文档库 最新最全的文档下载
当前位置:文档库 › 溶液表面张力和表面吸附的测定实验数据处理

溶液表面张力和表面吸附的测定实验数据处理

溶液表面张力和表面吸附的测定实验数据处理

数据处理

σ

c d σ/dc Γ 68.88

0.04 -136.9136 0.002181171 59.04

0.12 -113.5408 0.005426455 49.20

0.20 -90.16800 0.007182332 46.74

0.25 -75.56000 0.007523415 44.77

0.30 -60.95200 0.007282697 39.36 0.35 -46.34400 0.006460180 下图中粗线为σ-c 曲线的二次拟合曲线,其方程为: Y=146.082-148.68x+74.495

液体表面张力

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力作用,其方向与L 垂直,大小与线段L 成正比。即有:=γL 比例系数γ称为液体表面张力,其单位为N/m. 将一表面洁净的长为L 、宽为d 的圆形金属环(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属环将要脱离液面,即拉起的水膜刚好要破裂时,则有:F=mg+,式中F 为把金属环拉出液面时所用的力;mg 为金属环和带起的水膜的总质量;f 为张力。此时,与接触面的周围边界π(),则 有γ= ,式中D1,D2分别为圆环的内外直径。 实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小,只要上述条件保持一定,则γ是一个常量,所以测量γ时要记下当时的温度和所用液体的种类及纯度。 【实验步骤】1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利称立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱之间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值。 2.测量弹簧的劲度系数k.依次增加 1.0g 砝码,即将质量为1.0g,2.0g,3.0g,…,9.0g,10.0g 的砝码加在下盘内。调整小游标的高度,每次都 F f F f F f F f D D 2 1 +) mg -F 21D D +∏(

乙醇表面张力系数的测定实验报告

竭诚为您提供优质文档/双击可除乙醇表面张力系数的测定实验报告 篇一:溶液表面张力测定实验报告 学号:20XX14120222 基础物理化学实验报告 实验名称:溶液表面张力的测定应用化学二班班级03 组号实验人姓名:xx同组人姓名:xxxx 指导老师:杨余芳老师实验日期:20XX-11-12 湘南学院化学与生命科学系 一、实验目的 1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c曲线)求界面上吸附量和正丁醇分子的横截面积s; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装

置如图一所示。 图一中A为充满水的抽气瓶;b为直径为0.2~0.3mm的毛细管;c为样品管;D为u型压力计,内装水以测压差;e 为放空管;F为恒温槽。 图一最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压), 毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由u型压力计上读出。 若毛细管的半径为r,气泡从毛细管出来时受到向下的 压力为: pmax?p大气?p系统??h?g 式中,△h为u型压力计所示最大液柱高度差,g为重 力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2 πr?γ,气泡刚脱离管口时,上述二力相等: ?rr2pmax??r2?h?g?2?r 2 r??r2?h?g?2?r??rp???h?g

液体表面张力系数测定的实验报告

xx 大学实验报告 一【实验目的】 (1) 掌握力敏传感器的原理和方法 (2) 了解液体表面的性质,测定液体表面张力系数。 二【实验内容】 用力敏传感器测量液体表面的张力系数 三【实验原理】 液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。 这种沿着表面的、收缩液面的力称之为表面张力。 测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处的,如图1所示。 由于液面收缩而产生的沿切线方向的力Ft 称之为表面张力,角φ称之为接触角。当缓缓拉出钢片时,接触角φ逐

