文档库 最新最全的文档下载
当前位置:文档库 › 汽车式起重机稳定性验算计算书

汽车式起重机稳定性验算计算书

汽车式起重机稳定性验算计算书
汽车式起重机稳定性验算计算书

汽车式起重机稳定性验算计算书计算依据:

1、《建筑施工起重吊装安全技术规范》JGJ276-2012

2、《起重吊装计算及安全技术》主编卜一德

一、计算参数

起重机是否安装支腿作业是起重机机身可转动部分的自重标准值

G1(不包括起重臂、吊钩、配重)(kN)

25 G1重心至旋转中心的距离l1(m) 1 起重机底盘部分的自重标准值G2(kN) 15 平衡重自重标准值G3(kN) 30 G3重心至回转中心的距离l3(m) 3

吊装荷载自重标准值Q1(包括构件自重和索具自重)(kN) 40 吊钩自重标准值Q

2(kN)

5

起重臂臂自重标准值Q3(kN) 10 旋转中心至支腿倾翻支点的距离a1(m) 2.5 旋转中心至起重臂下铰点的距离a2(m) 1.4 旋转中心至起重臂重心的距离a3(m) 2.9 支腿倾翻支点至起重臂重心的距离

x(m)

0.4 额定起重量时幅度R(m) 7 起重机稳定性安全系数允许值[K] 1.333

二、计算示意图

示意图

三、汽车式起重机稳定性验算

稳定性安全系数:

K=M r/M ov=[G1(l1+a1)+G2a1+G3(l3+a1)]/[(Q1+Q2)(R-a1)+Q3x]=[25×(1+2.5)+15×2.5+30×( 3+2.5)]/[(40+5)(7-2.5)+10×0.4]=1.404

K=1.404≥[K]=1.333

满足要求!

MQ100门式起重机总体计算书(附cad图)

MQ100 门式起重机总体 设 计 计 算 书 (共16页,含封面) XXX机械工程研究所 2004年4月

一. 总体计算 计算原则:MQ100门式起重机设计计算完全按《起重机设计规范》GB3811执行,并参照下列标准进行设计计算: 《塔式起重机设计规范》GB/T13752-92 《法国塔式起重机设计规范》NFE52081 工作级别 A 5 利用等级 U 5 起升机构 M 5 变幅机构 M 4 回转机构 M 4 行走机构 M 4 最大幅度 13m 最大起重量 8000Kg (一) 基本参数: 回转速度 0.7r/min 回转制动时间 5s 行走速度 12.5/25m/min 行走制动时间 6s 回转惯性力 ()Kg RM M g t R n F 002242.0.60..25.1=?? =π回 其中 g=9.81 n=0.7r/min t=5s 行走惯性力: ()Kg M M g t v F 0106184.0.605.1=?? =行 其中 g=9.81 V=25m/min t=6s

(二) 载荷组合: 自重力矩、惯性力及扭矩 上表中的回转惯性力到轨顶面的力矩总计为:-1971kg.m 上表中的行走惯性力到轨顶面的力矩总计为:5378kg.m

(三)起重小车、吊钩和吊重载荷 起重小车265kg 绳60kg 吊钩230kg 起升动载系数(起升机构用40RD20): =1.136, q=8t V=16m/min时, 2 吊重q=8000kg, 幅度R=13m (1) 吊载 Q=(8000+230+60/2)×1.136+(265+60/2)×1.1 =9708kg M=9708×13=126204kg.m (2) 风载(包括起重小车、吊钩和吊重) 迎风面积A=5.52+1.6×82/3=11.92m2 风力:F=11.92×25=298kg =298×13=3874kg.m 风扭矩:T n 风力到轨道上平面的力矩:M=298×12=3576kg.m (3) 回转惯性力 F=0.002242×(8000+230+265+60)×13=249kg =249×13=3237kg.m 回转惯性扭矩: T n 回转惯性力到轨道上平面的力矩:M=249×12=2988kg.m (4)行走惯性力 F=0.0106184×(8000+230+265+60)=91kg

土坡稳定性计算计算书7.9

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 荷载参数: 土层参数:

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.2的要求。

圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值; c i --土层的粘聚力; l i--第i条土条的圆弧长度; ΔG i-第i土条的自重; θi --第i条土中线处法线与铅直线的夹角; φi --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; q --第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:

