文档库 最新最全的文档下载
当前位置:文档库 › 通信实验讲义

通信实验讲义

通信实验讲义
通信实验讲义

通信实验讲义

实验一常规双边带调幅与解调实验

一、实验目的

1、掌握常规双边带调幅与解调的原理及实现方法。

2、掌握二极管包络检波原理。

3、掌握调幅信号的频谱特性。

4、了解常规双边带调幅与解调的优缺点。

5、了解抑制载波双边带调幅和解调的优缺点。

二、实验内容

1、观察常规双边带调幅的波形。

2、观察常规双边带调幅波形的频谱。

3、观察抑制载波双边带调幅波形。

4、观察常规双边带解调的波形。

三、实验仪器

1、信号源模块

2、PAM/AM模块

3、频谱分析模块

4、终端模块(可选)

5、20M双踪示波器一台

6、频率计(可选)一台

7、音频信号发生器(可选)一台

8、立体声单放机(可选)一台

9、立体声耳机(可选)一副

10、连接线若干

四、实验原理

1、常规双边带调幅原理框图:

低频信号、载波信号通过乘法器(MC1496)得到调幅信号,实际上,为了保证调幅信号的质量,调幅信号依次通过电压跟随电路(由TL082组成)、低通滤波器(由TL082组成),最后得到AM调制信号。通过调节调制深度调节电位器,得到抑制载波的双边带调幅信号。

2、AM 解调原理框图

在解调电路中,采用二极管包络检波对调幅信号进行解调,二极管的作用是实现高频包络检波,所以要求二极管的正向导通压降越小越好,在这里我们采用的是锗型二极管IN60, 其正向导通电压U F ≤0.3V ,可以很好的满足要求,利用二极管的单向导电性和检波负载RC 的充放电过程,就可以还原出与调幅信号包络基本一致的信号,最后通过放大电路(TL082)得到解调幅输出。

3、抑制载波双边带调制

在线性调制器中的调制信号)(t m 若没有直流分量,则在相乘器的输出信号中将没有载波分量。由于此时的频谱中包含有两个边带,且这两个边带包含相同的信息,所以称为抑制载波调制。这两个边带分别称为上边带和下边带。通过调节“调制深度调节”,从调幅输出端可以观察抑制载波双边带调制。

4、抑制载波双边带解调

抑制载波双边带解调不能采用包络检波来解调。由频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。解调中的频谱搬移同样可用调制时的相乘运算来实现。但是解调时需要在接收端的电路中加入载波,载波的频率和相位应该和发送端的一样,故接收电路较为复杂(所以本实验中没有给出抑制载波双边带解调电路)。解调原理框图如下:

基带信号

)

(t m )(t s

5、集成模拟乘法器的内部结构

集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。下面介绍MC1496集成模拟乘法器。

MC1496的内部电路及引脚图如下所示。

(a)内部电路(b)引脚图

MC1496是双平衡四象限模拟乘法器。其中VT1、VT2与VT3、VT4组成双差分放大器,VT5、VT6组成的单差分放大器用以激励VT1~VT4。VT7、VT8及其偏置电路组成差分放大器VT5、VT6的恒流源。引脚8与10接输入电压U X,1与4接另一输入电压U y,输出电压U0从引脚6与12输出。引脚2与3 外接电阻R E,对差分放大器VT5、VT6产生串联电流负反馈,以扩展输入电压U y的线性动态范围。引脚14为负电源端(双电源供电时)或接地端(单电源供电使),引脚5外接电阻R5。用来调节偏置电流I5及镜像电流I0的值。

五、实验步骤及注意事项:

1、将信号源模块、PAM/AM模块、频谱分析模块小心地固定在主机箱中,确保电源接

触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、

POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,

三个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,

后打开电源做实验,不要带电连线)

3、使信号源模块的信号输出点“模拟输出”输出频率为3.125KHz、峰-峰值为0.5V左

右的正弦波, 旋转“64K幅度调节”电位器使“64K正弦波”处信号的峰-峰值为1V。

4、用连接线连接信号源模块的信号输出点“模拟输出”和PAM/AM模块的信号输入

点“AM音频输入”,以及信号源模块的信号输出点“64K正弦波”和PAM/AM模

块的信号输入点“AM载波输入”,调节PAM/AM模块的电位器“调制深度调节”,

同时用示波器观察测试点“调幅输出”处的波形,可以观察到常规双边带调幅波形

和抑制载波的双边带调幅波形。

5、观察“AM载波输入”、“AM音频输入”、“调幅输出”、“滤波输出”、“解

调幅输出”各点处输出的波形。

6、用频谱分析模块(用法请参考实验三)分别观察常规双边带调幅时“AM载波输入”、

“AM音频输入”、“调幅输出”、“滤波输出”、“解调幅输出”各点频谱,以

及抑制载波的双边带调幅时各点频谱并比较之。

7、改变“AM音频输入”的频率及幅度,重复观察各点波形。

8、改变“AM载波输入”的频率及幅度,重复观察各点波形。

六、实验结果

1、AM调幅输出测试点

2、AM滤波输出测试点

输出的波形(常规双边带调幅波形,输出的波形(常规双边带调幅波形,

调制深度可调) 调制深度可调)

3、AM解调幅输出测试点

4、AM调幅输出测试点

输出的正弦波(常规双边带解调幅波形,输出的波形(抑制载波双边带调幅波依调制深度不同而改变) 形,调制深度一定)

七、思考题答案

1、为什么常规双边带调幅的信息传输速率较低,应该采用什么样的方法加以避免?

答:因为在常规调幅(AM

却能耗散大量的功率,所以传输速率较低。为了提高信息的传输速率,可将不携带消息的载波分量抑制掉,而仅传输携带消息的两个边带,即采用抑制载波双边带调幅的方法。另外,双边带调制虽然调制频率高,但是它的传输带宽需要两倍基带信号带宽,所以信道利用率不高。因此可以采用单边带调制,即可以同时抑制载波并仅发送一个边带,故又节省功率。

2、常规调幅、抑制载波双边带调幅、单边带和残留边带和这几种调制方式各有什么优

点和缺点?请自行设计一个用MC1496实现的抑制载波双边带调制电路,并分析其工作原理。

答:常规调幅的优点是实现调制方式简便,输出的已调信号的包络与输入调制信号成正比。解调时可采用包络检波很容易恢复原始调制信号。缺点是调幅中含有载波分量,但载波分量并不携带有用消息,却能耗散大量的功率,所以传输速率较低;抑制载波双边带调幅优点是可将不携带消息的载波分量抑制掉,而仅传输携带消息的两个边带,提高了信息的传输速率。缺点是双边带调制虽然调制频率高,但是它的传输带宽需要两倍基带信号带宽,所以信道利用率不高。并且采用相干解调是必须产生一个同频同相的载波,如果同频同相的条件得不到保证,则会破