渐的减小而趋于零,因此Ft方向垂直向下。在钢片脱离液体前诸力平衡的条件为 F = mg + F t (1)其中F是将薄钢片拉出液面的时所施加的外力,mg为薄钢片和它所沾附的液体的总重量。表面张力Ft与接触面的周长2(l+d)成正比,故有Ft = 2σ(l+d),式中比例系数σ称之为表面张力系数,数值上等于作用在液体表面单位长度上的力。将Ft代入式(1)中得 (2) 当用环形丝代替薄钢片做此实验时,设环的内外直径为D1、D2,当它从液面拉脱瞬间传感器受到的拉力差 f = F–m g =π(D1+D2)σ,此时 (3)只要测出力f和环的内外直径,将它们代入式(3),即可算出液体的表面张力系数σ。式中各量的单位统一为国际单位。 四【实验仪器】 (1)FD—NST—B 液体表面张力系数测定仪。 (2)砝码六个,每个质量 五【实验步骤】 (1)开机预热。 (2)清洗玻璃器皿和吊环。 (3)在玻璃器皿内放入被测液体并安放在升降台上。 (4)将砝码盘挂在力敏传感器上,对力敏传感器定标。 (5)挂上吊环,测定液体表面张力系数。当环下沿全部浸入液体内时,转动升降台的螺帽,使液面往下降。 记下吊环拉断液面瞬间时的电压表的读数U1,拉断后瞬间电压表的读数U2。则f=(U1-U2)/B 六【实验注意事项】 (1)轻轻挂上吊环,必须调节好水平。 (2)在旋转升降台时,尽量是液体的波动要小。

实验四溶液的吸附作用和液体表面张力的测定

实验四溶液的吸附作用和液体表面张力的测定 一、实验目的 1.用最大泡压法测定不同浓度的表面活性物质(正丁醇)溶液在一定温度下的表面张力; 2.应用Gibbs和Langmuir吸附方程式进行精确作图和图解微分,计算不同浓度正丁醇溶液的表面吸附量和正丁醇分子截面积,以加深对溶液吸附理论的理解; 3.掌握作图法的要点,提高作图水平。 二、基本原理 T一定,溶液表面吸附量Γ γ测定,毛细管半径r,其抛压出时受到向下压力∏r2P,最大时离开管口:P max =P 外 -P 系 。测 Pmax 气泡在管口受到的表面张力:2∏r*γ γ=rPmax 用同C溶液γ 1/γ 2 =P max1 /P max2 所以:γ1=(γ 2/P max2 )P max1 =KP max1 求常数K。 对于单分子吸附,其吸附量Γ与浓度c之间的关系可用等温吸附方程表示,即: 式中Гm为饱和吸附量,a为吸附平衡常数。将此式两边取倒数可整理成线性方程: 在饱和吸附时,每个被吸附分子在表面上所占的面积,即分子的截面积S为: 三、仪器与试剂 表面张力仪1套;恒温槽1台;1ml移液管1个;烧杯(250ml) 1个;100ml容量瓶1个;50ml容量瓶5个; 正丁醇(二级.);去离子水. 四、实验步骤 样品编号123456789容量瓶体积/cm31005050505050505050 V醇/cm3 3.仪器系数的测定。先用少量丙酮清洗毛细管3,再用蒸馏水仔细清洗样品管2和毛细管3,然后加入适量蒸馏水。在减压管1中装满水,压力计5中注入适量的水,在活塞8打开的情况下,调节活塞6使毛细管端面与液面相切。关闭活塞8,打开活塞7使体系减压,当毛细管口逸出气泡时,调节活塞7使液滴缓慢滴下,读出数字式微压差测量仪最大数值。 再更换样品重复测定两次,取平均值。已知25o C水的表面张力=,计算仪器系数K。 4.乙醇溶液表面张力的测定。取3%的乙醇溶液(一号样品)洗净样品管和毛细管,然后加入适量溶液,待恒温后,按上述操作步骤测定Δh。

