流环节,即直接AC/AC 变换,第二种是变换过程中存在中间直流环节,即AC/DC/AC

3.拓扑结构。

1)AC/AC变换拓扑结构。其工作原理为: 工频信号先被变换为中频信号(600 Hz~112 kHz) 后通过中频隔离变压器耦合到其副方, 中频信号随后又被同步还原为工频信号。为了减小器件开关过程中由于电流突变造成的过电压, 该方案采用了一种4 级开关控制策略, 可使功率器件在无吸收电路的条件下安全换向。

2)AC/DC/AC变换拓扑结构。.图中是其一相的整体结构图, 也是一种3 级结构方案(AC/DC/AC), 包含高压、隔离和低压级。该方案的特点在于隔离级只使用了一个高频变压器,整个装置的功率器件数减少1?3 , 解决了多模块并联带来的均流问题。这种PET 的高压级各模块为单

相全控整流桥, 采用PWM 整流, 输入电流波形好,可实现功率的双向流动。

4.优点。

1)体积小,重量轻,无环境污染。

2)运行时可保持二次侧输出电压幅值恒定,不随负载变化,且平滑可调。

3)可保证一次侧电压电流和二次侧电压为正弦波形,且一二次功率因数可调。

4)变压器一二次电压、电流和功率均高度可控。

5)兼有断路器的功能,大功率电力电子器件可瞬时(μs级)关断故障大电流,也无需常规的变压器继电保护装置

5.应用前景。对电力电子变压器进行研究的一个重要趋势是通过电力电子变压器解决电能质量问题,即电力电子变压器既具备传统变压器的功能,如电能传输、隔离、变换等,又具有抑制谐波双向流动、防止负载侧出现故障影响电源电压、输出电压可以有直流分量,消除电压跌落、升高,以及过电压、欠电压等电源侧电压的干扰对负荷的影响,对各种电量进行监测、显示、分析处理来判断各种异常情况对其自身和系统进行保护,并给出报警信号和故障类型等信息。

6研究趋势。

1)对适合于电力电子变压器的各种电路拓扑进行深入研究。因为,为了使电力电子变压器早日应用,应当从提高可靠性,降低损耗着手。而目前所使用的电路结构复杂,可靠性低,损耗大。

2)对电力电子变压器控制策略加以研究,得出能同时完成能量转换和解决电能质量的问题功能的控制策略,即如何将电能传输、隔离、变换、保护和改善电能质量问题的功能合而为一。

油浸式变压器结构图解

结构图解 1-铭牌;2-信号式温度计;3-吸湿器;4-油标;5-储油柜;6-安全气道 7-气体继电器;8-高压套管;9-低压套管;10-分接开关;11-油箱; 12-放油阀门;13-器身;14-接地板;15-小车 电力变压器概述电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)变成频率相同的另一种或几种数值不同的电压(电流)的设备。当一次绕组通以交流电时,就产生交变的磁通,交变的磁通通过铁芯导磁作用,就在二次绕组中感应出交流电动势。二次感应电动势的高低与一二次绕组匝数的多少有关,即电压大小与匝数成正比。主要作用是传输电能,因此,额定容量是它的主要参数。额定容量是一个表现功率的惯用值,它是表征传输电能的大小,以kVA或MVA表示,当对变压器施加额定电压时,根据它来确定在规定条件下不超过温升限值的额定电流。现在较为节能的电力变压器是非晶合金铁心配电变压器,其最大优点是,空载损耗值特低。最终能否确保空载损耗值,是整个设计过程中所要考虑的核心问题。当在产品结构布置时,除要考虑非晶合金铁心本身不受外[3]力的作用外,同时在计算时还须精确合理选取非晶合金的特性参数。国内生产电力变压器较大的厂家有特变电工等。 供配电方式: 10KV高压电网采用三相三线中性点不接地系统运行方式。

用户变压器供电大都选用Y/Yno结线方式的中性点直接接地系统运行方式,可实现三相四线制或五线制供电,如TN-S系统。 电力变压器主要部件及作用①、普通变压器的原、副边线圈是同心地套在一个铁芯柱上,内为低压绕组,外为高压绕组。(电焊机变压器原、副边线圈分别装在两个铁芯柱上) 变压器在带负载运行时,当副边电流增大时,变压器要维持铁芯中的主磁通不变,原边电流也必须相应增大来达到平衡副边电流。 变压器二次有功功率一般=变压器额定容量(KVA)×0.8(变压器功率因数)=KW。 ②、电力变压器主要有: A、吸潮器(硅胶筒):内装有硅胶,储油柜(油枕)内的绝缘油通过吸潮器与大气连通,干燥剂吸收空气中的水分和杂质,以保持变压器内部绕组的良好绝缘性能;硅胶变色、变质易造成堵塞。 B、油位计:反映变压器的油位状态,一般在+20O左右,过高需放油,过低则加油;冬天温度低、负载轻时油位变化不大,或油位略有下降;夏天,负载重时油温上升,油位也略有上升;二者均属正常。

主变压器中性点过电压保护配置原则

由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值;———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为 99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB

