文档库 最新最全的文档下载
当前位置:文档库 › 探究电力系统自动化的实现及其发展 文荣基

探究电力系统自动化的实现及其发展 文荣基

探究电力系统自动化的实现及其发展 文荣基
探究电力系统自动化的实现及其发展 文荣基

探究电力系统自动化的实现及其发展文荣基

发表时间:2019-09-18T08:42:32.600Z 来源:《电力设备》2019年第7期作者:文荣基

[导读] 摘要:我国经济在近年来得到了快速发展,经济的发展也推动了社会的不断进步,经济的发展和社会的进步都是离不开能源的供应的,电能就是非常重要的能源,电力企业为了更好的进行能源的供应,在不断的实现电力系统自动化,电力系统实现自动化可以更好的保证电力系统的运行稳定和运行的安全。

(广州市电力工程有限公司 510260)

摘要:我国经济在近年来得到了快速发展,经济的发展也推动了社会的不断进步,经济的发展和社会的进步都是离不开能源的供应的,电能就是非常重要的能源,电力企业为了更好的进行能源的供应,在不断的实现电力系统自动化,电力系统实现自动化可以更好的保证电力系统的运行稳定和运行的安全。电力系统自动化装置在类型和型号上在不断的进行改变,对电力系统的设备控制可以实现更好的调控。

关键词:电力系统;自动化;实现;发展

引言

自动化是从工业生产中衍生出来的,经过使用机械抑或装置开展检查、生产、加工工作来取代人工的操纵。能够在很大程度上提升产品品质,完善劳动环境。伴随着电子计算机措施的出现,自动化有着更宽广的前进空间。电力系统是电能生产、运送和分配以及消费的各式措施构成的有机的统一的一个整体。为保障电力系统安稳安全的运营,一定要提升电力系统的自动化水准。

1 电力系统自动化技术的基本内容

电力系统是将其他形式的能量转为电能,供人们生产、生活需要的装置总称。为了实现这一目的,电力系统不仅要负责电能的生产,还要承担着电能的输送、变压、配置等功能,只有经过上述一系列环节,发电厂生产出来的电能才能够转换为适合用电单位电力使用需求的规格,从而安全稳定地投入到日常生产、生活中去。这个过程涉及海量的数据采集、运算和管理,需要对电能进行若干次的调整、保护,对电力运行进行频繁精准的调度和控制,以此确保电能质量和供电安全。电力系统自动化的一个重要特征,是减少电力系统运行过程中人为因素的影响,通过预设好的程序对电力系统实现自动运行和管理,对系统运行中发生的问题进行自动化处理,从而提高系统运行效率、反应速度,使得电力系统运行更加趋向于安全、准确和稳定。从具体执行层面上看,电力系统自动化系管理包含电脑生产、电能输送和配置等环节,在这些环节和过中,电力系统自动化也有着各自不同的表现形式,主要的有电网调度自动化、火力发电厂自动化、水力发电站综合自动化、电力系统信息传输自动化、电力系统反事故自动化、供电系统自动化、电力工业管理系统的自动化等,这些自动化系统彼此联系并相互协调,从而构成一个分层式的电力系统自动化管理体系。比如一个地区的变电站和发电厂及其位于中间部分的省、市调度中心、枢纽变电站就构成了一个自动化管理系统中,最高级别的调度中心负责对整个系统的调度与管理,是整个系统的管理中枢。

2电力系统的自动化实现分析

2.1电力生产调度环节的自动化

电力系统自动化中最关键的一步是电力生产调度的自动化,这是整个电力系统自动化的关键基础。在此基础上,可以进行有效的自动区分,以帮助电力系统的有效运行。对于电力生产调度的自动化过程而言,最为主要的是对电网内部的相关数据进行收集,主要涉及地区电力需求,具体用电高峰期等等,再对数据进行分析,作为电网生产调度的主要依据。此外在数据收集分析中,不仅仅作为电力生产调度的依据,还需要对数据的可靠性进行分析,判断数据采集的准确性,还有利用各部分数据的监控,判断电力系统内部的运行是否出现问题。在自动化电源系统中,每个部件的数据用于实现电力系统的安全和有效部署。为了解决传统电力系统对于区域性电网的控制程度不足,因此对于小范围的县、市单位电力系统进行自动化发展,这要归功于计算机小型化和高效率的发展,有助于实施国家电力系统自动化调度。