液体表面张力实验报告

液体表面张力系数的测定 [实验目的] 1、了解液体表面张力性质以及表面张力系数的含义和影响因素. 2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。 3、了解用液体界面张力仪定标测量微小力的思想和方法。 4、了解液体界面张力仪的调节使用方法和校准方法。 5、熟悉实验的具体内容. 6、拟定出合理的实验数据记录表格. [实验原理] 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关.物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。 实验中采用拉脱法测量水与空气界面的表面张力系数。通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。(2)测量方法:用液体界面张力仪定标测量微小力的方法。(3)数据处理方法:质量标准曲线的绘制方法.(4)仪器调整使用方法:液体界面张力仪的调整使用方法。 [实验内容] 1、整液体界面张力仪水平和零点,达到待测状态. 2、准液体界面张力仪。 (1)金属环上放一块小纸片,仪器调零。包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。 (2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数. (3)计算理论值F0=mg/π(d1+d2)。 (4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等.重复测量几次,直至二者一致为止. 3、测量绘制质量标准曲线。 (1)仪器校准后,放置不同质量m的砝码,记录刻度盘的读数f。 (2)以m为横坐标f为纵坐标绘制质量标准曲线。

最大泡压法测定液体表面张力实验数据处理

最大泡压法测定液体表面张力实验数据处理 1.安装Origin 7.0软件并双击打开; 2.在A[X]和B[Y]数据列分别输入正丁醇浓度和相对应的最大压力差; 3.在空白处点击鼠标右键,点击“Add New Column(增加新列)”增加新的数据列C[Y]; 4.右键单击C[Y]数据列,点击“Set Column Values(设置列值)”,在对话框中输入计算程序计算正丁醇的表面张力:“(0.0728/566)*col(B)”,输入完毕之后点击“OK”,这时在C[Y]中就得到了不同正丁醇溶液的表面张力。 注意在“(0.0728/566)/col(B)”公式中,“”0.0728“为实验温度下水的表面张力,各组的数据可能不同,”566“为测定的水的最大压力差,各组也是不同的,输入你组测定的数据进行计算即可。 5.选中C[Y]数据列,点击“Analysis(分析)→Non-linear Curve Fit(非线性曲线拟合)→Advanced Fitting Tool (高级拟合工具)”,出现数据拟合对话框。 6.点击对话框中的”Function(函数)→New(新建)”,建立新的拟合函数。

7.在“Example(样本)“框内输入你指定的拟合函数:”y=p1-p2*ln(1+p3*x)“,并将”Number of Parameters(参数数量)“设为3,将”Form(形状)“设为”Equations(方程式)“,点击“Save(保存)”保存,这时我们的拟合函数设定完毕 8.点击“Action(执行)→Dataset(数据列)”,出现参数指定对话框。”点击在对话框顶部的列表框内单击y 变量,然后在“Available Datasets(可用数据列)”列表框中单击“Data1 -c”; 单击“Assign(赋值)”命令按钮。即y 变量对应于Data1-C 数列。同样可指定x 变量对应于Data1-A 数列. 9.点击”Action(执行)→Fit(拟合)“,出现曲线拟合对话框。将“P1、P2、P3 ”初始值均设为“1”。点击“100 Iter”按钮2 ~5 次,直至参数值不变即可。同时拟合出的曲线将出现在绘图框中。点击“Done(完成)”,在曲线对话框出现了拟合参数值(也可见曲线下面的数据框,给出了P1、P2、P3的数值,带入y=p1-p2*ln(1+p3*x),得到拟合的函数,其中y为表面张力,x为浓度),代入自定义的函数式中,即为由数据拟合的函数表达式,绘图框中的曲线即为拟合曲线。 10.求算曲线各点对应斜率dγ/ dc。按上述方法得到拟合曲线后,鼠标右键点击绘图框“1”,出现快捷菜单,点

液体表面张力实验报告

液体表面张力实验报告 实验原理: 实验一、一元硬币上能承载几滴水? 水是由水分子组成,它们之间不是独来独往的,而是互相吸引,甚至三三两两地结合。处在中间的水分子受到来自四面八方的其他水分子的包围,受力均匀。可是处在水面的水分子情况不同,它的一面与空气接触,没有来自其他水分子的吸引力,使得它受力不均匀,水的表面好像一块张紧的弹性薄膜。 由于液体的表面有这种奇特的存在,就使得液体的表面总是处在被绷紧的状态,并尽量收缩到最小。由于在体积相同的条件下,球的面积最小,所以在表面张力的作用下,肥皂泡、小露珠、水银滴等也