311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的 0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为 0.85,参考G B311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为 1.0,则中性点综合耐受雷电冲击裕度系数为 0.6,综合耐受工频裕度系数为 0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有: 单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系

高一物理《变压器》2教案

第四节变压器 【教学目标】 1、了解使用变压器的目的,知道变压器的基本构造,知道理想变压器和实际变压器的区别。 2、知道变压器的工作原理,会用法拉第电磁感应定律解释变压器的变比关系。 3、知道不同种类的变压器。 【教学重点】 变压器的工作原理,互感过程的理解及电压与匝数的关系。 【教学难点】 互感过程的理解,变比关系的推导和理解 【教学方法】 演示、推理、学生实验 【教具】 学生电源、可拆变压器、交流电压表、小灯泡、多用电表(交流电压档) 【教学过程】 引入新课 今天我们要学习的是变压器这一节,在进入新课前,我们来看这样一组数据。 投影:

提问:我们发现不同的用电器所需的额定电压是不同的,但是我国民用供电电压均为220V,怎样才能让这些工作电压不同的用电器正常工作呢? 回答:用我们今天所要学习的设备――变压器。 演示实验:出示交流电源,用交流电压表(量程10V)测其电压为7V,若想用这个电源来使额定电压为3V的小灯泡正常发光,显然不能直接接电源,我们就可以利用变压器将电源电压降下来后再接灯泡。 现象:灯泡能够正常发光。 这说明变压器是能够改变交流电压的设备。 过渡:为什么变压器会有这样的功能呢?就让我们先从变压器的构造说起。 一、变压器的构造 最典型的变压器是由两个线圈和闭合铁芯构成。 展示可拆变压器,左右各有一个线圈套在铁芯上,其中一个与电源相连的称为原线圈(或初级线圈),另一个与用电器相连的称为副线圈(或次级线圈)。线圈是由绝缘的导线绕制的。闭合的铁芯是由涂有绝缘漆的薄硅钢片叠加而成的。线圈与铁芯彼此绝缘。 投影:变压器的示意图,原副线圈的匝数一般是不同的,n1和n2分别表示原线圈和副线圈的匝数,U1和U2表示原线圈和副线圈的端电压。 提出疑问:从前面的实验中看到灯泡能够发光,说明副线圈两端是有电压的,但是线圈和铁芯彼此绝缘,不可能将原线圈的电能直接传送到副线圈来,那么这个电压是如何产生的呢? 其实变压器也是法拉第电磁感应现象的一种应用,我们可以具体来分析变压器是如何工作的。 二、变压器的工作原理 分析:把交变电压加在原线圈上,原线圈中的交变电流产生交变的磁场,将铁芯磁化并在铁芯中产生交变的磁通量,这个交变的磁通量不但穿过原线圈,也穿过副线圈,所以也在副线圈中激发感应电动势。如果副线圈两端连着用电器,副线圈中就会产生交变电流。这一

变压器供电系统方案终版

变压器供电系统方案终版

一、工程概况: 天津快速路项目(八合同)北横线志成道段工程是天津市快速路系统向为快速系统北横的一部分,南北向 为快速系统东纵一部分。东西向起点为北横子牙河大桥 终点处,终点接外环线,全长4727.352m;南北向起点 为东纵北宁公园段,终点接东纵铁东路高架桥,全长 1060m。东西向的主线桥横跨京山线、津浦线和现有的 盐坨桥并与南北向横跨新开河的B、C线桥立交,形成以 主线为上层、BC 线和盐坨桥为中层、南北向辅道为下层 的上下共三层的互通式立交桥。 本工程的主要工程内容包括:桥梁总长7223m,面积106317m2,其道,断面总宽80m。主要实物工 程量:钻孔桩69200延米,钢筋17480T,混泥土 172700m3,路基土方70万方。工程于2004年1月 6日正式开工,合同工期577天。 天津市快速路第八合同段墩柱施工,其安全注意事项严格执行天津市2004年颁布的《建筑工程安全生产 管理条例》。 二、工程施工用电特点及用电安排 该工程基础开挖采用旋挖钻机施工,混泥土浇注采用混泥土泵车进行施工,因此主要用电负荷集中在混泥土搅 拌和钢筋加工,考虑到供电质量,结合工程施工总的安排,

准备安装5台变压器,作为主供电电源。每台变压器的供 电范围如平面图布置图所示。备用电源配备三台发电机, 其中一台安装在1#变压器处,另两台根据现场施工的实 际情况安排。 三、施工用电平面布置图:见附图1。 四、用电负荷统计及计算:见附图2。 五、电缆的选配: 1、本工程施工主电线路全部使用绝缘电缆直接埋地,引至各分配电箱,通过绝缘电缆引至用电设备配电箱。 2、钢筋加工场电缆选配:钢筋加工场最大可能出现负荷,10台电焊机、弯曲机、切断机(切割机)、卷扬机同时工作,总功率为210kw。 计算电流:I=210/(1.732*0.4)=303 查工具书:120mm2四芯电缆(铜)直接敷设地中安全载流量308A,可以满足要求。 钢筋加工场电缆选配VV-3*120+1*75铜芯电缆。 六、施工现场配电箱引入电缆选配: 每条主线最多引出5 个分配电箱,最多可能同时使用负荷相当于2个分配电箱的最大负荷,每个配电箱负 荷:两台20kw泥浆泵、两台5kw泥浆泵、两台14kw 电焊机、四台2.2kw振捣器,负荷总计为86.8kw,即

变压器的介绍.