坏原始信号的恢复;抑制载波单边带优点是传输时抑制载波并仅发送一个边带,故又节省功率。缺点是由于单边带调制中只传送双边带调制信号的一个边带。所以要让双边带信号通过一个单边带滤波器,而理想滤波器是不可能做到的,实际滤波器从通带到阻带总有一个过渡带。因此实现分割上、下边带的滤波器就很难实现,一般采用多级调制的办法;残留边带调制的优点是避免了用滤波法实现单边带调制时所需要的过渡带无限陡的理想滤波器的困难。缺点是由于在残留边带调制中除了传送一个边带之外,还保留另外一个边带的一部分,所以传输频带的带宽增宽了。下图是用MC1496实现的抑制载波双边带调制电路。

此电路采用的是典型的调制载波双边带电路,采用的是双电源供电方式。其中载波信号U C 经高频耦合电容C 2从u x 端输入,C 3为高频旁路电容,使8脚接地。调制信号U Ω经低频耦合电容C 1从u y 端输入,C 4为低频旁路电容,使4脚接地。调幅信号U 0从12脚单端输出。器件采用双电源供电方式,所以5脚的偏置电阻R 5接地。

脚2与3间接入负反馈电阻R E ,以扩展调制信号的U Ω的线性动态范围,R E 增大,线性范围增大,但乘法器的增益随之减少。

电阻R 6、R 7、R 8及R L 为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。工作过程是载波信号U C (t ),其频率f C =10.7MHz ,峰—峰值U CP-P =40mV 。低频输入端输入调制信号U Ω(t ),其频率f Ω=1KHz ,先使峰-峰值U ΩP-P =0,调节RP ,使输出U 0=0(此时U 4=U 1),再逐渐增加U ΩP-P ,则输出信号U 0(t )的幅度逐渐增大,最后出现抑制载波的调幅信号。由于器件内部参数不可能完全对称,致使输出出现漏信号。脚1和4分别接电阻R210和R213可以较好地抑制载波漏信号和改善温度性能。

八、提问及解答

1、试证明:若在残留边带信号中加入大的载波,则可用包络检波法实现解调。

证明:设调制信号为)(t f ,残留边带滤波器特性为)()( H t h ,则残留边带信号)(t s VSB 为

t

t h t f t t h t f d h t f t d h t f t d h t t t f d h t t f t h t t f t s C S C C C C C C C C C C C C VSB

sin )](*)([cos )](*)([sin )()(sin cos )()(cos )(]sin sin cos [cos )()()(cos )()

(*]cos )([)(+= + =+ = ==

其中 t t h t h t t h t h S S C C

sin )()(cos )()(==, 设)(t f 的截止频率为H

,根据残留边带滤波器特性 H C C C H H

<= ++,)()( 可得

)()]()()[()(*)( CF H H F t h t f C C C =+++

即 )(),()(*)(为常数C t Cf t h t f C =

假设在残留边带信号中加入一个大载波,

t

t h t f t A t cf t

A t s t s C S C C VS

B sin )](*)([cos ])([cos )()(++=+= 其中包络A t cf t h t f A t cf t v S + ++=)()](*)([])([)(22

去直流,即可从包络信号中恢复出原始信号)(t f 。

2、调节电位器“调制深度调节”时,调幅信号会发生怎样的变化,为什么?

答:调制深度是指调制信号与载波信号电压峰值的比例。设调制信号为()cos m u t U t = 如果用它来对载波()cos c cm c u t U t =( c

)进行调幅,

那么,在理想情况下,常规调幅信号为: ()(cos )cos AM cm m c u t U kU t t = +

(1cos )cos cm a c U M t t = + 其中调幅深度,01,m a a cm

U M k M k U = × 为比例系数 调节电位器改变调制信号于载波信号电压峰值的比例。它的作用是将m U 移

去,只加载波电压cm U ,调节电位器使输出载波电流0=i 。则调制信号为抑制载波双边带调幅。如果调节电位器使输出载波电流不为0,使输出信号Am U 中有载波则为常规双边带调幅。

九、扩展实验

1、立体声单放机输出的音频信号引入信号源的信号输入点“IN ”,连接信号源模块的信号输出点“OUT ”与PAM/AM 模块的信号输入点“AM 音频输入”,再连接信号源模块的信号输出点“64K 正弦波”和PAM/AM 模块的信号输入点“AM 载波输入”

重复上述实验并观察各点波形。

2、将终端模块小心固定在主箱上,用连接线连接PAM/AM模块的信号输出点“解调幅

输出”与终端模块的信号输入点“S-IN”,在耳机插孔S1中插上耳机,听还原出来信号的声音。

第三章模拟信号数字化

实验二脉冲幅度调制与解调实验

一、实验要求

1、掌握抽样定理的概念。

2、理解脉冲幅度调制的原理和特点。

3、了解脉冲幅度调制波形的频谱特性。

4、了解脉冲幅度调制与解调电路的实现。

二、实验内容

1、观察音频信号、抽样脉冲及PAM调制信号的波形,并注意它们之间的相互关系。

2、改变抽样时钟的占空比,观察PAM调制信号及其解调信号波形的变化情况。

3、观察脉冲幅度调制波形的频谱。

三、实验仪器

1、信号源模块

2、PAM/AM模块

3、终端模块(可选)

4、频谱分析模块

5、20M双踪示波器一台

6、频率计(可选)一台

7、音频信号发生器(可选)一台

8、立体声单放机(可选)一台

9、立体声耳机(可选)一副

10、连接线若干

四、实验原理

1、PAM调制电路

从PAM音频输入端口输入2KHz左右的正弦波信号,通过隔直电容去掉模拟信号中的直流分量,然后通过电压跟随器电路(U01)提高其带负载的能力,然后信号被送入模拟开关MC14066(U02)。由于实际上理想的冲激脉冲串物理实现困难,这里采用方波脉冲信号代替。具体实现方法是通过改变信号源“24位NRZ码型设置”及“BCD码分频值设置”,使得

“NRZ”端输出不同占空比的近似8KHz的方波信号。该方波信号从PAM

当方波为高电平时,模拟开关导通,正弦波通过并从调制端口输出;当方波为低电平时,模

拟开关截止,输出零电平。

2、PAM解调电路

若要还原出原始的音频信号,则将该PAM信号通过截止频率略大于2KHz的低通滤波器,滤除掉其中的高频成分即可。

这里使用了两级二阶RC有源低通滤波器来增强滤波的效果。

五、实验步骤及注意事项

1、将信号源模块、PAM&AM模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、

POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)

3、不同占空比8KHz方波脉冲分别对2KHz正弦信号抽样实验

将信号源模块产生的正弦波(峰-峰值在2V左右,从信号输出点“模拟输出”输出)送入PAM&AM模块的信号输入点“PAM音频输入”,将信号源模块产生的8KHz 方波(从信号输出点“NRZ”输出)送入PAM&AM模块的信号输入点“PAM时钟输入”。选择不同拨码设置的NRZ码后,观察“调制输出”测试点PAM抽样信号的波形,并注意它与正弦信号及抽样脉冲三者之间的关系。