就都收缩成球形了。一元硬币上能承载的水滴也相应增加了。 实验二、订书针、一分硬币能浮在水面上吗? 小木块入水后,撤掉压力还能上浮是因浮力作用,而订书针、硬币入水后,由于表面张力被破坏下沉,原来浮在水面是因水的表面张力。 其实科学就在我们的身边,就在我们的生活中,你也可以和爸爸妈妈一起动手做一做,亲自去感受去体验,做个科学小达人吧! 处于表面的液体分子(球状模型,液体分子排列紧密),以分子B为中心的球面中的一部分在液体当中,另一部分在液面之外,由于对称性可知,CC'和DD'之间部分的受到的合力等于零;对B有效的作用力是由球面内DD'以下的部分受到的向下合力。由于处在边界内的每—个分子都受到指向液体内部的合力,所以这些分子都有向液体内部下降的趋势,同时分子与分子之间还有侧面的吸引力,即有尽量收缩表面的趋势。

以最简单的气液相界面为例,液相内分子周围所受的力是对称的,彼此相互抵消,但表面层分子由于受力不均衡,其结果受到垂直指向液体内部的拉力,所以液体表面都有自动缩小的趋势。如果要扩大表面就要把内层分子移到表面上来,这至少需要克服表面分子的拉力而做功。实际上液体分子内部所受的力是分子间作用力当然也包括氢键。因此,简单地说表面张力是范德华力和氢键微观作用在宏观上的表现。

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

表面张力实验报告

表面张力实验报告 励耘化学 黄承宏 2 量具名称 量程 分辨力 误差限 测量 游标卡尺(mm) 150.00 0.05 0.05 D1,D2 1 2 3 平均值 内径 D1(mm) 33.15 33.15 33.05 33.12 外径 D2(mm) 34.80 34.75 34.85 34.80 D1+D2(mm) 67.95 67.90 66.90 67.92 编号 1 2 3 4 5 6 7 质量/g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 砝码重力/N 0.0049 0.0098 0.0147 0.0196 0.0245 0.0294 0.0343 示数/mV 2.0 3.1 5.2 6.8 8.3 10.2 11.9 灵敏度B 为0.3426N/V 1 2 3 4 5 6 平均值 U1/mV 7.8 8.6 8.7 9.1 9.2 9.4 8.8 U2/mV 1.7 3.1 3.2 3.1 3.5 3.0 2.9 U1-U2 6.1 5.5 5.5 6.0 5.7 6.4 5.9 由公式水的表面张力α=Bπ(D1+D2)= 0.3426?3.14159?0.6792 N/m=8.07×10-3 N/m 误差 71.96?8.070 71.96 ×100%=88.79% 肥皂水表面张力系数测试 y = 0.3426x + 7E-05R2 = 0.9973 00.002 0.0040.0060.0080.010.012 0.0140 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 示数/V 重力/N