变压器 1.1 概述 变压器是一种静止的电器设备,它依靠电磁感应作用,将一种电压、电流的交流电能转换成同频率的另一种电压、电流的电能。 变压器是电力系统中重要的电气设备。众所周知,输送一定的电能时,输电线路的电压愈高,线路中的电流和相应的损耗就愈小。为此,需要用升压变压器把交流发电机发出的电压升高到输电电压,通过高压输电线将电能经济地送到用电地区;然后再用降压变压器逐步将输电电压降到配电电压,送到各用电区;最后再经配电变压器变成用户所需的电压,供各种动力和照明设备安全而方便地使用。变压器的总容量要比发电机的总容量大得多,可达6~7 倍。 除此之外,变压器还广泛应用在其他场合,如电焊、电炉和电解使用的变压器,化工行业用的整流变压器,传递信息用的电磁传感器,供测量用的互感器,自控系统中的脉冲变压器,试验用的调压器等。 变压器还可以改变电流,改变负载的等效阻抗、电源的相数和频率。 变压器的结构虽然简单,其基本原理、分析方法却可作为其他交流电机研究的基础,特别是感应电机。 1.2 变压器的分类 变压器的种类繁多,从不同角度,变压器可以作不同的分类。 从用途来看,可分为电力变压器、试验变压器、测量变压器及特殊用途变压器。电力变压器用在电力系统中,用来升高电压的变压器称为升压变压器;用来降低电压的变压器称为降压变压器。升压变压器与降压变压器除了额定电压不同以外,在原理和结构上并无差别。此外还有配电变压器和联络变压器。试验变压器用于实验室,有调压变压器和高压试验变压器。测量变压器用于测量大电流和高电压,主要是仪用互感器,包括电压互感器和电流互感器。特殊用途变压器有电炉用变压器、电焊用变压器、电解用整流变压器、晶闸管线路中的变压器、传递信息用的电磁传感器、自控系统中的脉冲变压器等。 从相数来看,有单相变压器、三相变压器和多相变压器。电力变压器以三相居多。 从每相绕组数目来看,可分为单绕组变压器、双绕组变压器、三绕组和多绕组变压器。通常变压器都为双绕组变压器,单绕组变压器又称自藕变压器,三绕组变压器(即联络变压器)用于把三种电压等级的电网连接在一起,大容量电厂中用作厂用电源的分裂变压器就是一种多绕组变压器。 从铁心结构看,可分为心式变压器、壳式变压器、渐开线式变压器和辐射式变压器等。 从冷却方式看,有以空气为冷却介质的干式变压器,以油为冷却介质的油浸变压器,以特殊气体为冷却介质的充气变压器。油浸变压器又分自冷、风冷和强制油循环冷却的变压器。自冷是利用温差产生变压器油的自循环进行冷却,风冷是利用装在散热器上的吹风机进行冷却,强制油循环冷却是利用专门设备(如油泵)强迫变压器油加速循环。 从容量大小看,可分为小型变压器(10~630kVA )、中型变压器(800~6300kVA)、大型变压器( 8000~63000 kVA )和特大型变压器(90000kVA 以上)。 1.3 变压器工作原理 1.3.1 变压器的构成

变压器中性点接地刀闸的操作

变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。 因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为 保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中 性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相 接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开, 就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开 被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。

4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

变压器试题总结-概述

变压器试题总结 一、变压器总述 ㈠工作原理、作用 1、变压器的工作原理是什麽 答、变压器是按电磁感应原理工作的。在一个闭合的铁心上,绕两个线圈,就构成了一个最简单的变压器。变压器的一个线圈接交流电源,叫一次线圈,另一个线圈接负载,叫二次线圈。当变压器的一次线圈接交流电源二次线圈接空载时,在一次线圈中仅流过很小的励磁电流,在铁心中建立起交变磁通,铁心中同时穿过一次线圈和二次线圈的交变磁通叫主磁通。主磁通在一二次线圈中都感应出电势,显然每个线圈的一次线匝所感应的电压是相同的。因此,一、二次线圈所感应的电压将正比与他们的匝数,即:U1/U2=W1/W2 式中:U1、W1分别为一次线圈的电压和匝数。 U2、W2分别为二次线圈的电压和匝数。 在电源电压U1和一次线圈匝数W1一定时,增加或减少二次线圈的匝数W2,就可以升高或降低二次线圈的电压U2。 变压器带上负荷后,二次线圈电流I2的大小决定于负载的需要,一次线圈电流I2的大小也取决于负载的需要,变压器起到功率传递的作用。这就是变压器的工作原理。 2、变压器在电力系统中的主要作用是什么 答:变压器在电力系统中的作用是变换电,以利于功率的传输。电压经升压变压器升压,可以减少线路损耗,提高送电的经济性,