2.2电力运输环节的自动化

电力输送环节的自动化主要体现在变电站的自动化,变电站与输电线路之间的通信以及电力终端桥梁的自动化结构。利用自动化技术减少变电站管理的需要的人力资源,对于保障电力运输的稳定性与效率。我国国土面积很大,因此对于电力运输管理难度较大,需要人力完成有两大问题,一是成本问题,这是由于传统人工成本难以避免。其二是质量问题,由于人工长期操作难以避免一些疏忽错误的产生。自动化技术的使用可以实现某些变电站的无人操作,其运行效果更稳定,更安全。利用计算机设备代替传统的人工操作,还可以帮助实现对于电力运输各个节点的严密监控,因此电力运输通过数字化与网络化集中,减轻劳动者的工作强度,提高对于电力系统网络的稳定性监控,因此,变电站开发的自动化是电力系统的关键部分。

2.3终端电力分配的自动化

电力系统的最为复杂的一点在于需要做好对于分散的用户进行供电,需要配置分散的控制系统,利用多个计算机对于小节点的供电进行分别性的回控工作,并且可以便于数据采集与集中分析,分布式电力系统自动化控制子系统是确保电力系统自动化的重要基石。对于终端的数据收集要有效的将数据与分析报告发送的各个部门,对于系统的各个方面进行再一次分析,对于暴露出的故障,应及时进行反馈处理,以确保电力系统运行的稳定性。

3电力系统自动化的发展

3.1信息技术的进一步融入

电力系统的自动化还需要进一步整合到信息技术中,以充分利用计算机和通信技术。在信息时代,一个领域的发展如何与信息技术密切相关,而电力系统的自动化需要信息技术的发展。自动化技术可以在信息技术的发展下实现电力系统的智能化发展,计算机计算功能更加强大。配合一些自动化机械,将电力系统的原因工作体系进一步改变,将原有复杂的人工工作转变为网络智能化控制,完成机械自动化以提高电力系统的效率。通过网络连接的进一步改进可以帮助电力系统使用信息效率并实现电力系统的精确管理。电力系统的自动化发展正在走向多样化,涉及的技术会更加复杂,稳定性与效率也会不断增长。

3.2电力基础设施自动化的完善

电力系统的自动化需要进一步普及基础设施的自动化,需要对电力系统的基层需求进行多样化的研究和分析。电力调度系统的检测能力对于缓解我国能源分布不均衡问题有着重要意义,其中包括对于动态信息的实时检测与静态信息的定时反馈。为了更加高效的帮助检测

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

《电力系统自动化》考试复习题及答案

《电力系统自动化》课程考试复习内容-答案 整理:史跃鹏2011.7.17 2011学年第二学期 说明:电气工程专业课为:《电力电子技术》《自动控制技术》《电力系统分析》,要求平均分大于75分才能获得学位。1.请简述电力系统的主要特点和运行的基本要求。 参考书:第1章“电力系统特点和基本要求” 答:特点: 1、与国民经济、人民日常生活联系紧密。 2、系统结构庞大复杂 3、各种暂态过程非常短促 4、电能不能大量储存 基本要求: 1、保证供电的可靠性 2、保证良好的电能质量 3、保证系统运行的经济性。 2.请简述电力系统自动化的主要研究内容。 参考书:第1章“电力系统自动化主要内容” 答:1、电力系统调度自动化 2、电厂动力机械自动化 3、变电站自动化 4、电力系统自动装置 3.准同期并列的三要素是什么? 参考书:第2章第1节“二、准同期并列”中的“准同期并列的理想条件” 答: 1.并列开关两侧的电压相等, 2.并列开关两侧电源的频率相同, 3.并列开关两侧电压的相位角相同。

4.并列操作瞬间如果存在相位差,请分析准同期并列操作对系统的影响。 参考书:第2章 第1节“二、准同期并列”中的“同期并列误差对并列的影响”的“合闸相角差对并列的影响” 答:出现因相位不等的电压差,相位差180度时,电压差最大,冲击电流可以达到额定电流的20倍,可能损坏定子绕组端部,相位差在0-180度之间时,冲剂电流既有有功分量,也有无功分量,在发电机轴上产生冲击力矩。 5.并列操作瞬间如果存在频率差,请分析准同期并列操作对系统的影响。 参考书:第2章 第1节“二、准同期并列”中的“准同期并列误差对并列的影响”的“合闸频率差对并列的影响” 答:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um 之间。这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时小变化,使发电机振动。频率差大时,无法拉入同步。 6.并列操作瞬间如果存在电压幅值差,请分析准同期并列操作对系统的影响。 参考书:第2章 第1节“二、准同期并列”中的“准同期并列误差对并列的影响”的“合闸电压幅值差对并列的影响” 答:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 7.已知发电机准同期并列允许压差为额定电压的5%,允许频差为额定频率的0.2%,当图1所示Ts 分别为9s 和11s 时,请分析正弦整步电压波形是否满足并列操作的压差和频差条件。 参考书:第2章 第2节“一、脉动电压” 答案:当Ts =9s 时,压差条件满足,频差条件不满足; 当Ts =11s 时,压差和频差条件均满足。 8.图2所示两种频差情况的U t.ad (恒定越前时间脉冲)与U δ.ad (恒定越前相角脉冲)关系波形图,通过比较U t.ad 与U δ.ad 顺序检查频差大小,请问哪种频差情 U 图1 正弦整步电压波形