有关表面张力的几个小实验

有关表面张力的几个小实验 作者:admin 转贴自:本站原创点击数:123 更新时间:2006-6-17 资讯录入:admin (1)水面浮针或浮硬币:由于它们经常和手接触,所以针和硬币表面有一层油脂,使水对它们不浸润。如果再用油脂涂一下更易成功。漂浮硬币时可以不用纸去托,轻轻地向水面上平放即可。 课本上的“缝衣针浮在水面上”的小实验,比较难做,可以让学生先做浮硬币的实验(用5分硬币比较容易成功). 做浮针实验时可以用一小块餐巾纸托住钢针放入水面,餐巾纸吸水后下沉,钢针就能浮于水面。 (2)肥皂水膜的表面收缩到最小:用金属丝制成图③所示的框架,浸入肥皂水中,提出后可看到图中的活动细金属丝AB 被肥皂水膜的表面张力拉着而向上运动,需加一定拉力,AB才能静止平衡。 (3)水超过杯口不溢:向饮水用的玻璃杯中小心地注满水,使水面恰好与杯口相平,注意杯口原来应当是干燥的。然后把大头针或小钉逐个地放入水杯中,要从水面的中间投放,尽量减轻水面的扰动。可以看到水面逐渐凸起高于杯口但不溢出,以此说明水的表面张力的作用。 (4)表面活性剂能改变水的表面张力:在水盆中央漂浮几根火柴棍,排成图④所示的形状。然后向它们中间A处的水面上滴一些肥皂水或洗衣粉溶液或洗净剂等这类表面活性剂,就会看到火柴棍迅速向四周散开。这说明表面活性剂使A处水面的张力变小了,外面四周的水面收缩而使火柴棍移动。 (5)失重的油滴 水银滴在失重状态下,由于表面张力的作用呈球形,这个现象可以用悬浮状态下的油滴来模拟说明。往小酒杯内倒入约半杯酒精(或高度白酒),再加少量水并搅匀。滴管吸入半管食用油,伸入酒精溶液中,将油一次挤出。如果油滴成偏球形且沉于杯底,可向杯中加少量水使溶液密度变大,并用火柴梗轻轻搅动偏球形油滴的四周(不要使油滴分裂成许多小滴),与此同时可以看到偏球形油滴上浮,最后呈球形悬浮在溶液中。这说明在消除重力对油滴的影响后,仅在表面张力的作用下,油滴呈球形,如图5所示。

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

用拉脱法测定液体的表面张力系数实验

实验二、用拉脱法测定液体的表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被 周围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解737FB 新型焦利氏秤实验仪的基本结构,掌握用标准砝码对测量仪进行定标的方法; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 1.测量公式推导: 当逐渐拉提冂形铝片框时,?角逐渐变小而接近为零,这时所拉出的液膜前后两个表面的表面张力f 均垂直向下。设拉起液膜将破裂时的拉力为F ,则有 f 2 g )m m (F 0+?+= (1) 式中:m 为粘附在框上的液膜质量,0m 为线框质量。因表面张力的大小与接触面周界长度成正比,则有: )d L (2f 2+?α= (2) 比例系数α称表面张力系数,单位为m /N 。 由(1),(2)式得: ) d L (2g )m m (F 0+?+-= α (3) 由于冂形铝片框很薄,被拉起的水膜很薄,m 较小,可以将其忽略,且一般有d L >>,那么L d L ≈+,于是(3)式可以简化为 : L 2g m F 0?-= α (4)

液体表面张力系数的测定报告记录模板

液体表面张力系数的测定报告记录模板

————————————————————————————————作者:————————————————————————————————日期:

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。这种沿着表面的、收缩液面的力称之为表面张力。测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 表面张力 f 与线段长度 L 成正比。即有: f = αL (1) 比例系数α称为液体表面张力系数,其单位为Nm-1。 将一表面洁净的长为 L、宽为 d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有 F = mg + f (2) 式中 F 为把金属片拉出液面时所用的力;mg 为金属片和带起的水膜的总重量; f 为表面张力。此时, f 与接触面的周围边界 2(L+ d ),代入(2)式中可得α = F ? mg2( L + d ) 本实验用金属圆环代替金属片,则有 α= F ? mg π (d1 + d2 ) 式中 d1、d2 分别为圆环的内外直径。

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

水表面张力的测定

物理实验报告 实验名称:液体表面张力系数的测定学院:水利科学与工程学院 专业班级:水工1801 学号:201802979 学生姓名:周柱伟

实验成绩 实验预习题成绩: 1.什么是液体的表面? 接触的表面存在一个薄层 2.液体表面的分子具有什么特点(表面张力产生的原因)? 液体层里的分子比液体内部稀疏,分子间的距离比液体内部大一些,分子间的相互作用表现为引力。就象你要把弹簧拉开些,弹簧反而表现具有收缩的趋势3.液体表面张力系数是怎么定义的? 表面张力系数σ是在温度T和压力p不变的情况下吉布斯自由能G对面积S的偏导数 4.液体表面张力系数与哪些因素有关? 表面张力系数与液体性质,温度,液体所含杂质,相邻物质的化学性质有关5.简述拉脱法测量液体表面张力系数的原理(用矩形金属薄片或金 属环时,表面张力系数的具体表达式)。 测量一个已知周长的金属圆环或者金属片从待测液体表面脱离时所需的拉力,从而求得该液体表面张力系数的方法称为拉脱法。 6.焦利氏秤和普通的弹簧秤有所不同?