汽车吊车计算书-修订稿

庆鼎精密电子(淮安)有限公司 吊 装 计

现场预备吊装构建重量计算图表如下: GJ-01、GJ-02均由五榀钢梁连接成一整体:重量分别L1:5420.27kg、L2:5618.37kg、 L3:6241.16kg、 L4:5613.79kg、L5:5275.76kg 现场钢梁在地面组拼进行3+2吊装法:L1+L2+=11.03T、L3=6.241T、L4+L5=10.89T分三组进 行吊装。 2

GJ吊车自F轴向A轴吊装,100吨汽车吊性能表如下所示: 100吨汽车吊 可以看出100吨汽车吊在主臂32.468m,作业半径为9m时候可以吊装27.87T吨,满足吊装工况要求。

液压汽车起重机工况核算计算书 计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 、基本参数 、计算示意图 4

、起重机核算 5 1 = 一一.

建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中 心的竖直线为Y轴, A点坐标: X A=R+b3=9+2.67=11.67m y A=Om B点坐标: X B=S/2=2/2=1m y B=h3-h b=24.8-3.3=21.5m C点坐标: x c=Om y c=h 什h2+h3-h b=2+6.798+24.8-3.3=30.298m 直线AC的倾角: a1=arctg(y c/x A)= arctg(30.298/11.67)=68.935 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角: a=arctg(y B/(X A-X B))+arcsi n( (f+d/2)/ (y B2+(x A-x B)2)0.5)=arctg(21.5/(11.67-1))+arcsi n((1+1/2)/(21.52+(11.67-1)2)0.5)=67.189 起重臂仰角:a =1=68.935 ° 最小臂长:L= X A /cos a =32.468 m 幅度:R=9m 6 J ■ 「

MQE80+80t-38m-14m龙门吊计算书

MQE80+80/10-38通用门式起重机 设计计算书 南京南京登峰起重设备制造有限公司 2008年10月

1、设计依据 1.1《钢结构设计规范》(GBJ17-88) 1.2《起重机设计规范》(GB3811-83) 1.3《公路桥涵设计通用规范》(JTJ021-90) 2、总体设计方案: 主梁采用单主梁桁架结构;支腿采用无缝钢管焊接;采用两刚性支腿设计;支腿均衡梁设置在离大车轨道高5.2m处,满足运梁炮车从支腿端面运梁;两侧支腿均满足运梁跑车的通过;起重系统采用2台80t吊重小车,每台吊重小车上设置2台卷扬机,卷扬机在主梁两侧下绳;配铁路2201“T” 梁专用吊具;每台龙门吊设一台10t电动葫芦副钩,电动葫芦满足单边有效悬臂3.5m的要求,电动葫芦轨道采用法兰与下平联槽钢连接;起重机设置Z字型爬梯上下司机室;设置电动葫芦检修平台。 详细方案见图MQE16038-00-00-000 3、主要性能参数 3.1额定起重量:80t+80t 3.1.1当两小车在距跨中各15处,两小车抬吊160t,小车定点起吊,不运行; 3.1.2当两小车在距跨中各11处,两小车抬吊120t,小车定点起吊,不运行; 3.1.3当两小车在距跨中各9处,两小车抬吊90t,小车定点起吊,不运行; 3.1.4当一台小车在跨中处,最大起重量50t,小车可运行; 3.2大车走行轨距:38m 3.3吊梁起落速度:0.9m/min 3.4起升高度:14m 3.5吊梁小车运行速度: 6.7m/min 3.6 整机运行速度:0-10m/min(重载);0-20m/min(空载); 3.7 适应坡度:±1% 3.8 电葫芦额定起重量:10t 3.9 电葫芦起升高度:18m 3.10电葫芦运行速度:20m/min 3.11电葫芦起升速度:7m/min 3.12整机运行轨道:单轨P50 4、起重机结构组成 4.1 吊梁行车总成:2台(四门定滑轮,五门动滑轮) 4.2 主动台车:4套 4.3 左侧支腿:1套 4.4 右侧支腿:1套 4.5 副支腿托架:1套 4.6 主支腿托架:2套 4.7 隅支撑托架:1套 4.8 主横梁总成:1组 4.9 电葫芦走行轨:1套 4.10 10t电动葫芦:1台 4.11 司机室:1套