电力系统自动化的应用及发展趋势

电力系统自动化的应用及发展趋势 摘要:在电力事业不断发展的形势下,作为一项重要且不容忽视的现代科学技术,电力系统自动化能够在推进电力系统的发展方面发挥积极的作用。随着科学 水平的提升和社会的进步,电力系统自动化技术引起了社会各界的密切关注并且 有了更加广泛的应用,对于深入研究电力系统有着非同一般的意义。基于此,本 文就电力系统自动化的相关应用及其发展趋势做了一定深度的研究,希望为有关 的研究者提供一定意义上的理论参考。 关键词:电力系统自动化;应用;发展趋势 电力行业是一个国家国民经济的重大命脉,它对国家的商业、军事、生产、交通等各个 行业的发展都有着极大的影响,只有拥有一套“安全、稳定、优质”的电力系统,才能保证国 民经济快速健康稳步发展。电力系统自动化的发展和不断壮大,是国民经济和社会稳步发展 的必要条件,也是一个国家现代化程度的体现。 一、电力系统自动化概述 电力系统主要由发电、变电、输电、配电和用电等环节组成,其原理是通过发电设备把 风能、水能、光能等转化为电能,并经变电系统、输电系统和配电系统将电能传送给用电设备,以实现电能向热能、光能的转化,从而满足群众的生活、工作和生产需要。电力系统自 动化是利用计算机操作系统,按照预先设计好的程序远程控制电力系统的设备,使其在没有 人直接参与的情况下自动完成各项任务,并自动修复电力设备在运行过程中出现的各种故障。电力系统自动化的目的是更加安全、高效、快捷地利用电能,对发电、送电和配电过程进行 自动控制、自动调度,从而实现对电力系统的自动化管理。我国电力系统自动化主要包括变 电站自动化及智能保护、电力系统管理自动化、电力系统自动化技术的应用、人工智能在电 力系统中的应用、电气设备自动检测及故障诊断和修复等。电力系统自动化按照电能的生产 和分配可分为发电系统自动化、供电系统自动化、电网调度自动化、电力信息传送自动化、 电力事故处理自动化、电力管理自动化等。 二、电力系统自动化的相关应用 1、变电站自动化 在电力系统中,变电站是联系发电厂与电力用户的主要环节。和传统变电站工作相比, 变电站自动化对人工监视和人工操作在很大程度上实现了自动化,并且对于变电站的监控范 围也有了很大程度的扩大,大大地提高了变电站的的运行以及工作效率。在自动化应用中常 见的是采用计算机技术来代替电力信号电缆,不断的实现计算机操作的自动化和屏幕化,从 运行管理和记录的统计方面全面实现自动化。 2、发电厂自动化 应用自动化技术,不仅能够使发电厂的发电量受到严格的控制,还能维护相关电力设备 的高效、稳定以及安全运行,促进电力设备以及系统的自动化。除此以外,变电站在电力系 统中还能与相关的网络技术共同实现电能的配备以及输送,紧密的连接用户以及电厂,更好 的了解以及满足用户的多元化需求。因此要实现发电厂人机的一体化,进一步的改善生产模式,提高自动化水平以及电力生产的效率,就必须有机的融合网络技术以及电力自动化技术,如此才能大大的提高电厂的效率,赋予电能更高的质量,使发电厂更好的监控电力设备,维 护设备的正常运行。 3、电网调度自动化 电力系统自动化的重要部分之一就是电网调度的自动化,在我国电网调度自动化中,可 按级别分为国家、地区、省级、和县级的电网调度。电网调度自动化实现了电力生产过程中 的数据实时采集,能够科学地估计和分析电力系统状态,从而使电力负荷预测、自动发电控制、经济调度等都得到了充分的实现,并且逐渐适应了电力市场中的运营需求。 4、配电自动化 配电系统是连接用户和供电部门的纽带,配电系统的管理直接关系着电力系统的安全、 经济和高效运行。目前我国配电网覆盖区域大,在空间和布局上有不同的要求,其中配电设

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

电力系统自动化习题及答案

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网效果 上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是多 少? 理想条件:实际条件(待并发电机与系统) 幅值相等:UG=UX 电压差Us不能超过额定电压的5%-10% 频率相等:ωG=ωX 频率差不超过额定的0.2%-0.5% 相角相等:δe=0(δG=δX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别有何 影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2Um之间。 这种瞬时值的幅值有规律地时大时小变化的电压成为拍振电压。它产生的 拍振电流也时大时小变化,有功分量和转子电流作用产生的力矩也时大时 小变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得?