达到远距离送电的目的。而降压变压器则能把高电压变为用户所需要的各级使用电压,满足用户需要。 3、什么叫全绝缘变压器什么叫半绝缘变压器 答:半绝缘(又成分级绝缘)就是变压器的靠近中性点部分绕组的主绝缘,其绝缘水平比端部绕组的绝缘水平低,而与此相反,一般变压首端绕组绝缘水平一样叫全绝缘。 4、三相变压器绕组的星行(Y型)三角形(D型)连接方式各是怎样接线的 答、把三相变压器的三个绕组的末端X、Y、Z联接在一起,而从他们的三个手端A、B、C引出的接线方式便是星行联接。 把一相线圈的末端和另一线圈的首端顺次相连,使三相线圈成为一个闭合回路,并从三个连接点引出的接线方式称为三角形接线。 4、为什麽大型变压器低压侧总是接成三角形 答、大型变压器一般均采用Y,D11的接线组别。在这种接线方式中,一次侧绕组中励磁电流的三次谐波不能流通,在铁心饱和的情况下,磁通为平顶波。平顶波的磁通必然分解出三次谐波磁通,这些三次谐波磁通在变压器二次侧三角形绕组里感应出三次谐 波电势,三次谐波电势将在闭合的三角形内形成三次谐波环流,三次谐波环流又在铁心中产生三次谐波磁通来抵消有一次侧励 磁电流产生的三次谐波磁通。这样,使铁心中的主磁通及其二次侧感应电动势,基本上保持正选波形,消除了三次谐波对变压器

110kV变压器中性点过电压计算及其保护策略

110kV变压器中性点过电压计算及其保护策略 发表时间:2017-08-08T19:52:12.857Z 来源:《电力设备》2017年第10期作者:朱梁 [导读] 摘要:110kV系统通过改变变压器中性点的接地形式,从而实现调控短路电流量,同时使得继电保护能够整定 (国网上海市区供电公司 200080) 摘要:110kV系统通过改变变压器中性点的接地形式,从而实现调控短路电流量,同时使得继电保护能够整定,而且不接地变压器的中性点通过这种接地形式也能够产生过电压。本文针对110kV变压器中性点过电压的计算进行分析,结合分析内容提出相对应的保护策略。 关键词:110kV变压器;过电压;保护策略 1.引言 由于电力系统常规运行中三相对称的缘故,电力变压器不会产生过电压。若出现意外情况,比如单相接地短路、非全相运行或者是雷电等,则变压器中性点会产生一定的过电压,甚至会和相电压一般;若是出现简谐振动,变压器中性点则会产生更大的过电压。再者由于110kV变压器中性点大部分都是分级绝缘,因此保护变压器中性点是非常重要的。 通过运行实践以及相关资料显示,在雷电冲击、非全相电力运行以及系统单相接地短路事故中,变压器中性点产生的过电压会在极大程度上影响变压器中性点的绝缘。 2.110kV变压器系统的软件仿真 2.1设计110kV变压器系统的仿真模型 为了更清晰的计算变压器中性点在不同事故中所产生的具体过电压值,本文通过ATP-EMTP软件构建110kV变压器的模型进行仿真分析。2个110kV变压器通过YYd的方法连接,设定相同的参数、最大容量,避雷器接在变压器的中性点。以变压器110kV侧母线作为起点,在110kV侧输电线路上共计设有6个点,点与点之间的距离为20m。(如图1) 2.2 110kV变压器系统模型的仿真结果 本次的仿真结果是110kV输电线路上出现单相短路故障,和母线的距离越近,其中性点所产生的过电压值就会越大;换言之,接地点的过电压值越小,那么就越远离母线,其根本原因是由于正序电阻的不断降低所造成的。 此外,110kV母线侧出现了接地的情况,而2个变压器系统的高压侧电源没有出现接地的情况,中性点的最大电压值高达97kV,几乎接近了110kV输电线路中所产生的相电压,其产生原因是电力系统实际上等效于一个无穷大系统。 在本次的仿真过程中,还发现了变压器110kV侧中性点上产生的电位归零是由于线路中的零序电流在输入中性点与接地点的结合部分时被阻挡了,而且35kV上的中性点出现同样的情况,分析其原因是由于10kV侧的连接形式是采用了三角状连接从而阻挡了零序电流的进入所致。 3.110kV变压器中性点的保护策略 3.1降低110kV变压器中性点的过电压 在确定变压器之间的相隔距离之后,通过电压计算公式我们可以得知,降低正序电流的输出值,能够实现降低变压器中性点的过电压值。那么,为了能够降低正序电流的输出值,我们可以改变变压器的接地形式。在原本的变压器仿真模型的基础上进行改动,让1个变压器中性点接地,而其他部分不改变。那么,110kV电力系统中在输出线路侧出现单相接地短路的时候,未接地的那个变压器中性点产生过电 压的具体数值如表1所示。 (表1,修改过后的变压器110kV侧中性点产生的过电压值) 由此可知,未接地变压器的中性点过电压值不论是在稳态或者是暂态都是有一定程度的降低的。而在加设接地置之后,因为零序阻抗值逐渐的降低,所以线路中零序电流值就会逐渐的增加,一定要对系统中单相接地短路所包含的容量进行准确的计算,并且要把继电保护的整定结构放在考虑范围中。 3.2避雷器的选择 采用避雷器对在单相线路接地事故中变压器中性点产生的暂态过电压进行有效的调控,就需要正确的在变压器中性点上设置合适的避