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

龙门吊轨道基础计算书

附件一 1 预制梁场龙门吊计算书 1.1工程概况 1.1.1工程简介 本项目预制梁板形式多样,分别为预制箱梁、空心板及T梁,其中最重的是30m 组合箱梁中的边梁,一片重达105t。预制梁场拟采用两台起吊能力为100t的龙门吊用于预制梁的出槽,其龙门吊轨道之间跨距为36.7m。 1.1.2地质情况 预制梁场基底为粉质粘土。查《路桥施工计算手册》中碎石土的变形模量E0=29~65MPa,粉质粘土16~39MPa,考虑最不利工况,统一取粉质粘土的变形莫量E0=16 MPa。临建用地经现场动力触探测得实际地基承载力大于160kpa。 1.2基础设计及受力分析 1.2.1龙门吊轨道基础设计 龙门吊轨道基础采用倒T型C30混凝土条形基础,基础底部宽80cm,上部宽40cm。每隔10m设置一道2cm宽的沉降缝。基础底部采用8根Φ16钢筋作为纵向受拉主筋,顶部放置4根Φ12钢筋作为抗负弯矩主筋,每隔40cm设置一道环形箍筋。,箍筋采用HPB235Φ10mm光圆钢筋,箍筋间距为40cm,具体尺寸如图1.2.1-1、1.2.1-2所示。

图1.2.1-1 龙门吊轨道基础设计图 图1.2.2-2 龙门吊轨道基础配筋图 1.2.2受力分析 梁场龙门吊属于室外作业,当风力较大或降雨时候应停止施工。当起吊最重梁板(105t)且梁板位于最靠近轨道位置台座的时候为最不利工况。

图1.2-1 最不利工况所处位置 单个龙门吊自重按G1=70T估算,梁板最重G2=105t。起吊最重梁板时单个天车所受集中荷载为P,龙门吊自重均布荷载为q。 P=G1/2=105×9.8/2=514.5KN (1-1) q=G2/L=70×9.8/42=16.3KN/m (1-2)当处于最不利工况时单个龙门吊受力简图如下: ` 图1.2-3 龙门吊受力示意图 龙门吊竖向受力平衡可得到: N1+N2=q×L+P (1-3)取龙门吊左侧支腿为支点,力矩平衡得到: N2×L=q×L×0.5L+P×3.5 (1-4)由公式(1-3)(1-4)可求得N1=869.4KN,N2=331.1KN 龙门吊单边支腿按两个车轮考虑,两个车轮之间距离为6m,对受力较大支腿进行分析,受力简图如下所示:

液压汽车起重机工况核算计算书

液压汽车起重机工况核算计算书计算依据: 1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 一、基本参数 起重机种类液压汽车起重机起重机型号QY-50 起重臂顶端至吊钩底面最小距离h1(m) 2.5 起重臂宽度d(m) 1.2 起重臂铰链中心至地面距离h b(m) 3 起重机外轮廓线至起重机回转中心距 离b2(m) 2.8 起重臂铰链中心至起重机回转中心距离b3(m) 2 吊钩底面至吊装构件顶部距离h 2(m) 1 吊装构件顶部至地面距离h3(m) 5 吊装构件中心至起重机外轮廓线最小 距离b1(m) 2 吊装构件直径S(m) 6.2 吊装构件与起重臂的间隙f(m) 0.4 幅度R(m) 6 二、计算示意图

参数示意图

起重臂坐标示意图 三、起重机核算 建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中心的竖直线为Y轴, A点坐标: x A=R+b3=6+2=8m y A=0m B点坐标: x B=S/2=6.2/2=3.1m y B=h3-h b=5-3=2m C点坐标: x C=0m

y C=h1+h2+h3-h b=2.5+1+5-3=5.5m 直线AC的倾角: α1=arctg(y C/x A)= arctg(5.5/8)=34.509° 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角:α2=arctg(y B/(x A-x B))+arcsin((f+d/2)/ (y B2+(x A-x B)2)0.5)=arctg(2/(8-3.1))+arcsin((0.4+1.2/2)/(22+(8-3.1)2)0.5)=33.095°起重臂仰角:α=α1=34.509° 最小臂长:L= x A/cosα=9.708 m 幅度:R=6m