5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将Ug和Ux的正弦波转变成与其频率和相位相同的一系列方波,其幅值与Ug和Ux无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电压Us和&e的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 Step 1:计算Usmin,如果Usmin≤USy转Step 2;否则调整G来改变UG Step 2:ωsy的计算 Step 3:如果ωs≤ωsy继续Step 4;否则调整G来改变ωG,ωs=ωG-ωX Step 4:δe的计算:δe=tYJ?ωs Step5:δe≤δey合闸;否则调整G来改变ωG,从而δe 8、简述同步发电机并列后由不同步到同步的过程(要求画图配合说明)。 书上第7页,图1-4 说明:1、如果发电机电压Ug超前电网电压Ux,发电机发出功率,则发电机将被制动减速,当Ug落后Ux,发电机吸收无功,则发电机加速。 2、当发电机刚并入时处于a电,为超前情况,Ws下降---到达b点,Wg=Wx,&e最 大,W下降,&e下降——处于原点,Ug=Ux----&e=0,Wg<Wx——过原点后, &e<0,——Wg上升 总之。A-b-0-c,c-0-a,由于阻尼等因素影响,摆动幅度逐渐减小到同步角9、准同期并列为什么要在δ=0之前提前发合闸脉冲?提前时间取决于什么?恒定越前时间并列装置的恒定越前时间如何设定? 10、恒定越前时间并列装置如何检测ωs<ωSY?

电力系统自动化试题

一、单项选择题(本大题共10小题,每小题1.5分,共15分)在每小题列出的四个选项中只有一个选项是 符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.衡量电能质量的重要指标是( C ) A.有功功率、无功功率 B.功率因数 C.电压、频率和波形 D.有功电度和无功电度 2.为防止断路器多次重合于永久性故障,重合闸装置接线中设置了( C ) A.方向继电器 B.差动继电器 C.防跳继电器 D.阻抗继电器 3.我国电力系统220KV线路的故障类型中,有接近90%的故障是( C ) A.三相短路 B.两相短路 C.单相接地短路 D.两相接地短路 4.准同步并列条件规定的允许电压差为不超过额定电压的( B ) A. 3%,5% B. 5%,10% C. 10%,15% D. 15%,20% 5.与正弦整步电压最小值所对应的相角差一定等于( A ) A. 0度 B. 90度 C. 180度 D. 270度 6.具有正调差特性的同步发电机,当输出的无功电流增大时,机端电压( D ) A.不变 B.增大 C.以上两条都有可能 D.减小 7.励磁绕组上的瞬时过电压,会(C ) A.烧坏转子铁芯 B.危害系统运行的稳定性 C.危害励磁绕组绝缘 D.以上三项都有 8.自动励磁调节器的强励倍数一般取( D )

A. 2—2.5 B. 2.5—3 C. 1.2—1.6 D. 1.6—2.0 9.在励磁调节器中,若电压测量采用12相桥式整流电路,则选频滤波电路的滤波频率应选为 ( D )Hz A. 50 B. 300 C. 600 D. 1200 10.机端并联运行的各发电机组的调差特性( D ) A.可以为负 B.可以为零 C.必须为零 D.必须为正 第二部分非选择题 二、名词解释(本大题共7小题,每小题2分,共14分) 11.瞬时性故障 11.当故障线路由继电保护动作与电源断开后,如果故障点经过去游离,电弧熄灭,绝缘可以自动恢复, 故障随即自动消除,则称此类故障为瞬时性故障(或暂时性故障)。这时,如果重新使断路器合闸,往往能够 恢复供电。 12.准同步并列 12.在同步发电机的电压幅值、频率、相位分别与并列点系统侧电压的幅值、频率和相位均接近相等时, 将发电机断路器合闸,完成并列操作,称这种并列为准同步并列。 13.正弦整步电压 13.滑差电压经整流滤波电路处理后得到的滑差电压包络线即正弦整步电压。 14.自并励