【高中物理】变压器·典型例题解析

变压器·典型例题解析 【*例1】一只电阻、一只电容器、一只电感线圈并联后接入手摇交流发 电机的输出端.摇动频率不断增加,则通过它们的电流I R、I C、I L如何改变 [ ] A.I R不变、I C增大、I L减小 B.I R增大、I C增大、I L减小 C.I R增大、I C增大、I L不变 D.I R不变、I C增大、I L不变 解答:应选C. 点拨:手摇发电机的磁场、线圈形状和匝数都是不变的,输出电压与频率 成正比.纯电阻电路中,电阻R与频率无关,I R=U/R,所以I R与频率成正比;纯电容电路中,容抗X C=1/2πfC,I C=U/X C=2πfCU,与频率的二次方成正比;纯电感电路中,X L=2πfL,I L=U/X L=U/2πfL,与频率无关. 【例2】图18-17为理想变压器,它的初级线圈接在交流电源上,次级线圈接在一个标有“12V 100W”的灯泡上.已知变压器初、次级线圈匝数之比为18∶1,那么灯泡正常工作时,图中的电压表读数为________V,电流表读数为________A. 解答:由公式U1/U2=n1/n2,得U1=U2n1/n2=216(V); 因理想变压器的初、次级功率相等, 所以I1=P1/U1=P2/U2=0.46(A) 即电压表、电流表读数分别为216V、0.46A. 点拨:分析理想变压器问题时应注意正确应用电压关系和电流关系、特别是初、次级功率相等的关系. 【例3】如图18-18所示,甲、乙两电路是电容器的两种不同的接法,它们各在什么条件下采用?应怎样选择电容器?

点拨:关键是注意容抗与交流电的频率成反比.甲应是电容较大的电容器,乙应是电容较小的电容器. 参考答案 甲是电容较大的电容器通交流,阻直流、乙是电容较小的电容器通直流,去掉交流. 【例4】如图18-19所示,理想变压器的两个次级线圈分别接有“24V 12W”、“12V 24W”的灯泡,且都正常发光,求当开关断开和闭合时,通过初级线圈的电流之比. 点拨:关键是初、次级功率始终相等. 参考答案:1∶3. 跟踪反馈 1.如图18-20所示,一平行板电容器与一个灯泡串联,接到交流电源上,灯泡正常发光,下列哪种情况可使灯泡变暗 [ ] A.在电容器两极间插入电介质 B.将电容器两板间的距离增大 C.错开电容器两极的正对面积 D.在电容器两极间插入金属板(不碰及极板) 2.关于电子电路中的扼流圈,下列说法正确的是 [ ]

变压器接地系统

变压器接地系统 1低压配电系统接地型式概述 民用建筑中的配电变压器。现时有35/0.4 kV、10/0.4 kV、6.3/0.4 kV 等.而以1O,O.4 kV为常见。变压器单台容量有的已超过2 000kV·A,提供本建筑物或建筑群所需220/380 V低压电源。此类配电站多附设在相应建筑物内,低压电源系统的接地型式,以TN-S系统为主,也有使用TT接地型式。所需接地体大多使用自然接地体。也有使用人工接地体或两者相结合。 低压电源系统接地型式,按电源系统和电气设备不同的接地组合来分类。根据IEC标准规定。低压电源系统接地型式,一般由两个字母组成,必要时可加后续字母,其中第一个字母表示电源接地点对地的关系(直接接地,不接地)。第二个字母表示电气设备外露可导电部分与地的关系(独立于电源系统接地点的直接接地.N--直接与电源系统接地点或与该点引出的导体相连接)。后续字母表示中性线与保护线的关系(C--中性线N与保护线PE合并,中性线N与保护线PE分开)。故低压电源系统的接地型式可分为五种。在民用建筑中使用最多的为TN-S、,IN-C-S、TT三种。而变配电站中常用的为TN-S或TT 两种.在此三种接地型式中,规定了电源的中性点应直接接地,电气设备的外露可导电部份应接地。 上述电源系统,指提供用电设备的220/380 V电源,如:由变压器低压侧开始至配电屏,由屏至配电箱。由箱至水泵电动机的低压电源系统等,上述电气设备包括了变压器、配电屏(箱)、电梯、水泵等,故上述的电源中性点,就是该配电系统的中性点,就是变压器的中性点。显然这类变压器应有两种接地要求,即中性点的直接接地,称为工作接地;变压器外壳接地。称为保护接地。工作接地的作用是使低压电源系统在正常工作或事故情况下,降低人体的接触电压,保障电器设备的可靠动作,迅速切断故障设备,降低电器设备和输电线路的绝缘水平。保护接地的作用是在电气设备电源系统运行故障时,保障人身和设备的安全。如何正确处理上述配电站及变压器的工作接地和保护接地,使其安全可靠运行是我们应该认真去研究解决的重要内容。现分述于下。 2现时常见的四种接地的具体作法 2.1接地型式为TN-S系统。由变压器低压侧中性点接线柱上。并联三根导体。其中一根引往变电站内MEB板(总等电位板),该导体有用扁钢也有用单芯电缆。另两根导体,均为铜排,同时引入进线屏。一根引入4极开关的第4极配出N铜排,另一根与PE铜母排相连接。再由该PE母排用扁钢与MEB板相