双梁门式起重机设计计算书(—)150吨20米

第一章设计出始参数 第一节基本参数: 起重量PQ=150.000 ( t ) 跨度S = 20.000 (m ) 左有效悬臂长ZS1=0.000 (m) 左悬臂总长ZS2=1.500 (m) 右有效悬臂长YS1=1.500 (m ) 右悬臂总长YS2=0.770 (m) 起升高度H0=20.000 (m) 结构工作级别ABJ=5级 主起升工作级别ABZ=0级 副起升工作级别ABF=5级 小车运行工作级别ABX=5级 大车运行工作级别ABD=5级 主起升速度VZQ=3.4000 (m/min) 副起升速度VFQ=3.4000 (m/min) 小车运行速度VXY=2.4000 (m/min) 大车运行速度VDY=2.4000 (m/min) 第二节选用设计参数 起升动力系数02=1.20 运动冲击系数04=1.10 钢材比重R=7.85 t/m'3 钢材弹性模量E=2.1*10'5MPa 钢丝绳弹性模量Eg=0.85*10'5MPa 第三节相关设计参数 大车车轮数(个)AH=8 大车驱动车轮数(个)QN=4 大车车轮直径RM=0.7000(mm) 大车轮距L2=11.000 (m) 连接螺栓直径MD=0.0360 (m) 工作最大风压q1=0/*250*/(N/m'2) 非工作风压q2=0/*600*/(N/m'2) 第四节设计许用值 钢结构材料Q235----B 许用正应力[ σ ] I=156Mpa [ σ ] II=175Mpa 许用剪应力[ ? ]=124Mpa 龙门架许用刚度:

主梁垂直许用静刚度: 跨中(Y)x~1=S/800=30.00mm 悬臂(Y)1=ZS1/700=2.00mm 主梁水平许用静刚度: 跨中(Y)y~1=S/2000=12.00mm 悬臂(Y)1=ZS1/700=2.00mm 龙门架纵向静刚度: 主梁严小车轨道方向(Y)XG=H/800=16.4mm 许用动刚度(f )=1.7H z 连接螺栓材料8.8级螺栓 许用正应力[ σ ] 1s=210.0Mpa 疲劳强度及板屈曲强度依GB3811-83计算许用值选取。 第二章起重小车设计 第一节小车设计参数 小车质量(t) GX=50.000(t) 小车车距(m) B=3.500(m) 轨道至主梁内边(m) L5=0.030(m) 小车轨距( m ) L6=2.500(m) 小车左外伸(m) L7=0.500(m) 小车右外伸(m) L8=0.500(m) 主梁与马鞍间距(m) L11=0(m) 吊钩下探量(m) H6=2.000(m) 小车轨道截面高(m) H7=0.120(m) 小车高H8=1.650(m) 小车顶至马鞍(m) 小车罩沿大车轨道方向 迎风面积(m'2) XDS=12.000(m'2) 小车罩垂直于大车轨道方向 迎风面积(m'2) XXS=12.000(m'2) 钢丝绳金属丝截面积(m'2) DO=6.550700e-004(m'2) 滑轮组钢丝绳分支数半NO=5 小车轨道型号QU70 小车外罩至导电架距离(m)L9=0.97(m) 小车外罩至栏杆距离(m) L10=0.970(m) 法兰至主梁上盖板距离(m)HD=1.800(m) 第二节设计计算 为工厂便于组织生产,提高标准件的通用性,设计中不进行起重小车设计,而采用5t--50t 通用桥式起重机小车。此,起重机小车设计详见5t--50t通用桥式起重机小车计算说明书。

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

小型汽车吊上楼面验算计算书

小型汽车吊上楼面验算计算书 专业:结构 总设计师(项目负责人):__ _ 审核: ____ ____ _ 校对: ____ __ _ ____ 设计计算人: ____ _________ _ ***********所有限公司 2018年1月

汽车吊上楼面施工作业存在两种工况:工况一为汽车吊在楼面上行走的工况,工况二为汽车吊吊装作业时的工况。 一、楼面行走工况 1、设计荷载 根据原结构设计模型,四层楼面设计恒荷载9kN/m2,楼面设计活荷载 8kN/m2,四层楼面楼板厚度120mm,楼板自重恒荷载3kN/m2。因此,汽车吊楼面行走工况下,等效均布荷载不超过(9-3)+8=14kN/m2为宜。汽车吊行走区域如下图所示。 图1汽车吊行走区域布置图 2、吊车荷载及尺寸 质量参数行驶状态自重(总质量)kN 150 前轴荷kN 66 后轴荷kN 84 尺寸参数支腿纵向距离m 支腿横向距离m 3、汽车吊行驶相关参数 15吨小型汽车吊基本尺寸、轮宽及其行驶过程中各轮位置对楼板产生的荷