焦利氏秤实际上是一个特殊结构的弹簧秤,是用来测量铅直方向微小力的仪器之一。 一般的弹簧秤,弹簧的上端固定不动,在弹簧下端挂重物时,弹簧则伸长,物体重量可由指针所指示的标尺直接标出。而焦利氏秤上的弹簧是挂在可以上下移动的有刻度的管子上的,管外面套有外管,外管上有游标,旋转旋钮即可使管上下移动。 7.“三线对齐”是那三线?为什么要这样做? 指标镜上的刻线,玻璃管上的刻线和玻璃管上刻线在镜中的像 水的表面张力近似为液膜破裂瞬间的拉力,保持“三线对齐”是为了能够使水膜破裂瞬间近似“三线对齐”,从而得到水膜破裂时精确的拉力。使能准确测出该拉力大小减少实验误差 8.焦利氏秤测定液体的表面张力有什么优点? 测定表面张力F’,用普通的弹簧是很难迅速测出液膜即将破裂时的 F 的,应用焦利氏秤则克服了这一困难,可以方便地测量表面张力F’,并且焦利氏秤的劲度系数较小,有游标卡尺式的读数尺,故测量精度高。 9.千分尺是否存在系统误差如何判断?如何调零? 千分尺使用前,使移动测砧与固定测砧接触,观察微分筒上的棱边是否与固 定套筒上的零刻线重合,如果不重合即存在系统误差。当套筒上零刻线位于微分筒0~5方向上时即为正值,计算时需要减去其绝对值,相反方向即为负值,需要加上其绝对值。 10.比较逐差法与图解法处理实验数据的不同点。 在对某些函数关系并不明确的物理量进行测量时,常用作图法.数据点是离散的,

液体表面张力系数的测定报告

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:液体表面张力系数的测定 学院:管理学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼608 座位号: 实验时间:第三周星期天下午四点开始

液体表面张力系数的测定实验报告 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】 液体表面层内分子相互作用的结果使得液体表面自然收缩.犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L的线段,线段两侧液面便有张力f相互作用,其方向与L垂直,大小与线段长度L成正比。即有: =α F? L f α称为液体表面张力系数,单位:N/m。 将一表面洁净的长为L、宽为d的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有F=mg+f。其中,F为拉出时所用的力,mg为金属片和带起的水膜的总质量,f为表面张力。实验中利用金属圆环,则: f=F-mg 【实验步骤】 1.安装好仪器,挂好弹簧.调节底板的三个水平调节螺丝,使焦利秤立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体.使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的

基准线大致对准指针,锁紧固定小游标的锁紧螺钉.然后调节微调螺丝使指针与镜子框边的刻线重合.当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值L 0. 2.测母弹簧的倔强系数K :依次增加1.0g 砝码.即将质量为1.0g ,2.0g .3.0g ,…,9.0g 的砝码加在下盘内。调整小游标的高度.每次都重新使三线对齐,分别记下游标0线所指示的读数L1.L2,…,L9;再逐次减少1.0g 砝码.调整小游标的高度.每次都重新使三线对齐,分别记下游标。线所指示的读数L9’,L8’,….L0’,取二者平均值,用逐差法求出弹簧的倔强系数。即 2 L -i i i '= L L )-(5154 i i i L L L +=∑=? 3.测(F 一mg)值。将洁净的金属圆环挂在弹簧下端的小钩子上,调整小游标的高度使三线对齐.记下此时游标0线指示读数S 0。把装有蒸馏水的烧杯置于焦利平台上,调节平台位置,使金属片浸入水中,转动平台旋钮使平台缓缓下降,下降的过程中金属圆环底部会拉成水膜,在水膜还没有破裂时需调节三线对齐,然后再使平台下降一点,重复刚才的调节,直到平台稍微下降,金属圆环刚好脱出液面为止,记下此时游标0线所指示的读数S ,算出△S=S —S 0的值,即为在表面张力作用下弹簧的伸长量,重复测量5次,求出平均值,此时有F-mg=f=K △S 代入可得: ) (21d d s k +?= πγ