浅谈电力系统自动化技术的现状及发展趋势 陈祖耀

浅谈电力系统自动化技术的现状及发展趋势陈祖耀 发表时间:2018-07-31T10:35:09.733Z 来源:《基层建设》2018年第18期作者:陈祖耀[导读] 摘要:随着科学技术和经济的快速发展,电力系统自动化技术的作用越来越重要。 国网福鼎市供电公司福建宁德 355200 摘要:随着科学技术和经济的快速发展,电力系统自动化技术的作用越来越重要。电力系统自动化技术作为一项新兴技术实现了电力技术与电子信息技术的融合,对国民经济的发展起到了巨大的推动作用,对电力传输系统的发展产生了深远的影响。目前,电力系统自动化技术已渗透到电力系统的各个方面,取得了显着成效。本文介绍了电力系统自动化技术的现状,并展望了其发展趋势。 关键词:电力系统自动化;技术现状;发展趋势引言 中国目前电力严重短缺。如何采用先进的管理方法和模式实现电力系统的全行业遥控,遥测,遥调,遥信和遥控,已成为保证电力系统高效,安全,可持续运行的重要课题。就目前的发展趋势而言,电网的不断发展,电网运行管理的需求在不断变化。为确保电力生产安全有序发展,有必要进一步将电力系统的自动化控制技术应用于中国电力系统,以促进中国电力系统的健康发展。 1电力系统自动化内涵 电力系统一般由发电,输电,变电站,供电等几个环节联结起来,各控制系统有自己的联系。电力系统自动化不仅对电力供应的稳定性,安全性和可持续性起着决定性的作用,而且可以减少电力系统工人的数量,减少劳动强度,降低事故率,延长设备使用寿命,提高设备性能,电网管理和维护快捷方便。最重要的是电力系统自动化能够有效防止电力系统事故,如大面积停电等严重连锁事故,确保电力支持经济运行稳定可靠,意义长远而深远。电力系统自动化的主要特点是:电力系统是一个动态系统,具有模型不确定性和强非线性;电力系统需要高度的适应性;电力系统自动化难以控制的不确定因素多因素。电力系统自动化的困难包括:电力系统自动化中的多目标优化和多工作模式下故障条件下的稳健性;单个链路上更多的电力系统链路和控制需要该链路和其他链路的协调和配合。电力系统自动化技术应用于电力调度系统,配电网系统和变电站系统。电力调度系统自动化技术的主要应用是电荷预测,发电规划,网络拓扑分析,电力系统状态评估,暂态静态安全分析和自控发电等功能。配电系统中的有线通信促进了内部信息的交换,并提高了实时控制的性能,稳定性,效率和可靠性。变电站系统自动化技术可以收集来自电源线的实时参数,如电流,电压和电抗。通过对主控终端的分析,可以对远端供电设备进行调整,以满足客户的用电需求,保证供电质量。同时,我们可以分析电力需求的趋势,预测趋势并更好地调配电力。 2电力自动化技术的探讨分析 2.1无线技术 无线技术可以实现远程控制和管理,具有高度的信息共享,还可以减少线路的铺设。目前有很多无线技术,但由于无线信号在空间传输过程中所携带的带宽,无线信号的物理障碍,抗干扰,可扩展性和投资成本的易感性随着无线网络技术的不同而不同,因此适合的电力只有几种自动化。用户根据无线技术的环境选择适当的无线技术。目前的无线技术主要是GPRS/GSM,ZIEBB,WIMAX,WIFI和AdHoc 网络,但现在发展最快的网络是WIMAX和WIFI,因为它们在带宽和安全性方面更好,灵活性高,成本更低。 2.2信息化技术 电力信息化是电力自动化的核心,包括发电,调度自动化和管理信息自动化。配备电脑监控系统的发电厂和变电站,实现少数值班人员甚至无人值班,可以改善电厂自动化生产过程中的自动化监控系统。 2.3信息安全技术 现代人的生活离不开电力。电力是社会和经济发展的生命线。电力系统运行的安全和稳定对社会经济发展至关重要。电力系统的安全性是一个世界性的问题,目前尚未解决。尽管电力系统不太可能发生故障,但如果发生故障,将会造成巨大的经济损失和社会影响。在我国,电力系统发生重大事故。现在我们局已经试点建设智能电网,智能电网可以最大限度地减少电力系统故障的发生,减少停电造成的损失。中国经济高速发展,电力系统也迎来了前所未有的速度和发展规模,三峡电站,西电东送等一系列重大电网项目已建成并投入运行,电网安全,设备安全,电力工作者被提出更高的更新要求。 2.4传动技术 动力传动技术主要是实现变频调速,主变频器实现变频调速。变频器是节能减排的首选,已被广泛应用于电力设备和技术上也相当成熟。由于其在节能降耗方面的作用,变频器已成为电力行业改革技术的首要目标。ABB目前是该行业最大的电力自动化领导者,建立了世界上最大的变压器制造基地和绝缘子制造中心。该公司的变频器,PLC,仪器仪表等行业得到了很好的应用。 3电力系统自动化技术发展的现状 3.1自动化技术在电网调度中的应用 现代电网调度自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测,采集和分析,完成系统的高效运行。电网调度自动化操作通过自动控制技术的应用,实现对电网运行状态的实时监控,保证电网运行的质量和可靠性,实现电能的充足供应,使人们需求得到满足。在自动化技术应用的同时,能源损失最小化,保证了电源的经济和环保,实现了节能。 3.2自动化技术在配电网络中的应用 计算机技术在配电网自动化控制中发挥着重要作用。随着电网技术的不断发展,现代化程度和配电网络化程度越来越高,实现了配电网主站,变电站和轻轨终端三层结构,配电网发展,通信传输速度有保证,自动化系统的性能得到提高。加强系统继电保护控制,减少大面积停电现象,保证供电,提高电力系统可靠性和安全性,优化电网事故快速消除机制,科学事故应急响应机制建立,停电时间明显缩短;电力公司要加强对电力系统的控制,使电力系统的运行状况更加方便了解;正常值班模式被打破,无人值班的电厂出现,工作人员的工作效率大大提高。 3.3自动化技术在变电系统中的应用 通过计算机技术,通信技术和网络技术的应用,变电站系统实现了对二次系统的监控。通过功能设计的优化和科学综合系统的协调,可以方便地收集设备的运行信息。 4电力系统自动化技术发展的展望