载如下图所示: 图2汽车荷载参数 4、承载力校核 15吨汽车吊行走时,后两轮居于板跨中为最不利工况,如下图: 图 3 汽车楼面行走计算简图 基本资料 工程名称:局部承压计算 周边支承的双向板,按上下和左右支承单向板的绝对最大弯矩等值, 板的跨度Lx =3250mm,Ly =8000mm,板的厚度h =120mm 局部荷载 第一局部荷载 局部集中荷载N =42kN,荷载作用面的宽度btx =200mm,荷载作用面的宽度bty =600mm; 垫层厚度s =0mm 荷载作用面中心至板左边的距离x =1625mm,最左端至板左边的距离

4.5H法验算路基稳定性

注:本文档为手算计算书文档,包含公式、计算过程在内,可供老师教学,可供学生学习。下载本文档后请在作者个人中心中下载对应Excel计算过程。(若还需要相关cad 图纸或者有相关意见及建议,请私信作者!)团队成果,侵权必究! 路基稳定性验算 对于地质与水文条件复杂、高填深挖、地面坡度陡于1:2.5的边坡,应进行边坡稳定验算。本路基设计中出现了较高路堤和深路堑,需要进行边坡稳定性验算;同时结合实际情况,选定合理的工程技术措施提高路基稳定性。 高路堤边坡稳定性计算

本路线中桩号K2+060处边坡填土高度最大为8.46m,填土高度较大,须进行路堤稳定性验算,验算采用圆弧滑动面条分法进行计算。 基本资料:土质路堤边坡高H=8.46m,设置边坡坡率为:边坡1:1.5;现拟定填土的粘聚力,内摩擦角,容重3,地基土的粘聚力,内摩擦角 = ,容重3。计算荷载为公路一I级汽车荷载。 计算过程如下: (1)行车荷载换算高度h0 按下式计算换算土柱高h0为: 0NQ h BLγ = 式中:L—前后轮最大轴距,按《公路工程技术标准》(JTG B01-2014)规定对于标准车辆荷载为为12.8m; B—横向分布宽度: =(1) B Nb N m d +-+=2×1.8+(2-1)×1.3+0.6=5.5m 因此 由于行车荷载对较高路堤边坡稳定性影响较小,为简化计算,将换算高度分布于路基全宽上。 (2)确定圆弧辅助线位置 本例按4.5H法确定滑动圆心辅助线。

由上图可知,边坡坡比为1:1.5时, ,查规范得1β=26°, 2β=35°。根据4.5H 法确定圆心位置,如下图。 图5-1 4.5H 法确定圆心 (3)计算位置选取:①通过路基中线;②通过路基右边缘;③通过距路基右边缘1/4路基宽度处。 图5-2 滑动面经过距路基左边缘1/4路基宽度处

(完整word版)20T龙门吊基础设计计算书

20t龙门吊基础设计 1、设计依据 1.1、《基础工程》; 1.2、龙门吊生产厂家提所供有关资料; 1.3、《建筑地基基础设计规范》(GB50007-2002); 1.4、《边坡稳定性分析》 2、设计说明 根据现场情况看:场地现有场地下为坡积粉质粘土,地基的承载力为180KPa。龙门吊行走轨道基础采用原始地面夯实基础并铺设20cm粗石碾压。沿着钢轨的端头每隔1米距离就作枕木与厚5mm钢垫板,每个钢垫板焊4根长度为25cm的Φ16铆钉作为锚筋。 3、设计参数选定 3.1、设计荷载 根据龙门吊厂家提供资料显示,吊重20t,自重17t,土体容重按18.5KN/m3计。(1)从安全角度出发,按g=10N/kg计算。 (2)17吨龙门吊自重:17吨,G4=17×1000×10=170KN; (3)20吨龙门吊载重:20吨,G5=20×1000×10=200KN; (4)最不利荷载考虑20吨龙门吊4个轮子承重,每个轮子的最大承重; (5)G6=(170000+200000)/=92.5KN; (6)吊重20t;考虑冲击系数1.2; (7)天车重2.0t;考虑冲击系数1.2; (8)轨枕折算为线荷载:q1=1.4KN/m; (9)走道梁自重折算为线荷载:q2=2.37KN/m; (10)P43钢轨自重折算为线荷载:q3=0.5 KN/m(计入压板); (11)其他施工荷载:q4=1.5 KN/m。 (12)钢板垫块面积:0.20×0.30=0.06平方米 (13)枕木接地面积:1.2 ×0.25=0.3平方米 (13)20吨龙门吊边轮间距:L1:7m