连接PAM&AM模块的信号输出点“调制输出”和信号输入点“解调输入”,观察“解调输出”测试点还原的正弦信号波形,与“PAM音频输入”点波形进行对比。

注:以下将正弦波选定为2020Hz和2000Hz两种频率,是为了能够清晰、稳定的双路观察正弦信号、抽样脉冲及PAM调制信号三者之间的关系。

(1)占空比为1/2的抽样脉冲信号PAM实验

正弦信号选择2020Hz,“24位NRZ码型设置”为10101010 10101010 10101010

“BCD码分频值设置”为00000001 00100100(124分频)。

(2)占空比为1/3的抽样脉冲信号PAM实验

正弦信号选择2000Hz,“24位NRZ码型设置”为10010010 01001001 00100100,

“BCD码分频值设置”为00000000 10000100(84分频)。

(3)占空比为1/4的抽样脉冲信号PAM实验

正弦信号选择2020Hz,“24位NRZ码型设置”为10001000 10001000 10001000,

“BCD码分频值设置”为00000000 01100010(62分频)。

(4)占空比为1/6的抽样脉冲信号PAM实验

正弦信号选择2000Hz,“24位NRZ码型设置”为10000010 00001000 00100000,

“BCD码分频值设置”为0000000 01000010(42分频)。

(5)占空比为1/8的抽样脉冲信号PAM实验

正弦信号选择2020Hz,“24位NRZ码型设置”为10000000 10000000 10000000,

“BCD码分频值设置”为00000000 00110001(31分频)。

4、将“PAM音频输入”和“调制输出”测试点输出的波形分别送入频谱分析模块,观察其

频谱并比较之。(可选)

六、实验结果

PAM音频输入:2KHz,Vp-p=2V PAM时钟输入:8KHz方波

1、调制输出测试点输出的波形

2、解调输出测试点输出正弦波

七、思考题答案

1、简述抽样定理。

答:可参考任何通信原理教材,此不详述。

2、在抽样之后,调制波形中包不包含直流分量,为什么?

答:应不包含直流分量。抽样过程实际上是一个相乘的过程,得到的仍然是交流

信号,因此经过调制后仍不包含直流分量。

3、造成系统失真的原因有哪些?

答:可参考陈国通主编的《数字通信》(哈尔滨工业大学出版社),P28页2.3节抽

样误差的分析。造成系统失真的原因主要为:发送端的非理想抽样和接收端低通滤

波的非理想所带来的误差。

4、为什么采用低通滤波器就可以完成PAM解调?

答:可参考樊昌信编的《通信原理》教材(第四版,国防工业出版社),P193页7.3

节脉冲振幅调制。注意,只有自然抽样才可以直接用低通滤波器解调,因为自然抽样后包含有原始信号频谱,但对于平顶抽样需在接收端低通滤波之前用特性为1/H (w )的网络加以修正。

八、提问及解答

1、已抽样信号的频谱混叠是什么原因引起的?若要求从已抽样信号)(t m s 中正确恢复出原信号)(t m ,抽样速率s f 应满足什么条件?()(t m 信号是低通型连续信号)

答:因为已抽样信号)(t m s 的频谱)( s M 是无穷多个间隔为s 的)( M 相迭加而成。因此,若抽样间隔T 变得大于1/2f H ,则)( M 和)( T 的卷积在相邻的周期内存在重叠(亦称混迭);若要求从已抽样信号)(t m s 中正确恢复出原信号)(t m ,则抽样速率s f 应满足H s f f 2 。

2、什么是低通型抽样定理?什么是带通型信号的抽样定理?

答:低通型抽样定理是若一个连续模拟信号)(t m 的最高频率小于H f ,则以间隔时间为H

f T 21 的周期性脉冲对其抽样时,)(t m 将被这些抽样值所完全确定;带通型抽样定理是若一个连续模拟信号)(t m 的最高频率为H f ,最低频率为L f ,带宽为B ,则以频率大于2B 的周期性脉冲对其抽样时,)(t m 将被这些抽样值完全确定。且当原信号的最高频率是带宽的整数倍时,只要求其抽样频率B f S 2=,即只要求抽样频率等于带通信号带宽的2倍。

3、实验采用的是什么抽样方式?为什么?

答:实验采用的是自然抽样,自然抽样时,抽样过程实际是相乘的过程。另外说一下平顶抽样,实际应用中,平顶抽样是采用抽样保持电路来实现的。

4、本实验的抽样形式同理想抽样有何区别?试将理论和实验相结合加以分析。

答:可参考曹志刚编《现代通信原理》教材(清华大学出版社),P110页5.3节实际抽样。

九、扩展实验

将单放机(或音频信号发生器)输出的信号经终端模块放大之后送入PAM/AM 模块

的信号输入点“PAM 音频输入”,引入适当时钟信号(从“PAM 时钟输入”点输入),将PAM/AM 模块中“解调输出”测试点输出的波形引入终端模块,

与单放机直接输出的声音比较,判断该通信系统性能的优劣。

十、芯片资料

MC14066 模拟乘法器

1、管脚排列图

2、内部电路图

实验3 脉冲编码调制与解调实验

一、实验目的

1、掌握脉冲编码调制与解调的基本原理。

2、定量分析并掌握模拟信号按照13折线A律特性编成八位码的方法。

3、通过了解大规模集成电路TP3067的功能与使用方法,进一步掌握PCM通信系统的工

作流程。

二、实验内容

1、观察脉冲编码调制与解调的整个变换过程,分析PCM调制信号与基带模拟信号之间

的关系,掌握其基本原理。

2、定量分析不同幅度的基带模拟正弦信号按照13折线A律特性编成的八位码,并掌握

该编码方法。

三、实验仪器

1、信号源模块

2、模拟信号数字化模块

3、20M双踪示波器 一台

4、连接线 若干

四、实验原理

脉冲编码调制(PCM)与解调通信系统的原理框图如下:

本实验模块采用大规模集成电路TP3067对语音模拟信号进行PCM编解码。TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。其编码速率为2.048MHz,每一帧8位数据,采用8KHz帧同步信号。模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙(此时隙应与发送码数据的时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后再译码输出。

PCM语音编码芯片TP3067的详细资料具体见附录中内容。

五、实验步骤及注意事项

1、将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。

2、插上电源线,打开主机箱右侧的交流开关,再分别按下二个模块中的相应开关

POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,二个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)

3、对任意频率、幅度的模拟正弦信号脉冲编码调制与解调实验

(1)将信号源模块中BCD码分频值(拨码开关SW04、SW05)设置为0000000 0000001(分频后“BS”端输出频率即为基频2.048MHz),模拟信号数字化模块中拨码开关S1设置为0000,“编码幅度”电位器逆时针旋转到顶。

(2)信号源模块产生一频率为2KHz,峰-峰值约为2V的正弦模拟信号,由“模拟输出”端送入到模拟信号数字化模块的“S-IN”端,再分别连接信号源模块的信号

“FRAMEB-IN”、“2048K-IN”。开电,观察“PCMB-OUT”端PCM编码。(因为是对随机信号进行编码,所以建议使用数字存储示波器观察。)