浅谈电力系统自动化技术的现状及发展趋势

浅谈电力系统自动化技术的现状及发展趋势 【摘要】随着科学技术和经济的迅速发展,电力系统自动化技术发挥的作用越来越重要。电力系统自动化技术作为一种新技术实现了电力技术和电子信息技术的融合,对国民经济的发展发挥了巨大的促进作用,为输变电系统的发展产生了深远的影响。目前电力系统自动化技术已经深入到电力系统的各个方面,并取得了显著的效果。本文对电力系统自动化技术的发展现状进行了介绍,并对其发展趋势进行了展望。 【关键词】电力系统自动化技术现状发展趋势 一、概述 电力系统的智能化控制是我国电力系统发展的重要方向,电力系统智能控制的实现是电力系统完整控制的重要标志。电力系统的发展壮大离不开自动化技术的支持,电力系统自动化技术在电力系统运行控制中发挥着不可替代的作用。 二、电力系统自动化技术发展的现状 我国的电力系统自动化技术在建国之初就有了初步的发展,并保持了快速的发展趋势,互联网技术和计算机计技术的迅猛发展为电力系统自动化技术的发展提供了巨大的

技术支持。 2.1自动化技术在电网调度中的应用 电网调度的现代化自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测、收集和分析,并完成系统操作的高效进行。电网的调度自动化操作,通过自动控制技术的应用,实现电网运行状态的实时监测,确保了电网运行的质量和可靠性,实现了电能的充分供应,使人们的需求得到满足。[1]自动化技术应用的同时,将能源损耗达到最低,确保了供电的经济性和环保性,实现了电能的节约。 2.2自动化技术在配电网络中的应用 计算机技术在配电网络的自动化控制中发挥着重要作用,随着电网技术的不断发展,配电系统的现代化和网络化程度越来越高,实现了配电网主站、子站和光线终端组成的三层结构,配电系统网络化的发展,使通信传输的速度得到保障,自动化系统的性能得到提高。系统的继电保护控制得到加强,大面积停电现象减少,电力供应得到保障,电力系统的可靠性和安全性得到提高,电网事故快速排除机制得到优化,科学的事故紧急应对机制得以建立,故障停电时间明显缩短;电力企业对电力系统的掌控能力加强,对电力系统运行状态的了解更加便利;常规的值班方式被打破,无人职守电站得以出现,工作人员的效率大大提高。[2]