3.2、材料性能指标 地基 (1)根据探勘资料取地基承载力特征值:?α=180Kpa (2)地基压缩模量:E S =5Mpa 4、地基验算 4.1基础形式的选择 考虑到地基对基础的弹性作用及方便施工,故基础采用原始土壤夯实后填20cm碎石碾压基础上铺设枕木。 4.2、地基承载力验算 轨道梁基础长100m,根据20T龙门吊资料:支腿纵向距离为6m,轮距离0.5m,按最不利荷载情况布置轮压,见图-4.1 图-4.1:荷载布置图(单位:m) 假设: (1)整个钢轨及其基础结构完全刚性(安装完成后的钢轨及其结构是不可随便移动的)。 (2)每台龙门吊完全作用在它的边轮间距内(事实上由于整个钢轨及其基础是刚性的,所以单个龙门吊作用的长度应该长于龙门吊边轮间距)。即:龙门吊作用在钢轨上的距离是:L1=7m 根据压力压强计算公式:压强=压力/面积,转换得:面积=压力/压强 要使得龙门吊对地基的压强小于2MPa才能达到安全要求。即最小面积: S2min=370KN/2000KPa=0.185m2 拟采用有效面积为0.20×0.30=0.06 m2的钢板垫块,铆钉锚入枕木内。 对于20吨龙门吊,0.06×5=0.3 大于0.25。因此最少需要5个垫块垫住钢轨才能能满足地基承载力要求,垫块间距是:7÷5=1.4米。应考虑安全系数1.2,故垫块间距应取L=1.2m,为加强安全性,间距选1m。

吊车计算书

鼎轩钢结构工程南通有限公司 吊装计

—一:起重机的选型 1:起重力 起重机的起重力C W Q1+Q2 Q—构件的重量,本工程柱子分两级吊装,下柱重量为30吨,上柱 7.5 吨。 Q2帮扎索具的重量。取2吨 Q=32+2=34屯 2:起重高度 起重机的起重高度为H三h i+h2+h3+h4 式中h i---安装支座表面高度(M),柱子吊装不考虑该内容. H 2---安装间隙,视具体情况定,一般取0.3 —0.5米 H 3帮扎点至构件吊起后地面距离(M); H 4吊索高度(m),自帮扎点至吊钩面的距离,视实际帮扎情况定. 下柱长30.3米.上柱长9.1米 上柱:H=0.3+30.3+3=33.6 米,下柱:H=0.5+30.3+9.1+3=43.9 米3:回转半径 R=b+Lcon a b—起重臂杆支点中心至起重机回转轴中心的距离. L; a分别为所选择起重机的臂杆长度和起重机的仰角 R=16.32米,主臂长选用54.8米 根据求出的Q;H;R查吊机性能表,采用150吨履带吊,其性能能满足吊

装上下柱的要求,在回转半径16米,主臂长54.8米时可吊装35吨二:履带式起重机稳定性计算 1:起重机不接长稳定性计算 履带式起重机采用不原起重臂杆稳定性的最不利情况为车身与履带 成90度,要使履带中心点的稳定力矩Mr大于倾覆力矩Mou,并按下列条件核算. 当考虑吊装荷载以及所有附加荷载时: K1= Mr/Mou= 〔GL1+GL2+GLHG h+Gh2+Gh0+Gh3)sin [3 -G s L s+M+Mg+M〕/(Q+q)(R-L2) > 1.15 只考虑吊装荷载,不考虑附加荷载时: K 2=Mr/Mou=(GL1+GL2+GL o-G3L3)/(Q+q)(R-L 2) > 1.4 式中:G1 -起重机机身可转动部分的重力,取451KN G 2---起重机机身不转动部分的重力,取357KN G 0—平衡重的重力,取280KN G 3---起重臂重力,取85.1KN Q---- 吊装荷载(包括构件重力和索具重力) q---- 起重滑车组的重力 L1—G重心至履带中心点的距离 L2—G重心心至履带中心点的距离 L3—G重心到履带中心点的距离 L0—G重心到履带中心点的距离 H—G重心到地面的距离 2.33 米

门式起重机计算书

门式起重机计算书 型号:MDG 起重量:主钩50T 副钩10T 跨度:24M 有效悬臂:左9M 右9M 工作级别:A5 容:悬臂刚度强度校核;整机稳定性校核

50/10-24M单梁门式起重机计算书 起重机主参数及计算简图: 计算简图 小车自重:G X=.8 KN 主梁自重:G Z=554.1 KN 走台栏杆滑导支架等附件:G F=40.2 KN 桥架自重:1100.54 KN 额定起重量:G E=490 KN