旋转变压器基础知识

旋转变压器是一种输出电压随转子转角变化的信号元件。当励磁绕组以一定频率的交流电压励磁时,输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。它主要用于坐标变换、三角运算和角度数据传输,也可以作为两相移相器用在角度--数字转换装置中。 按输出电压与转子转角间的函数关系,我所目前主要生产以下三大类旋转变压器: 1. 正--余弦旋转变压器(XZ )----其输出电压与转子转角的函数关系成正弦或余弦函数关系。 2. 线性旋转变压器(XX )、(XDX )----其输出电压与转子转角成线性函数关系。 线性旋转变压器按转子结构又分成隐极式和凸极式两种,前者(XX )实际上也是正--余弦旋转变压器,不同的是采用了特定的变比和接线方式。后者(XDX )称单绕组线性旋转变压器。 3. 比例式旋转变压器(XL )----其输出电压与转角成比例关系。 二、 旋转变压器的工作原理 由于旋转变压器在结构上保证了其定子和转子(旋转一周)之间空气间隙内磁通分布符合正弦规律,因此,当激磁电压加到定子绕组时,通过电磁耦合,转子绕组便产生感应电势。图4-3为两极旋转变压器电气工作原理图。图中Z 为阻抗。设加在定子绕组的激磁电压为 sin ω=- S m V V t (4—1) 图 4-3 两极旋转变压器 根据电磁学原理,转子绕组12B B 中的感应电势则为 sin sin sin θθω== (4-2)B s m V KV KV t (4—2) 式中K ——旋转变压器的变化;—的幅值m s V V ; θ——转子的转角,当转子和定子的磁轴垂直时,θ=0。如果转子 安装在机床丝杠上,定子安装在机床底座上,则θ角代表的是丝杠转过 的角度,它间接反映了机床工作台的位移。 由式(4-2)可知,转子绕组中的感应电势 B V 为以角速度ω随时间t 变 化的交变电压信号。 其幅值 sin θm KV 随转子和定子的相对角位移θ以正弦函数变化。因此,只要测量出转子绕组中的感 应电势的幅值,便可间接地得到转子相对于定子的位置,即θ角的大小。 以上是两极绕组式旋转变压器的基本工作原理,在实际应用中,考虑到使用的方便性和检测精度等因素,常采用四极绕组式旋转变压器。这种结构形式的旋转变压器可分为鉴相式和鉴幅式两种工作方式。 1.鉴相式工作方式 鉴相式工作方式是一种根据旋转变压器转子绕组中感应电势的相位来确定被测位移大小的检测方式。如 图4-4所示,定子绕组和转子绕组均由两个匝数相等互相垂直的绕组组成。图中12S S 为定子主绕组,12 K K 为定子辅助绕组。当12S S 和12K K 中分别通以交变激磁电压时 s m V V cos (43);V V sin (44)ωω--= = t t (4—3) s m (43);V V sin (44)ω-- = t t (4—4) 根据线性叠加原理,可在转子绕组12B B 中得到感应电势B V ,其值为激磁电压s V 和k V 在12B B 中产生 感应电势BS V 和BK V 之和,即

张固态变压器概述

固态变压器研究 1.。概念。固态变压器又称电力电子变压器(Electronic Power Transformer,EPT),是一种将电力电子变换技术和基于电磁感应原理的高频电能变换技术相结合,实现将一种电力特征的电能转变为另一种电力特征的电能的静止电气设备。与常规变压器相比,EPT有很多优点,其突出特点在于可以实现原方电流、副方电压以及功率的灵活控制。EPT应用于电力系统后将会改善电能质量,提高系统稳定性,实现灵活的输电方式以及电力市场下对功率潮流的实时控制。 2.。基本原理。电子电力变压器的基本原理如图所示,首先通过电力电子变换技术将入信号变换为较高频率信号,经高频变压器耦合到二次侧,然后再通过电技术将高频信号还原成工频交流输出。总的来说,按照变频部分的实现方法分为两大类:第一种是变换过程不存在中间直流环节,即直接AC/AC变换,第二种是变换过程中存在中间直流环节,即AC/DC/AC 3.拓扑结构。 1)AC/AC变换拓扑结构。其工作原理为: 工频信号先被变换为中频信号(600 Hz~112 kHz) 后通过中频隔离变压器耦合到其副

方, 中频信号随后又被同步还原为工频信号。为了减小器件开关过程中由于电流突变造成的过电压, 该方案采用了一种4 级开关控制策略, 可使功率器件在无吸收电路的条件下安全换向。 2)AC/DC/AC变换拓扑结构。.图中是其一相的整体结构图, 也是一种3 级结构方案(AC/DC/AC), 包含高压、隔离和低压级。该方案的特点在于隔离级只使用了一个高频变压器,整个装置的功率器件数减少1?3 , 解决了多模块并联带来的均流问题。这种PET 的高压级各模块为单 相全控整流桥, 采用PWM 整流, 输入电流波形好,可实现功率的双向流动。