最大泡压法测溶液表面张力实验报告

最大泡压法测定溶液的表面张力 一、实验目的 1. 测定不同浓度乙醇溶液的表面张力,计算吸附量。 2. 了解气液界面的吸附作用,计算表面层被吸附分子的截面积。 3. 掌握最大泡压法测定溶液表面张力的原理和技术。 二、实验原理 在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质形成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类、溶液浓度有关。这是由于溶液中部分溶质分子进入到溶液表面,使表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。 按吉布斯吸附等温式: c d d RT dc d RT c ln 1σσ?-=?- =Γ (9-1) 式中: Г:代表溶质在单位面积表面层中的吸附量(mol ·m -2) c :代表平衡时溶液浓度(mol ·m -3) R :气体常数(8.314J ·mol -1·K -1) T :吸附时的温度(K)。 从(9-1)式可看出,在一定温度时,溶液表面吸附量与平衡时溶液浓度c 和表面张力随浓度变化率成正比关系。 当T d dc σ?? ???<0时,Г>0,表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附,此时溶液表面层浓度大于溶液内部浓度。 当T d dc σ?? ???>0时,Г<0,表示溶液表面张力随浓度增加而增加,则溶液表面发生负吸附,此时溶液表面层浓度小于溶液内部浓度。

引起溶剂表面张力显著降低的物质叫表面活性物质,被吸附的表面活性物质分子在界面层中的排列,决定于它在液层中的浓度。 如果吸附层是单分子层,随着表面活性物质的分子在界面上愈益紧密排列,则此界面的表面张力也就逐渐减小。如果在恒温下绘成曲线σ = f (c ) (表面张力等温线),当c 增加时,σ在开始时显著下降,而后下降逐渐缓慢下来,以至σ的变化很小,这时σ的数值恒定为某一常数(见图9-1)。利用图解法进行计算十分方便,在σ-c 曲线上任意取一点a 作切线,即可得到该点所对应浓度c 的斜率 d dc σ(),代入式(9-1),可求得不同浓度时的吸附量。 图9-1 表面张力和浓度关系图 根据朗格谬尔(Langmuir)公式: 1kc kc ∞ Γ=Γ+ (9-2) Г∞为饱和吸附量,即表面被吸附物铺满一层分子时的Г, 11c kc c k k ∞∞∞ +==+ΓΓΓΓ (9-3) 以c /Г对c 作图,得一直线,该直线的斜率为1/Г∞。 由所求得的Г∞代入式 S 0=1/Г∞L (9-4) 可求被吸附分子的横截面积S 0 (L 为阿佛加得罗常数)。 测定溶液的表面张力有多种方法,较为常用的有最大泡压法和扭力天平法。本实验采用最大泡压法测定溶液的表面张力。其实验装置如图9-2所示。1为减压瓶,2为测定管,中间有一玻璃管3,其下端接有一段直径为0.2-0.5mm的毛细管。4为U 形压力计,内盛比重较小的水、酒精等作介质,以测定微压差。