支腿折算惯性矩的等值截面 刚性支腿折算惯性矩:4103 311018.512MM bh BH I ?=-= 主梁截面惯性矩:4103 32109.712MM bh BH I ?=-= 主梁X 向截面抵弯矩:373 310087.76MM H bh BH W X ?=-= 主梁Y 向截面抵弯矩:373 310089.56MM B hb HB W Y ?=-= 一 .悬臂强度和刚度校核。 Ⅰ. 悬臂刚度校核 该门式起重机采用两个刚性支腿,故悬臂端挠度计算按一次超静定龙门架计算简图计算。 )12 83 8(3(232)21++++= K K L L EI C L P P f K 式中 C 3:小车轮压合力计算挠度的折算系数 ) ()(2)32()(2 3 212222113L L L P P b P L L L b P b P C K K ++++-=

=1.00055 K:考虑轮缘参与约束,产生横向推力 927.012=?= K L h I I K P 1,P 2:小车轮压 KN G G P P E X 9.3212 21=+== 代入数值: mm K K L L EI C L P P f K 911.22)12927.083 927.08240009000(10 9.710102.2300055.19000)109.321109.321() 12 838(3(10 5233232)21=+?+??+????????+?=++++= 按起重机设计规有效悬臂端的用挠度:mm L f K 7.25350 9000 350][=== ][f f < 结论:综上计算校核,该起重机的悬臂梁的刚度满足起重机械设计规的要求。 Ⅱ.悬臂的强度校核 1. 该起重机悬臂的危险截面为支承处截面,满载小车位于悬臂端时该截面受到最大弯曲应力和 最大剪应力。 此时弯曲应力: x y s p s q y qw x x W MT W M M W M W M ++++=max σ 式中 x M 为垂直载荷(固定载荷和移动载荷组成)产生的弯矩

门式起重机计算书

常熟市莫城起重机械制造厂 门式起重机计算书 型号: MDG 起重量:主钩50T副钩10T 跨度: 24M 有效悬臂:左9M右9M 工作级别:A5 内容:悬臂刚度强度校核;整机稳定性校核

50/10-24M 单梁门式起重机计算书 起重机主参数及计算简图: Lx1=11721Lk=24000Lx2=11421 B=3600 b1b2 p 1p 2 8 5 4 1 = h L=9000 计算简图 小车自重: G X=153.8 KN主梁自重: G Z=554.1 KN走台栏杆滑导支架等附件: G F=40.2 KN 桥架自重: 1100.54 KN额定起重量: G E=490 KN 760e 2751413 0 4 0 2 1 1 2 2 6 1 602 103 222 222 1338.7 1358.7 支腿折算惯性矩的等值截面14140012 6 14261 主梁截面 刚性支腿折算惯性矩:I 1BH 3bh3 5.18 1010 MM 4 12 主梁截面惯性矩: I 2BH 3bh37.91010 MM 4 12 主梁 X 向截面抵弯矩:W X BH 3bh3 7.087 107MM3

主梁 Y 向截面抵弯矩:W Y HB 3hb3 5.089 107 MM 3 6B 一. 悬臂强度和刚度校核。 Ⅰ. 悬臂刚度校核 该门式起重机采用两个刚性支腿,故悬臂端挠度计算按一次超静定龙门架计算简图计算。 ( P1 P2) L2C 38K 3 f(L L K) 3EI 28K12 式中C3:小车轮压合力计算挠度的折算系数 ( P1b1 P2b2) L(2L K3L ) P2b2 3 C3 2 ( L K L) 2(P1 P2)L =1.00055 K:考虑轮缘参与约束,产生横向推力 K I 2h 0.927 I 1L K P1,P2:小车轮压 P1P2G X G E 321.9KN 2 代入数值: f(P P2C(L L K8K 3 ) 12)L3 3EI 28K12 (321.9103321.9 103 )9000 2 1.00055 (90002400080.927 3 ) 3 2.1021057.9101080.92712 22.911mm 按起重机设计规范有效悬臂端的许用挠度:[ f ]L K900025.7mm 350350 f [ f ] 结论:综上计算校核,该起重机的悬臂梁的刚度满足起重机械设计规范的要求。 Ⅱ. 悬臂的强度校核 1.该起重机悬臂的危险截面为支承处截面,满载小车位于悬臂端时该截面受到最大弯曲应力和最 大剪应力。 此时弯曲应力: M x M qw M q s M p s MT max W y W y W x W x