主变压器中性点零序过流

、间隙过流和零序过压,是保护设备本身引出线上的接地短路故障的,一般是作为变压器高压侧110--220千伏系统接地故障的后备保护.零序电流保护,是变压器中性点接地运行时的零序保护;而零序电压保护是变压器中性点不接地运行时的零序保护;间隙过流则是用于变压器中性点经放电间隙接地的运行方式中. 零序过流保护,一次启动电流很小,一般在100安左右,时间约 0.2秒.零序过压保 护,按经验整定为二倍额定相电压115,为躲过单相接地的暂态过压,时间通常整定为0.1-- 0.2秒.变压器220KV侧中性点放电间隙的长度,一般为325毫米,击穿电压的有效值为 127.3千伏,当中性点的电压超过击穿电压时,间隙被击穿,零序电流通过中性点,保护时间整定为 0.2秒.在发生单相接地故障时,接在电流互感器上的单相接地电流继电器和零序电压继电器动作,启动时间继电器,时间继电器以整定的时限,通过信号继电器,发出信号和断开接地变压器各侧断路器 110kV线路接地故障时,电源侧为直接接地系统,对侧主变中性点不接地,此时,主变中性点会产生多高电压,主变间隙零序与对侧线路保护如何配合?望高人指点!!! 主变间隙零序与对侧线路保护不需配合,因不是同一系统。主变间隙零序电压一般整定180V, 0.5S. 主变间隙零序电压一般整定110KV系统150V, 0.5S.220KV系统180V,

0.5S. 中性点不接地的主变单相接地中性点理论上产生100V零序电压 中性点直接接地的主变单相接地中性点理论上产生300V零序电压 主变中性点电压在主变非接地时为300V左右,接地时为173左右,反映中性点非直接接地的间隙零序电压所以设定为180V,考虑到雷击过电压、操作过电压等情况,设定时间为 0.5S。 最近我也研究了变压器的间隙保护: 1.从零序序网图可以分析,尽管你提到的变压器中性点不接地,但它仍然处在一个接地系统中(其上级变压器110kV侧接地),所以当线路系统发生基地故障时,本变压器零序电压(PT开口三角电压)是100V。为了防止系统感应过电压、雷击过电压等的误动作,所以整定为150V(对于220kV变压器为 180V); 2.对于时间定值,我建议你与上一级线路的接地距离II段、零序过流II段等伸入变压器的线路保护段配合,这样可以防止当由于雷击等原因造成线路保护与间隙保护同时动作,即使线路重合成功,由于变压器间隙保护动作将变压器切除,重合闸已经没有意义了。 3.希望小兄弟咱能一起探讨,期待你的信息。 [16楼][继保工人累]于2010-9-22 16:17:07对文章回复如下: 不接地变中性点零序电压一次值应为接地点零序电压,约为110kV // 方向阻抗继电器的最大动作阻抗(幅值)的阻抗角,称为它的最大灵敏角φs 被保护线路发生相间短路时,短路电流与继电器安装处电压间的夹角等于线路的阻抗角ΦL,线路短路时,方向阻抗继电器测量阻抗的阻抗角φm,等于线路

高中物理:变压器练习题

高中物理:变压器练习题 1.如图所示四个电路,能够实现升压的是( ) 【解析】选D。变压器只能对交变电流变压,不能对直流电变压,故A、B错误。由于电压与线圈匝数成正比,所以D项能实现升压。 2.一理想变压器的原、副线圈的匝数比为3∶1,在原、副线圈的回路中分别接有阻值相同的电阻,原线圈一侧接在电压为220 V的正弦交流电源上,如图所示。设副线圈回路中电阻两端的电压为U,原、副线圈回路中电阻消耗的功率的比值为k,则( ) A.U=66V,k= B. U=22V,k= C.U=66V,k= D.U=22V,k= 【解题指南】解答本题时应从以下三点进行分析: (1)掌握变压器的功率、电压、电流关系。 (2)根据变压器的匝数比推出原、副线圈的电流比,求得k值。 (3)根据变压器的电压关系和电路的特点求得电压。 【解析】选A。由于变压器的匝数比为3∶1,可得原、副线圈的电流比为1∶3,根据 P=I2R可知原、副线圈中电阻R的功率之比k=,由=,其中U 2=U,则U 1 =3U,结合原、 副线圈的电流比为1∶3,可得原线圈中电阻R上的电压为,所以有3U+=220V,得