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

电力系统自动化未来发展方向

一、电力系统自动化技术 1.电网调度自动化。电网调度自动化主要组成部分由电网调度控制中心的汁算机网络系统、工作站、服务器、大屏蔽显示器、打印设备、通过电力系统专用广域网连结的下级电网调度控制中心、调度范围内的发电厂、变电站终端设备等构成。电网调度自动化的主要功能是电力生产过程实时数据采集与监控电网运行安全分析、电力系统状态估计、电力负荷予测、自动发电控制、自动经济调度并适应电力市场运营的需求等。 2.变电站自动化。电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。 3.发电厂分散测控系统(DCS)。 过程控制单元(PCU)由可冗余配置的主控模件(MCU)和智能l/O模件组成。MCU模件通过冗余的l/O总线与智能l/O模件通讯。PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。 运行员工作站(OS)和工程师工作站(ES)提供了人机接口。运行员工作站接收PCU发来的信息和向PCU发出指令,为运行操作人员提供监视和控制机组运行的手段。工程师工作站为维护工程师提供系统组态设置和修改、系统诊断和维护等手段。 二、电力系统自动化总的发展趋势 (一)当今电力系统的自动控制技术正趋向于 1、在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 2、在设计分析上日益要求面对多机系统模型来处理问题。 3、在理论工具上越来越多地借助于现代控制理论。 4、在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (二)整个电力系统自动化的发展则趋向于 1、由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 2、由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 3、由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 4、装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 5、追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 2由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为目标向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 三、具有变革性重要影响的三项新技术 (一)电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:1、电力系统是一个具有强非线性的、变参

电力系统自动化

计算题。(1题2分 2-8每题3分,9-10每题6分,共35分) 1.某地区2007年被调度部门确认的事故遥信年动作总次数为120次,拒动1次,误动1次,求地区2007年事故遥信年动作正确率为多少?(答案小数点后保留两位) 解:2007年事故遥信年动作正确次数:120-(1+1)=118 Ayx=118/120=98.33% 2.一条10KV配电线路的二次电压为100V,二次电流为3A,功率因数为0.8,三相电压对称,三相负荷平衡,其中电压变比为10000/100,电流变比为300/5,试计算测得的二次功率,并计算其折算到一次侧的功率。 解:二次功率P2= 1.732UICOSφ=1.732×100×3×0.8≈415.68(W) 一次功率P1=415.68×(10000÷100)×(300÷5)=2494080(W)≈ 2.49(MW) 3.一台UPS主机为10kVA,问要达到10kVA4h的配置要求,约需要配置多少节12V100Ah的蓄电池? 解:1)UPS主机要求配置的总VAh数为:10kV A×4h=40kV Ah=40000V Ah;2)每节电池的V Ah数为:12V×100Ah=1200V Ah; 3)需要的电池节数:40000÷1200=33.33节,约需34节。 4.某一线路的TA变比为300/5,当功率源中的电流源输入变送器的电流为4A时,调度端监控系统显示数值为多少这一路遥测才为合格(综合误差<1.5%) 由综合误差<1.5%知300A×1.5%=4.5A 所以,在标准值为±4.5A之内均为合格。又因输入4A,工程量标准值为 300/5 ×4=240(A) 240+4.5=244.5(A) 240-4.5=235.5(A)监控系统显示电流值大于235.5A,小于244.5A均为合格。 5.某调度自动化系统包括10个厂站,9月12日发生3站远动通道故障各3小时,9月20日发生1站RTU故障4小时,现求出该系统本月远动系统月运行率、远动装置月可用率和调度日报月合格率。(小数后保留2位) 远动系统月运行率:(10×30×24-3×3-4)/10×30×24×100%=99.82%;远动装置月可用率:(10×30×24-4)/10×30×24×100%=99.94%;调度日报月合格率(10×30-4)/10

电力系统自动化技术

学习中心/函授站_ 姓名学号 西安电子科技大学网络与继续教育学院 2017学年下学期 《电力系统自动化技术》期末考试试题 (综合大作业) 考试说明: 1、大作业于2017年10月19日下发,2017年11月4日交回; 2、考试必须独立完成,如发现抄袭、雷同均按零分计; 3、答案须手写完成,要求字迹工整、卷面干净。 一、选择题(每小题2分,共20分) 1.当导前时间脉冲后于导前相角脉冲到来时,可判定()。 A.频差过大B.频差满足条件 C.发电机频率高于系统频率D.发电机频率低于系统频率 2.线性整步电压的周期与发电机和系统之间的频率差()。 A.无关 B.有时无关 C.成正比关系 D.成反比关系 3.机端直接并列运行的发电机的外特性一定不是()。 A.负调差特性 B.正调差特性 C.无差特性 D.正调差特性和无差特性 4.可控硅励磁装置,当控制电压越大时,可控硅的控制角 ( ),输出励磁电流()。 A.越大越大 B.越大越小 C.越小越大 D.越小越小 5. 构成调差单元不需要的元器件是()。 A.测量变压器B.电流互感器 C.电阻器D.电容器 6.通常要求调差单元能灵敏反应()。 A.发电机电压B.励磁电流 C.有功电流D.无功电流 7.电力系统有功负荷的静态频率特性曲线是()。