汽车吊车计算书稿.doc

庆鼎精密电子(淮安)有限公司 吊 装 计 算 书

现场预备吊装构建重量计算图表如下: GJ-01、GJ-02均由五榀钢梁连接成一整体:重量分别L1:、L2:、L3:、L4:、L5: 现场钢梁在地面组拼进行3+2 吊装法:L1+L2+= 、L3=、L4+L5=分三组进行吊装。

GJ吊车自F轴向A轴吊装,100吨汽车吊性能表如下所示: 可以看出100吨汽车吊在主臂,作业半径为9m时候可以吊装吨,满足吊装工况要求。 液压汽车起重机工况核算计算书计算依据:

1、《建筑施工起重吊装安全技术规范》JGJ276-2012 2、《起重吊装计算及安全技术》主编卜一德 3、《钢结构设计规范》GB50017-2003 一、基本参数 起重机种类液压汽车起重起重机型号AC100 机 起重臂顶端至吊钩底面最小距 2 起重臂宽度d(m) 1 离h1(m) 起重臂铰链中心至地面距离h b( 起重机外轮廓线至起重机回转m) 中心距离b2(m) 起重臂铰链中心至起重机回转 吊钩底面至吊装构件顶部距离 中心距离b3(m) h2(m) 吊装构件顶部至地面距离h3(m 吊装构件中心至起重机外轮廓 2 ) 线最小距离b1(m) 吊装构件直径S(m) 2 吊装构件与起重臂的间隙f(m) 1 幅度R(m) 9 二、计算示意图

三、起重机核算

建立平面直角坐标系:以穿过起重臂铰链中心的水平线为X轴,以穿过吊装构件中心的竖直线为Y轴, A点坐标: x A=R+b3=9+= y A=0m B点坐标: x B=S/2=2/2=1m y B=h3-h b= C点坐标: x C=0m y C=h1+h2+h3-h b=2++ 直线AC的倾角: α1=arctg(y C/x A)= arctg= ° 经过点A与(以B点为圆心,f+d/2为半径的圆)相切的点形成的直线的倾角:α2=arctg(y B/(x A-x B))+arcsin((f+d/2)/ (y B 2+(x A-x B)2)=arctg)+arcsin((1+1/2)/+2)= ° 起重臂仰角:α=α1=° 最小臂长:L= x A /cosα= m 幅度:R=9m

龙门吊计算书

下赶场沟大桥预制场 74T 龙 门 吊 设 计 计 算 书

下赶场沟大桥74T龙门吊计算书 一、概述 本预制场龙门吊横梁由贝雷片拼成,门柱由钢管和型钢组成;计算跨径为24m。 1、门柱 一个门柱用2根Φ325mm、δ=10mm的钢管作主立柱,立柱上采用2根[25b槽钢作斜撑。立柱顶上设置2根[30b槽钢作横梁,贝雷片直接作用于[30b槽钢上。立柱底部通过20mm厚A3钢板与单轨平车连接。每个门柱两个平车,一个主动,一个被动。两个平车之间用2根14#槽钢拼焊成箱形前后焊联。钢管与钢横梁采用焊接连接加固。 2、横梁 一组横梁用6排9片贝雷片,设置上下加强弦杆。两端头用4片(90-115-90)×118cm支撑架连接。中间接头均用90×118cm支撑架连接。同时横梁的上下面均用支撑架连接加固,除两端头上表面用(90-115-90)×118cm支撑架外,其余用90×118cm支撑架。 横梁一边通过吊带悬挂28#工字钢设10T电动葫芦,用于模板安装及砼浇筑,吊带距离间隔为1m。 横梁与门柱用桁架螺栓连接,再用Φ20U型螺栓加固。 3.天车 在横梁上安放枕木、铁轨、1.6m主动平车。枕木间距为

60cm,5T慢速卷扬机放平车上,用5门滑车组吊装,钢丝绳采用直径为25mm的。 4.操作台 操作台设在门柱上,两套门吊的操作台相邻设置,以便于联系,统一协调操作。各种电缆按规定布设,保证安全,便捷。 二、横梁计算 对本龙门吊可进行如下简化计算,横梁拟用简支梁进行计算,脚架按受压格构柱进行计算,斜撑起稳定作用不作受力计算。 1、荷载计算 横梁自重:q=11.7 KN/m 天平及滑轮自重:P1=25KN 起吊重量:P2=740/2=370KN 2、计算简图(横梁) 3、内力计算 (1)最大弯矩

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

相关文档
相关文档 最新文档