(3)断电,分别连接模拟信号数字化模块上编译码时钟信号“CLKB-IN”和“CLK2-IN”,帧同步信号“FRAMEB-IN”和“FRAME2-IN”,PCM编译码信号输出点“PCMB-OUT”

和信号输入点“PCM2-IN”。开电,观察并比较基带模拟信号“S-IN”和解调信号

“JPCM”。

(4)改变正弦模拟信号的幅度及频率,观察PCM编码信号和解调信号随之的波形变

化情况,同时注意观察满载和过载时的脉冲幅度和解调信号波形,超过音频信号频

带范围时的解调信号波形。(应可观察到,当输入正弦波信号幅度大于5V时,解

调信号中带有明显的噪声;当输入正弦波的频率大于3400Hz或小于300Hz时,因

为TP3067集成芯片主要针对音频信号,芯片内部输入端有一个带通滤波器滤除带

外信号,所以解调信号的幅度将逐渐减小为零。)

4、用模拟示波器定量观察PCM八位编码实验

注:该模块电路使用同一时钟源产生所有的时钟信号及频率固定、幅度可调的基带信号,故而可用模拟示波器同步观察PCM编译码过程。

(1)断电,拆除所有信号连线,将拨码开关S1设置为1111。

(2)开电,观察2KHz基带信号“S-IN2”、8KHz帧同步信号“FRAMEB-IN”、64KHz 编码时钟信号“CLKB-IN”与PCM编码信号“PCMB-OUT”的波形。(这里建议用8KHz 帧同步信号与PCM编码信号同时观察,每四帧为一个周期编码。)调节“编码幅度”

电位器,分析PCM八位编码中极性码、段落码与段内码的码型随基带信号幅值大小变化而变化的情况。

(3)断电,分别连接信号点“CLKB-IN”和“CLK2-IN”,“FRAMEB-IN”和“FRAME2-IN”,“PCMB-OUT”和“PCM2-IN”。开电,观察并比较基带模拟信号“S-IN2”和解调信号“JPCM”。

注:实验完后务必将拨码开关S1重新设置为0000。

六、实验结果

对任意频率、幅度的模拟正弦信号脉冲编码调制与解调实验

PCM输入信号:

S-IN:2KHz ,峰峰值为2V的正弦波

CLKB-IN:信号源输出点“64K”输出的62.5KHz方波

FRAMEB-IN:信号源输出点“8K”输出的7.8125KHz方波

2048K-IN:信号源输出点“BS”输出的2MHz方波

1、上路帧同步信号(FRAMEB-IN)与

2、上路基带模拟信号(S-IN)与

下路PCM编码信号(PCMB-OUT)波形 下路PCM解调信号(JPCM)波形

用模拟示波器定量观察PCM八位编码实验

1、上路帧同步信号(FRAMEB-IN)与

2、上路基带模拟信号(S-IN2)

下路PCM编码信号(PCMB-OUT)波形 与下路PCM解调信号(JPCM)波形

七、思考题答案

TP3067 PCM编码器输出的PCM码的速率是多少?在本实验中,为什么要给TP3067提供2.048MHz的时钟?

答:TP3067 PCM编码器输出的PCM码的速率是64Kb/S,属于国际标准。

由PCM帧结构知,1帧共有32路时隙,每路时隙8bit,每秒有8000帧,故30/32路PCM基群的码率为:8000*32*8=2.048Mb/s,即TP3067提供的PCM编译码电路的时钟频率。

八、提问及解答

1、 在脉码调制中,选用折叠二进码为什么比选用自然二进码好?

答:采用折叠二进码可以大为简化编码的过程,而且在传输过程中如果出现误码,

对小信号的影响较小,有利于减小平均量化噪声。具体分析可参见国防工业出版社

《通信原理》(第五版)教材P207~208页内容。

2、脉冲编码调制系统的输出信噪比与哪些因素有关?

答:均匀量化器的输出信号量噪比为S/N q=M2 。对于PCM系统,解码器中具有这

个信号量噪比的信号还要通过低通滤波器。用N位二进制码进行编码时,上式可写

为S/N q=22N。这表明,PCM系统的输出信号量噪比仅和编码位数N有关,且随N按

指数规律增大。对于一个频带限制在f 的低通信号,按抽样定理,有S/N q=22(B/f,即PCM系统的输出信号量噪比随系统的带宽B按指数规律增长。

九、附录

图6-1 TP3067典型外部电路(部分)

图6-2 TP3067内部结构方框图

1、TP3067芯片管脚功能介绍

(1)VPO+:接收功率放大器的非倒相输出端。

(2)GNDA:模拟地端,所有信号均以该引脚为参考点。

(3)VPO-:接收功率放大器的倒相输出端。

(4)VPI:接收功率放大器的倒相输入端。

(5)VFRO:接收滤波器的模拟输出端。

(6)Vcc:正电源引脚,Vcc=+5V+5%。

(7)FSR:接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序

列。

(8)DR: 接收数据帧输入。PCM数据随着FSR前沿移入DR。

(9)BCLKR/CLKSEL:在FSR的前沿把输入移入DR时位时钟,其频率可以从64KHz至

2.048MHz。另一方面它也可能是一个逻辑输入,以此为在同步模式

中的主时钟选择频率1.536MHz、1.544MHz或2.048MHz,BCLKR用在

发送和接收两个方向。

(10)MCLKR/PDN:接收主时钟,其频率可以为1.536MHz、1.544MHz或2.048MHz。它允许与MCLKx异步,但为了取得最佳性能应当与MCLKx同步,当MCLKR

连续连在低电位时,MCLKx被选用为所有内部定时,当MCLKR连续工

作在高电位时,器件就处于掉电模式。

(11)MCLKx:发送主时钟,其频率可以是1.536MHz、1.544MHz或2.048MHz,它允许与MCLKR异步,同步工作能实现最佳性能。

(12)BCLKx:把PCM数据从Dx上移出的位时钟,其频率可以从64KHz至2.048MHz,但必须与MCLKx同步。

(13)Dx:由FSx启动的三态PCM数据输出。

(14)FSx:发送帧同步脉冲输入,它启动BCLKx并使Dx上PCM数据移出到Dx上。

(15)TS x:开漏输出。在编码器时隙内为低脉冲。

(16)ANLB:模拟环路控制输入,在正常工作时必须置为逻辑“0”,当拉到逻辑“1”时,发送滤波器和发送前置放大器输出的连接线被断开,而改为和接收功率放大

器的VPO+输出连接。

(17)GSx:发送输入放大器的模拟输出,用来在外部调节增益。

(18)VFxI-:发送输入放大器的倒相输入端。

(19)VFxI+:发送输入放大器的非倒相输入端。

(20)V BB:负电源引脚,V BB = -5V+5%。

2、TP3067芯片功能说明

(1)上电

当开始上电瞬间,加压复位电路启动COMBO并使它处于掉电状态,所有非主要电路都失效,而Dx、VFRO、VPO-、VPO+均处于高阻抗状态。为了使器件上电,一个逻辑低电平或时钟脉冲必须作用在MCLKR/PDN引脚上,并且FSx和FSR脉冲必须存在。于是有两种掉电控制模式可以利用。在第一种中MCLKR/PDN引脚电位被拉高。在另一种模式中使FSx和FSr二者的输入均连续保持低电平,在最后一个FSx或FSr脉冲之后相隔2ms左右,器件将进入掉电状态,一旦第一个FSx和FSr脉冲出现,上电就会发生。三态数据输出将停留在高阻抗状态中,一直到第二个FSx脉冲出现。