A.单调上升的B.单调下降的 C.没有单调性的D.水平直线 8.自动低频减负荷装置的动作延时一般为()。 A.0.1~0.2秒B.0.2~0.3秒 C.0.5~1.0秒D.1.0~1.5秒 9.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。 A.相同B.各不相同 C.一部分相同,一部分不同D.稳定 10.造成系统频率下降的原因是()。 A.无功功率过剩B.无功功率不足 C.有功功率过剩D.有功功率不足 二、名词解释(每小题5分,共25分) 1.远方终端 2.低频减负荷装置 3.整步电压 4.准同期 5.AGC 三、填空题(每空1分,共15分) 1.低频减负荷装置的___________应由系统所允许的最低频率下限确定。 2. 在励磁调节器中,设置____________进行发电机外特性的调差系数的调整,实际中发电机一般采用____________。 3.滑差周期的大小反映发电机与系统之间的大小,滑差周期大表示。 4.线性整步电压与时间具有关系,自动准同步装置中采用的线性整步电压通常为。 5.微机应用于发电机自动准同步并列,可以通过直接比较鉴别频差方向。 6.与同步发电机励磁回路电压建立、及必要时是其电压的有关设备和电路总称为励磁系统。 7.直流励磁机共电的励磁方式可分为和两种励磁方式。 8.可能造成AFL误动作的原因有“系统短路故障时造成频率下降,突然切成机组或、供电电源中断时。 9.积差法实现电力系统有功功率调节时,由于,造成调频过程缓慢。 四、简答题(每小题5分,共15分) 1.断路器合闸脉冲的导前时间应怎么考虑?为什么是恒定导前时间? 2.电压时间型分段器有哪两种功能? 3. 自动按频率减负荷装置为什么要分级动作? 五、综合分析题(每小题10分,共10分) 用向量图分析发电机并列不满足理想准同步条件时冲击电流的性质和产生的后果?六、计算题(共15分) 某电厂有两台发电机在公共母线上并联运行,1#机组的额定功率为30MW,2#机组的额定功率为60MW。两台机组的额定功率因数都是0.8,调差系数均为0.04。若系统无功负荷波动,使得电厂的无功增量是总无功容量的20%,试问母线上的电压波动是多少?各机组承担的无功负荷增量是多少?

电力系统自动化

实验一励磁控制基本特性实验 一、实验目的 1)加深理解同步发电机励磁调节原理和励磁控制系统的基本任务。 2)了解微机励磁调节装置的基本控制方式。 3)掌握励磁调节装置的基本使用方法。 二、原理与说明 同步发电机励磁系统由励磁功率单元和励磁调节装置两部分组成,它们和同步发电机结合在一起构成一个闭环反馈控制系统,称为发电机励磁控制系统。励磁控制系统的三大基本任务是:稳定电压、合理分配无功功率和提高电力系统稳定性。 实验用的励磁控制系统示意图1-1如下所示,交流励磁电源取自380V市电,构成他励励磁系统,励磁系统的可控整流模块由TQLC-III微机自动励磁装置控制。 图1-1励磁控制系统示意图 TQLC-III型微机自动励磁装置的控制方式有四种:恒U g(恒机端电压方式,保持机端电压稳定)、恒I L(恒励磁电流方式,保持励磁电流稳定)、恒Q(恒无功方式,保持发电机输出的无功功率稳定)和恒α(恒控制角方式,保持控制角稳定),可以任选一种方式运行。恒Q和恒α方式一般在抢发无功的时候才投入。大多数情况下应选择恒电压方式运行,这样能满足发电机并网后调差要求,恒励流方式下并网的发电机不具备调

差特性。 同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。当操作励磁调节装置的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节装置的增减磁按钮,可以增加或减少发电机的无功输出。 无论是在“手动”还是“自动”方式下,都可以操作增减磁按钮,所不同的是调节的参数不同。在“自动”方式下,调节是的机端电压,也就是上下平移特性曲线,在“手动”方式下,改变的是励磁电流的大小,此时即使在并网的情况下,也不具备调差特性。 三、实验项目与方法 3.1不同α角对应的励磁电压测试 实验准备 1)将发电机组电动机三相电源插头与机组控制屏侧面“电动机出线”插座连接,发电机 三相输出电压插头与“发电机进线”插座连接,发电机励磁电源插头与“励磁出线”插座连接。 2)检查机组控制屏上各指示仪表的指针是否指在0位置,如不在则应调到0位置。 3)合上“调速励磁电源”开关(380V)。注意,一定要先合“220V电源”开关,再合“调 速励磁电源”开关,否则,励磁或调速输出的功率模块可能处于失控状态! 4)检查调速、同期、励磁三个装置液晶显示屏显示和面板指示灯状态,正常情况下,

相关文档
相关文档 最新文档