表面张力及其实验探讨

液体表面张力及实验探讨 摘要:日常生活中人们对表面张力的概念很少提及,但有关表面张力的现象却是很常见的。本文在研读文献的基础上,从分子力的角度对表面张力的概念进行了阐释,然后分析了影响表面张力大小的因素。在一些现象中人们通常会将表面张力与浮力相混淆,本文设计了三个简便易行的实验,通过实验现象的观察及分析,说明表面张力和浮力的不同作用。最后,由于表面张力在人体的呼吸过程中起着重要作用,本文在研读文献的基础上给与归纳、描述,并且从表面张力的角度分析了人体在高烧的时候,呼吸加快的原因。本文意在通过简洁的论述和图示,让人们了解表面张力及其在生活中的应用。 关键词:表面张力;浮力;呼吸过程 一、问题的提出 日常生活中人们对表面张力的概念很少提及,但有关表面张力的现象却是很常见的。如:日常生活中人们见到的液滴往往呈球形,是液滴表面张力作用的结果。下雨天人们使用的雨伞是布面的,有微小的缝隙却不漏雨,是雨水表面张力作用的结果。在人体每时每刻的呼吸中,表面张力同样起着非常重要的作用:表面张力使大小不同的肺泡保持一定的形状,不会使大肺泡因扩大而爆裂,也不会使小肺泡因缩小而萎陷;表面张力的这种变化是肺泡表面活性物质所起到的调节作用。用纯水很难吹出泡泡,然而往水中加入一些表面活性物质,就可以很容易的吹出又大又圆的泡泡了。同样,往洗涤剂中加入表面活性物质,不仅可以使洗涤剂更好的溶于水,还可以增强衣物的浸湿效果,更有效的去除污迹。可以说表面张力与人们的日常生活形影不离,要很好的利用表面张力,就要了解表面张力的含义。 二、表面张力的概念 (一)相关概念 1.分子力 物质是由分子构成的,分子间的相互作用,叫做分子力。如图(1)所示,当分子之间的距离等于10-10m时,分子间的引力等于斥力,对外不显示力的作用,因此10-10m叫做分子的平衡距离,用r0表示。当分子间的距离小于平衡距离时,分子力表现为斥力;当分子间的距离大于平衡距离时,分子力表现为引力。当分子间的距离大于10-9m时,引力和斥力消失,分子力为零。所以,分子间的作用力属于短程力。

表面张力实验报告(附数据及处理)

实验报告 实验题目:用焦利氏称测量液体表面张力系数 实验目的:学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。 实验内容: 一、用作图法求弹簧的劲度系数 根据已测数据,横轴单位为g ,纵轴单位为cm ,描点,经过拟合后得一条 直线 cot (/)0.1cot (/)0.1*9.8 1.169N/m 0.83818 mg m k g g g cm g kg m x x k θθ= =?=?=?∴==Q 由图得: 二、逐差法求弹簧的劲度系数 m/g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x/cm 2.17 2.53 2.98 3.40 3.82 4.24 4.65 5.05 5.50 5.93 /m g ? 2.5 2.5 2.5 2.5 2.5 /x cm ? 2.07 2.12 2.07 2.10 2.11

由上表数据得: 550.6822222 ()() 3.500, 2.094cm,()=0.0103cm () 1.140.005251cm ()0.005773cm ()()()0.005251+0.0057730.005()0.00163 j j j j A x B A B m B m m m k x x x m g x x u x t u x C u x u x u x g u m C σ++-?==-??=?=??===?===?=?+=?===∑∑()()() ()()222222222 22 67g 2.5 1.1939g/cm=1.1700N/m 2.094()()()0.005251+0.0057730.0016672.094 2.50.00001433 0.0037860.004520g/cm=0.004430N/m k=(1.1700.004)N/m A B B m g k cm x U k u x u x u m k x m U k k U k ?===????+=+ ?????=+===∴± 三、自来水的表面张力系数 1)用金属圈测定 金属圈直径: 41 2.900 2.900 2.950 2.850 2.9000.0290044 i i d cm cm cm cm d cm m =+++====∑ 周长: 3.14159*0.029000.09111l d m π=== 膜破时金属圈上升的距离: 5 15 (2.44 1.50)(2.44 1.50)(2.52 1.50)(2.54 1.50)(2.52 1.50)5 0.00992i i x x x cm cm cm cm cm cm cm cm cm cm m =?=-+-+-+-+-==∑(-) 表面张力: '22 F mg k x F l d δδπ-?===?????→水膜质量可忽略

相关文档
相关文档 最新文档