(2)同步工作

在同步工作中,对于发送和接收两个方向应当用相同的主时钟和位时钟,在这一模式中,MCLKx上必须有时钟信号在起作用,而MCLKR/PDN引脚则起了掉电控制作用。MCLKR/PDN上的低电平使器件上电,而高电平则使器件掉电。这两种情况中,不论发送或接收方向,MCLKx 都用作为主时钟输入,位时钟也必须作用在MCLKx上,对于频率为1.536MHz、1.544MHz或2.048MHz的主时钟,BCLKR/CLKCEL可用来选择合适的内部分频器,在1.544MHz工作状态下,本器件可自动补偿每帧内的第193个时钟脉冲。当BCLKR/CLKSEL引脚上的电平固定时,BCLKx

将被选为发送和接收方向兼用的位时钟。表6-1说明可选用的工作频率,其值视BCLKx/CLKSEL的状态而定。在同步模式中,位时钟BCLKx可以从64KHz变至2.048MHz,但

必须与MCLKx同步。每一个FSx脉冲标志着编码周期的开始,而在BCLKx的正沿上,从前一个编码周期来的PCM数据从已启动的Dx输出中移出。在8个时钟周期后,三态Dx输出恢复到高阻抗状态。随着FSR脉冲来临,依赖BCLKx(或在运行中的BCLKR)负沿上的DR输入,PCM数据被锁定,FSx和FSR必须与MCLKx或MCLKR同步。

表6-1 主时钟频率的选择

在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz,只要把静态逻辑电平加到MCLKx/PDN引脚上,就能实现这一点。FSx启动每个编码周期而且必须与MCLKx和BCLKx保持同步。FSR启动每一个译码周期而且必须与BCLKR同步。BCLKR必须为时钟信号。表6-1中的逻辑电平对于异步模式是不成立的。BCLKx和BCLKR工作频率可从64KHz变到2.048MHz。

(4)短帧同步工作

COMBO既可以用短帧,也可以用长帧同步脉冲。在加电开始时,器件采用短帧模式,在这种模式中,FSx和FSr这两个帧同步脉冲的长度均为一个位时钟周期。在BCLKx的下降沿当FSx为高时,BCLKx的下一个上升沿可启动输出符号位的三态输出Dx的缓冲器,紧随其后的7个上升沿以时钟送出剩余的7个位,而下一个下降沿则阻止Dx输出。在BCLKR的下降沿当FSr为高时(BCLKx在同步模式),其下一个下降沿将锁住符号位,跟随其后的7个下降沿锁住剩余的7个保留位。

(5)长帧同步工作

为了应用长帧模式,FSx和FSr这两个帧同步脉冲的长度应等于或大于位时钟周期的三倍。在64KHz工作状态中,帧同步脉冲至少要在160ns内保持低电位。随着FSx或BCLKx 的上升沿(无论哪一个先到)来到,Dx三态输出缓冲器启动,于是被时钟移出的第一比特为符号位,以后到来的BCLKx的7个上升沿以时钟移出剩余的7位码。随着第8个上升沿或FSx变低(无论哪一个后发生),Dx输出由BCLKx的下降沿来阻塞,在以后8个BCLKR的下降沿(BCLKR),接收帧同步脉冲FSR的上升沿将锁住DR的PCM数据。

(6)发送部件

发送部件的输入端为一个运算放大器,并配有两个调整增益的外接电阻。在低噪声和宽频带条件下,整个音频通带内的增益可达20dB以上。该运算放大器驱动一个增益为1的滤波器(由RC有源前置滤波器组成),后面跟随一个时钟频率为256KHz的8阶开关电容带通滤波器。该滤波器的输出直接驱动编码器的抽样保持电路。在制造中配入一个精密电压基准,以便提供额定峰值为2.5V的输入过载(tmax)。FSx帧同步脉冲控制滤波器输出的抽样,然后逐次逼近的编码周期就开始。8位码装入缓冲器内,并在下一个FSx脉冲下通过Dx移出,整个编码时延近似地等于165ns加上125ns(由于编码时延),其和为290ns。

(7)接收部件

接收部件包括一个扩展DAC(数模转换器),而它又驱动一个时钟频率为256KHz的5阶开关电容低通滤波器。译码器是依照A律(TP3067)设计的,而5阶低通滤波器矫正8KHz

抽样—保持电路所引起的sinx/x衰减。在滤波器后跟随一个输出在VFRO上的2阶RC低通后置滤波器。接收部件的增益为1,但利用功率放大器可加大增益。当FSr出现时在后续的8个BCLKR(BCLKx)的下降沿,DR输入端上的数据将被时钟控制。在译码器的终端,译码

循环就开始了。

(8)接收功率放大器

两个倒相模式的功率放大器用来直接驱动一个匹配的线路接口电路。

本编译码器的功能比较强,它既可以进行A律变换,也可以进行u律变换,它的数据既可用固定速率传送,也可用变速率传送,它既可以传输信令帧也可以选择它传送无信令帧,并且还可以控制它处于低功耗备用状态,到底使用它的什么功能可由用户通过一些控制来选择。

在实验中我们选择它进行A律变换,以2.048Mbit/s的速率来传送信息,信令帧为无信令帧,它的发送时序与接收时序直接受FSx和FSR控制。

还有一点,编译码器一般都有一个PDN降功耗控制端,PDN=1时,编译码能正常工作,PDN=0,编译码器处于低功耗状态,这时编译码器其它功能都不起作用,我们在设计时,可以实现对编译码器的降功耗控制。