U=66V,故选项A正确。 【补偿训练】如图所示为理想变压器原线圈所接正弦交流电源两端的电压—时间图 像。原、副线圈匝数比n 1∶n 2 =10∶1,串联在原线圈电路中的交流电流表的示数为1A, 则( ) A.变压器原线圈所接交流电压的有效值为311 V B.变压器输出端所接电压表的示数为22V C.变压器输出端交变电流的频率为50 Hz D.变压器的输出功率为220W 【解析】选C。变压器原线圈所接交流电压的有效值为U 1 =V=220 V,选项A错误; 变压器输出端所接电压表的示数为U 2=U 1 =×220V=22 V,选项B错误;变压器输 出端交变电流的频率为f=Hz=50 Hz,选项C正确;变压器的输出功率等于输入功 率,P=U 1I 1 =220×1W=220 W,选项D错误。故选C。 3.(多选)一理想变压器原、副线圈的匝数比为10∶1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P为滑动变阻器的滑片。下列说法正确的是( )

变压器安装及系统调试流程

变压器安装及系统调试 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

变压器安装及系统调试 施工工序:外观检查→基础安装→本体就位→器身检查→附件安装→变压器试验→系统模拟试验→空载试验 k、模拟实验: 依据设计图检查控制设备及二次回路。 检查安装及效验记录。 做短路、过流、重瓦斯、信号、合分闸二次回路传动试验并做记录,动作结果要正确。 l、对绝缘有怀疑时,进行局部放电实验。 m、冲击合闸试验: 要在盘柜试验和模拟试验完全合格的基础上才能进行。 做冲击合闸实验前要对变压器的所有资料进行检查并保证变压器清洁。 加额定电压,合闸5次,每次间隔5分钟无异常后方可送电运行。 101变压器系统调试该如何套用定额? 电力变压器系统调试,包括三相和单相电力变压器系统调试两个分项工程,都是按变压器容量区分规格,分别以“系统”为单位计算。 三相及单相电力变压器系统调试工作内容包括变压器、断路器、互感器、隔离开关、风冷及油循环装置等一、二次回路的调试及空载投入试验。 10kV以下送配电调试: 1. 送配电调试子目适用于10千伏以下送配电回路的系统调试,如从配电装置至分配电箱的供电回路。但从配电箱至电动机的供电回路已包括在电动机的系统调试子目之内。

2. 供电系统调试包括系统内的电缆试验、绝缘子耐压、线路绝缘测试及其一回或二回线路中所有断路器、继电保护、测量仪表的试验等全套调试工作。 3. 一般仪表(如电压表、电流表)、保护互感器的试验均包括在相应的送配电设备系统调试内;计量用仪表、互感器的校验由供电部门统一进行,费用计取按相应规定。 2变压器送电调试运行实验内容 (1)测量线圈连同套管一起的直流电阻。 (2)检查所有分接头的变压比。 (3)检查三相变压器的联结组标号和单相变压器引出线极性。 (4)测 量线圈同套管一起的绝缘电阻。 (5)线圈连同套管一起做交流耐压试验。 (6)油箱中绝 缘油的试验。变压器送电调试运行前的检查 (1)检查各种交接试验单据是否齐全、真实合格,变压器一、二次引线相位、相色正确,接地线等压接触良好。 (2)变压器应清理擦拭干净,顶盖上无遗留杂物,本体及附体无缺损,且不渗油。 (3)通风设施安装完毕,工作正常,事故排油设施完好,消防设施齐全。 (4)油浸变压器的油系统油门应拉开,油门指示正确,油位正常。 (5)油浸变压器的电压切换位置处于正常电压档位。 (6)保护装置整定值符 合规定要求,操作及联动试验正常。变压器送电调试运行 (1)变压器空载投入冲击试验。即变压器不带负荷投入,所有负荷侧开关应全部拉开。必须进行全电压三次冲击实验,以考核变压器的绝缘和保护装置,第一次投入时由高压侧投入,受电后持续时间不少于10 min,经检查无异常情况后,再每隔5 min进行冲击一次,励磁涌流不应引起保护装置动作。最后一次进行空载运行24 h。 (2)变压器空载运行检查方法主要是听声音。正常时发出嗡嗡声,而异常时有以下几种情况发生:声音比较大而均匀时,可能是外加电压比较高;声音比较大而嘈杂时,可能是芯部有松动;有吱吱放电声音,可能是芯部和套管表面有闪络;有爆裂声响,可能是芯部击穿现象。 (3)在冲击试验中操作人员应注意观察冲击电流、空载电流、—、二次测电压、变压器油温度等,做好记录。变压器半负荷调试运行 (1)经过空载冲击试验后,可在空载运行24 h~28 h,如确认无异常便可带半负荷进行运行。 (2)将变

主变压器中性点过电压保护配置原则

主变压器中性点过电压保护配置原则 由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值; ———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB 311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为0.85,参考GB311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为1.0,则中性点综合耐受雷电冲击裕度系数为0.6,综合耐受工频裕度系数为0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有:单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系统最大暂时工频过电压下间隙动作,满足保护中性点的要求。推荐采用此保护配置方式。 单独采用Y1.5 W-48/109型避雷器时,避雷器可以耐受中性点有效接地系统最大暂时工频过电压,但裕度较小。在中性点不接地系统最大暂时工频过电压下,避雷器可能损坏。 110 mm间隙与Y1.5 W-48/109型避雷器并联时,满足保护中性点要求。但Y1.5 W -48/109型避雷器非标准型号,在避雷器残压作用下,间隙可能同时动作;在中性点工频

相关文档