实验4 码型变换实验

一、实验要求

1、了解几种常见的数字基带信号。

2、掌握常用数字基带传输码型的编码规则。

3、掌握用FPGA实现码型变换的方法。

二、实验内容

1、观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。

2、观察全0码或全1码时各码型的波形。

3、观察HDB3码、AMI码、BNRZ码的正、负极性波形。

4、观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码

型反变换后的输出波形。

5、自行设计码型变换电路,下载并观察输出波形。

三、实验仪器

1、信号源模块

2、码型变换模块

3、20M双踪示波器一台

4、频率计(可选)一台

5、PC机(可选)一台

6、连接线若干

四、实验原理

1、二元码

(1)在很多教材中将单极性归零码称为归零RZ码,而将与归零相对应的单极性和双极性不归零码称为不归零NRZ码。我们实验指导书中则采用NRZ码代表单极性不归零码,用

BNRZ码代表双极性不归零码。并且在大部分实验中均以NRZ码作为输入信号或基带信号。本实验也是用信号源的NRZ码作为输入信号。

(2)二元码中最简单的二元码如单极性不归零码、单极性归零码和双极性不归零码的功率谱中有丰富的低频乃至直流分量。这对于大多数采用交流耦合的有线信道来说是不允许的。此外,当包含长串的连续“1”或“0”时,非归零码呈现出连续的固定电平。由于信号中不出现跳变,因而无法提取定时信息。它们存在的另一个问题是:它们不具有检测错误的能力。由于信道频带受限并且存在其他干扰,经传输信道后基带信号波形会产生畸变,从而导致接收端错误地恢复原始信息。并且由于上述二元码信息中每个“1”和“0”分别独立地相应于某个传输电平,相邻信号之间不存在任何制约,正是这种不相关性使这些基带信号不具有检测错误信号状态的能力。由于这些问题,它们通常只用于机内或很近距离的信息传递。

(3)BPH 码

由于双相码在每个码元间隔的中心部分都存在电平跳变,因此在频谱中存在很强的定时分量,它不受信源统计特性的影响。此外,由于方波周期内正、负电平各占一半,因而不存在直流分量。显然,这种优点是用频带加倍来换取的。双相码适用于数据终端设备在短距离上的传输。

(4)CMI 码

CMI 码也没有直流分量,却有频繁出现的波形跳变,便于恢复定时信号。而且从CMI 码波形可知,用负跳变可直接提取位定时信号,不会产生相位不确定问题。相比之下,在数字双相码中采用一种跳变提取的定时信号相位是不确定的。但若采用两种跳变提取定时信号,则频率是位定时频率的两倍,由它分频得到位定时信号时,也必存在相位不确定问题。传号反转码的另一个特点是它有检测错误的能力。根据它的编码规则,在正常情况下“10”是不可能在波形中出现的,连续的“00”和“11”也是不可能的,这种相关性可以用来检测因信道而产生的部分错误。在CMI 码中,原始的二元信息在编码后都用一组两位的二元码来表示,因此这类码又称为1B2B 码型。

2、编码原理框图:

NRZ

BS

2BS

FS

HDB 3AMI BNRZ

BRZ

图9-1 编码原理框图

框图的实现:

(1)单极性的RZ

码、BPH 码、CMI 码可直接通过CPLD 实现编码。

(2)双极性的BRZ 码、BNRZ 码、AMI 码、HDB 3码通过CPLD 编码后,必须通过外接的具有正、负极性输出的数据选择器生成。

3、解码部分原理框图

框图的实现:

(1)单极性的RZ 码、BPH 码、CMI 码可直接通过CPLD 实现解码。

移动通信实验报告

邮电大学 移动通信实验报告 班级: 专业: : 学号:

班序号: 一、实验目的 (2) 1、移动通信设备观察实验 (2) 2、网管操作实验 (3) 二、实验设备 (3) 三、实验容 (3) 1、TD_SCDMA系统认识 (3) 2、硬件认知 (3) 2.1移动通信设备 (3) 2.2 RNC设备认知 (4) 2.3 Node B设备(基站设备) (6) 2.4 LMT-B软件 (7) 2.5通过OMT创建基站 (8) 四、实验总结 (20) 一、实验目的 1、移动通信设备观察实验 1.1 RNC设备观察实验 a) 了解机柜结构 b) 了解RNC机框结构及单板布局 c) 了解RNC各种类型以及连接方式 1.2 基站设备硬件观察实验 a) 初步了解嵌入式通信设备组成 b) 认知大唐移动基站设备EMB5116的基本结构 c) 初步分析硬件功能设计

2、网管操作实验 a) 了解OMC系统的基本功能和操作 b) 掌握OMT如何创建基站 二、实验设备 TD‐SCDMA 移动通信设备一套(EMB5116基站+TDR3000+展示用板卡)电脑 三、实验容 1、TD_SCDMA系统认识 全称是时分同步的码分多址技术(英文对应Time Division-Synchronous Code Division Multiple Access)。 TD_SCDMA系统是时分双工的同步CDMA系统,它的设计参照了TDD(时分双工)在不成对的频带上的时域模式。运用TDSCDMA这一技术,通过灵活地改变上/下行链路的转换点就可以实现所有3G对称和非对称业务。合适的TDSCDMA时域操作模式可自行解决所有对称和非对称业务以及任何混合业务的上/下行链路资源分配的问题。 TD_SCDMA系统网络结构中的三个重要接口(Iu接口、Iub接口、Uu接口),认识了TD_SCDMA系统的物理层结构,熟悉了TD_SCDMA系统的六大关键技术以及其后续演进LTE。

通信电子线路实验报告4

大连理工大学 本科实验报告 课程名称:通信电子线路实验 学院:电子信息与电气工程学部专业:电子信息工程 班级:电子0904 学号: 200901201 学生姓名:朱娅 2011年11月20日

实验四、调幅系统实验及模拟通话系统 一、实验目的 1.掌握调幅发射机、接收机的整机结构和组成原理,建立振幅调制与 解调的系统概念。 2.掌握系统联调的方法,培养解决实际问题的能力。 3.使用调幅实验系统进行模拟语音通话实验。 二、实验内容 1.实验内容及步骤,说明每一步骤线路的连接和波形 (一)调幅发射机组成与调试 (1)通过拨码开关S2 使高频振荡器成为晶体振荡器,产生稳定的等幅高频振荡,作为载波信号。拨码开关S3 全部开路,将拨码开关S4 中“3”置于“ON”。用示波器观察高频振荡器后一级的射随器缓冲输出,调整电位器VR5,使输出幅度为0.3V左右。将其加到由MC1496 构成的调幅器的载波输入端。 波形:此时示波器上,波形为一正弦波,f=10.000MHz,Vpp=0.3V。 (2)改变跳线,将低频调制信号(板上的正弦波低频信号发生器)接至模拟乘法器调幅电路的调制信号输入端,用示波器观察J19 波形,调VR9,使低频振荡器输出正弦信号的峰-峰值Vp-p 为0.1~0.2V. 波形:此时示波器上,波形为一正弦波,f=1.6kHz,Vpp=0.2V。 (3)观察调幅器输出,应为普通调幅波。可调整VR8、VR9 和VR11,

使输出的波形为普通的调幅波(含有载波,m 约为30%)。 (4)将普通的调幅波连接到前置放大器(末前级之前的高频信号缓冲器)输入端,观察到放大后的调幅波。 波形:前置放大后的一调幅波,包络形状与调制信号相似,频率特性为载波信号频率。f?=1.6kHz,Vpp=0.8V,m≈30%。 (5)调整前置放大器的增益,使其输出幅度1Vp-p 左右的不失真调幅波,并送入下一级高频功率放大电路中。 (6)高频功率放大器部分由两级组成,第一级是甲类功放作为激励级,第二级是丙类功放。给末级丙类功放加上+12V 电源,调节VR4 使J8(JF.OUT)输出6Vp-p左右不失真的放大信号,在丙类功放的输出端,可观察到经放大后的调幅波,改变电位器VR6 可改变丙类放大器的增益,调节CT2 可以看到LC 负载回路调谐时对输出波形的影响。 波形:此时示波器上为放大后的调幅波,f?=1.6kHz,Vpp=8V,m≈30%。 (二)调幅接收机的组成与调试 从GP-4 实验箱的系统电路图可以看出调幅接收机部分采用了二次变频电路,其中频频率分别为:第一中频6.455MHz,第二中频455kHz。由于该二次变频接收机的两个本机振荡器均采用了石英晶体振荡器,其中第一本振频率16.455MHz,第二本振频率6.000MHz,也就是说本振频率不可调。这样实验箱的调幅接收机可以接收的频率就因为第一本振频率不可调而被固定下来,即该机可以接收的已调波的中心频率应该为10.000MHz(第1本振频率-第1中频频率 = 16.455MHz - 6.455MHz =

通信原理实验讲义

通信原理实验 辽宁大学信息学院 2005年5月

目录 实验一数字基带信号实验 (AMI/HDB3) (3) 实验二数字调制实验 (7) 实验三模拟锁相环与载波同步实验 (11) 实验四数字解调实验 (14) 实验五全数字锁相环与位同步实验 (18) 实验六帧同步实验 (22) 实验七数字基带通信系统实验 (25) 实验八2DPSK、2FSK通信系统实验 (29) 实验九AM调制解调通信系统实验 (30) 实验十PAM调制解调实验 (33) 实验十一PCM编译码实验 (36) 实验十二ADPCM编译码实验 (42) 实验十三CVSD调制解调实验 (47) 实验十四话音信号多编码通信系统实验 (51)

实验十五码型变换实验(CPLD开放模块实验) (53) 实验十六时分复用实验(CPLD开放模块实验) (56) 实验十七计算机通信实验(CPLD开放模块实验) (59) 实验十八5B6B编译码实验(CPLD开放模块实验)……………………………… 61 实验一数字基带信号实验 一、实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2、掌握AMI、HDB3的编码规则。 3、掌握从HDB3码信号中提取位同步信号的方法。 4、掌握集中插入帧同步码时分复用信号的帧结构特点。 5、了解HDB3(AMI)编译码集成电路CD22103。 二、实验内容 1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。 2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。 3、用示波器观察HDB3、AMI译码输出波形。 三、基本原理 本实验使用数字信源模块、HDB3编译码模块和可编程逻辑器件模块。 1、数字信源 本模块是整个实验系统的发终端,其原理方框图如图1-1所示。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位

《移动通信技术》实验教学大纲(18.6)教学文案

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号: B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋季 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使 学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信 系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的 需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论内容产生一个具体的感性认 识,通过具体的实验操作使学生达到“知其然,且知其所以然”,从而提高分析 问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1 数字调制与解调技术验证性必做信息工程/电子信息工程 2 2 扩频技术验证性必做信息工程/电子信息工程 2 3 抗衰落技术验证性必做信息工程/电子信息工程 2 4 GSM通信系统实验综合性必做信息工程/电子信息工程 2 5 CDMA通信系统实验综合性必做信息工程/电子信息工程 2

五、实验项目的具体内容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK, OQPSK,MSK,GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的概念、星座图的产生原理及方法。 2.实验内容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星 座图的不同及他们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK, OQPSK,MSK,GMSK的调制解调原 理; 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调;用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比;示波器探头接10号模块TH7(I-Out)和 TH9(Q-Out),调节示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形;示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

移动通信 实验 解扩实验

实验十二解扩实验 一.实验目的: 1、通过本实验掌握载波已调信号m序列解扩原理及方法,掌握解扩前后信号在时 域及频域上的变化。 2、通过本实验掌握载波已调信号GOLD序列解扩原理及方法,掌握解扩前后信号在 时域及频域上的变化。 二.实验内容: 1、观察解扩时本地扩频码与扩频时扩频码的同步情况。 2、观察已调信号在解扩前后的频域变化。 三.基本原理: m序列解扩的是在接收到的RF信号上进行的,其实解扩的原理很简单,即用一个与发送端完全相同的m序列与接收到的信号直接相乘就可以完成信号的解扩,两个m序列的相位必须一致,即接收端产生的m序列必须进行捕获和跟踪,以使其速率和相位与发送端m序列保持一致。 四.实验原理: 1、实验模块简介 (1)CDMA发送模块: 本模块的主要功能:产生PN31伪随机序列,将伪随机序列或外部输入的其它数字序列扩频,扩频增益为32,扩频后输出码速率为512kbps,可输出两条不同扩 频码信号。 (2)CDMA接收模块: 本模块的主要功能:完成10.7MHz射频信号的选频放大,当本地扩频码设置为与发送端扩频码相同时,可完成扩频码的捕获及跟踪,进而完成射频信号的解扩。 (3)IQ调制解调模块: 本模块的主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;完成射频信号正交解调。 2、扩频后的PSK已调信号分为三路送入CDMA接收模块中,分别与结婚搜模块中产 生的m序列的超前、同相、滞后序列相乘。在扩频码没有捕获到时,同相支路的捕获输出为低电平,扣码电路工作,每周期扣掉1/4个码元,使发送端和接收端的两个PN序列产生相对滑动,当滑动到两个序列的相位差小于一个码元时,电平,扣码电路停止工作,系统进入跟踪状态。此时超前-滞后支路产生的复合相关特性出现,经低通滤波后控制VCO,使收发端PN序列完全同步,此后跟踪过程一直存在,维持PN序列的同步。 PN码同相支路的相乘信号经带通滤波后即为解扩后的信号。该信号时一个基带信元的PSK调制信号,扩频码调制部分已经被去除。 五.实验步骤: (一)m序列扩频实验 1、在实验箱上正确安装CDMA发送模块、CDMA接收模块及IQ调制解 调模块 2、正确连线,检查无误后打开电源 3、将发送模块上“GOLD1 SET”拨码开关拨为全“0”,将接收模块上“GOLD SET” 拨码开关拨为全“0”,按复位键以完成设置。 4、示波器探头接接收模块“输出2”测试点,调整“幅度”电位器使该点信号电压

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

移动通信实验指导书

目录 移动通信系统实验指导 (1) 实验一:AWGN信道中BPSK调制系统的 BER仿真计算 (2) 实验二:移动信道建模的仿真分析 (4) 实验三: CDMA通信系统仿真 (5)

移动通信系统实验指导 上机实验是移动通信课程的重要环节,它贯穿于整个“移动通信”课程教学过程中。本课程的实验分为3个阶段进行,它要求学生根据教科书的内容,在MATLAB仿真平台上并完成相应系统及信道建模仿真,帮助学生直观的了解移动通信系统的相关工作原理。最后要求学生根据实验内容完成实验报告。 试验的软件环境为Microsoft Windows XP + MATLAB。

实验一:AWGN信道中BPSK调制系统的 BER仿真计算 一、实验目的 1.掌握二相BPSK调制的工作原理 2.掌握利用MATLAB进行误比特率测试BER的方法 3.掌握AWGN信道中BPSK调制系统的BER仿真计算方法 二、实验原理 1.仿真概述及原理 在数字领域进行的最多的仿真任务是进行调制解调器的误比特率测试,在相同的条件下 进行比较的话,接收器的误比特率性能是一个十分重要的指标。误比特率的测试需要一个发送器、一个接收器和一条信道。首先需要产生一个长的随机比特序列作为发送器的输入,发送器将这些比特调制成某种形式的信号以便传送到仿真信道,我们在传输信道上加上一定的可调制噪声,这些噪声信号会变成接收器的输入,接收器解调信号然后恢复比特序列,最后比较接收到的比特和传送的比特并计算错误。 误比特率性能常能描述成二维图像。纵坐标是归一化的信噪比,即每个比特的能量除以噪声的单边功率谱密度,单位为分贝。横坐标为误比特率,没有量纲。

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信电子线路实物实验报告

东南大学电工电子实验中心 实验报告 课程名称:电子电路与综合实验 第一次实物实验 院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130 实验室:高频实验室实验组别: 同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:

实验一常用仪器使用 一、实验目的 1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作 原理; 2.通过实验掌握振幅调制、频率调制的基本概念。 二、实验仪器 示波器(带宽大于 100MHz) 1台 万用表 1台 双路直流稳压电源 1台 信号发生器 1台 频谱仪 1台 多功能实验箱 1 套 多功能智能测试仪1 台 三、实验内容 1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。 答: (1)频谱仪结构框图为: 频谱仪的主要工作原理: ①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。 (2)示波器的测量精度与示波器带宽、被测信号频率之间的关系: 示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。 2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。 答: 上电时间示意图: 工作原理: 捕获这个过程需要示波器采样周期小于过渡时间。示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。这样,就可以利用游标读出电源上电的上升时间。 3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的? 答: 载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数) 已调的瞬时相角为00 t ()()t t c f t dt t k u t dt θωωθΩ =++? ?()= 所以FM 已调波的表达式为:000 ()cos[()]t om c f u t U t k u t dt ωθΩ =++? 当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+ 其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即 m f f U M k Ω=Ω 。这样,调制信号的幅度与频率信息是已加到 FM 波中。

通信原理实验讲义(2012)

《通信原理》实验讲义 2012年2月

目录 实验一AM调制解调通信系统实验 (3) 实验二HDB3编译码实验 (14) 实验三2ASK、2FSK数字解调实验 (17)

实验一 AM 调制解调通信系统实验 一、 实验目的: 1、掌握集成模拟乘法器的基本工作原理; 2、掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点; 3、学习调制系数m 及调制特性(m~Uωm )的测量方法,了解m<1 和m=1及 m>1时调幅波的波形特点。 4、掌握用集成电路实现同步检波的方法。 二、 预习要求: 1、预习幅度调制器的有关知识; 2、认真阅读实验指导书,分析实验电路中用MC1496乘法器调制的工作原理, 并分析计算各引脚的直流电压; 3、了解调制系数m 的意义及测量方法; 4、分析全载波调幅信号的特点; 5、了解实验电路中各元件作用。 6、复习用集成模拟乘法器构成的同步检波器的工作原理; 7、了解实验电路中各元件作用; 8、了解检波器电压传输系数Kd 的意义及测量方法 三、实验电路说明: (A )幅度调制系统原理及抗噪性能 一、调制、解调方法 用滤波器产生AM 、DSB 、SSB 、VSB 信号方法。 AM: A+m(t) DSB,VSB,SSB: m(t) m(t)=0f L — f H )f (M )t (m F ?→? )f (M )f (A 2)t (m A 0F +?→? +δπ ()()[]c c F c f f f f )f (C t cos -++=?→? δδπω ()()[]c c F f f M f f M 2 1 )f (S )t (S -++=?→? ()()[]c c F f f M f f M )f (H 2 1)f (Sm )t (Sm -++=?→?

通信原理实验报告

通信原理实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用 subplot(311); % 设置3行1列的作图区,并在第1区作图 plot(t,x1); title('占空比25%'); axis([0 ]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 ]); subplot(313); plot(t,x3);

title('占空比75%'); axis([0 ]); 图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4::4; T=4; % 设置信号宽度x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1);

通信电子线路实验报告三点式振荡

通信电了线路课程设计 课程名称通信电子线路课程设计_________________ 专业___________________ 通信工程 ______________________ 班级___________________________________________ 学号___________________________________________ 姓名___________________________________________

指导教师________________________________________ 、八 刖 现代通信的主要任务就是迅速而准确的传输信息。随着通信技术的日益发展,组成通信系统的电子线路不断更新,其应用十分广泛。实现通信的方式和手段很多,通信电子线路主要利用电磁波传递信息的无线通信系统。 在本课程设计中,着眼于无线电通信的基础电路一一LC正弦振荡器的分析和研究。常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。其中LC振荡器和晶体振荡器用于产生高频正弦波。正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可由集成电路组成。LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式易起振,调整频率方便,可以通过改变电容调整频率而不影响反馈系数。正弦波振荡器在各种电子设备中有着广泛的应用。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 在此次的通信电子线路课程设计中,我选做的是电感三点式振荡设计,通过为时一周的上机实验,我学到了很多书本之外的知识,在老师的指导下达到实验设计的要求指

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号:B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋李 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论容产生一个具体的感性认识,通过具体的实验操作使学生达到“知其然,且知英所以然”,从而提髙分析问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1数字调制与解调技术验证性必做信息工程/电子信息工程 2 2扩頻技术验证性必做信息工程/电子信息工程 2 3抗衰落技术脸证性必做信息工程/电子信息工程2 4GSM通信系统实验综合性必做信息工程/电子信息工程2 5CDMA通信系统实验综合性必做信息工程/电子信息工程2 五、实验项目的具体容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK. OQPSK.MSK.GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的槪念、星座图的产生原理及方法。 2.实验容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星座图的不同及他 们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK. OQPSK.MSK.GMSK的调制解调原理: 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调:用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比:示波器探头接10号模块TH7(I-Out)和TH9(Q-Out),调廿示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形:示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。 (3)QPSK相干解调实验。用示波器观测10号模块的TH3(DIN1), 11号模块的TH4(Dout),适当调右11号模块压控偏宜电位器W1来改变载波相位,对比观测原始基带信号和解调输出信号的波形;用示波器观测10号模块的TH1(BSIN),11号模块的TH5(BS-out), 对比观测原始时钟信号和解调恢复时钟信号的波形:用示波器对比观测原始I路信号与解调后I路信号的波形,以及原始Q路信号与解调后Q路信号的波形。 3)OQPSK调制及解调实验。选择OQPSK调制模式,实验步骤同2) 4)MSK调制及相干解调实验。

相关文档