文档库 最新最全的文档下载
当前位置:文档库 › BBU时钟同步方案学习资料

BBU时钟同步方案学习资料

BBU时钟同步方案学习资料
BBU时钟同步方案学习资料

1.1目前BBU采用的时钟同步方案

在NodeB的BBU时钟同步方案应用中,目前产品中采用方案如下:

图1目前BBU时钟同步方案

关键需求:

1.频率同步要求:0.05ppm

2.相位同步要求:1.5us

基本原理:

通过使用GPS等稳定特性好的时钟源来校准精度较高的本地时钟,可以将GPS的长

期稳定特性与本地时钟晶振的短期稳定特性很好的结合起来,为整个系统提供可靠的系统时间和工作时钟,保证系统的频率同步和相位同步要求。

组成:

频率合成:本方案中频率合成指的是将OCXO输出的10MHZ的时钟进行变频,转换成系统时钟(目前系统时钟频率为20.48MHZ),这部分功能是采用专用的数字频率合成芯片DDS (AD9851 )来完成的;方案中共用到了两路DDS,其中的一路频率合成电路

(DDS1的输出(20.48MHZ作为同步算法的高频参考时钟输入到FPGA在FPGA内部经过DCM 模块变成高频时钟(200MH竝右);另一路频率合成电路(DDS2的输出(20.48MHZ 经过驱动电路后输出到背板提供给各个单板使用,由于输出到背板的时钟需要实时跟踪主

用板输出时钟的相位,所以会实时调节这一路AD9851 ( DDS2输出信号的相位。而另一

路AD9851 (DDS1的输出相位不作任何调整,这样就保证了同步算法的正确性。

OCXO的频率调整电路:OCXO的输出频率会受环境温度、负载、电源的影响,而且OCXO 自身也会老化。为了保证OCXO输出时钟的精度需要根据实际情况调整OCXO 的输出频率。OCXO有时钟频率调整端,此管脚的电压值将直接控制OCXO的输出频率。

DA变换在本板中的作用是产生OCXO的频率控制电压,CPU经过时钟算法处理后推算出OCXO的频率与GPS的时钟相比的误差,结合OCXO的频率调整范围以及预计调整的频率值,推算出应该设定的频率控制电压;知道了OCXO的频率控制电压后,再结合DA转换器的工作范围,就可以推算出DA转换器要设定的数字量。

FPGA: DDS2输出的20.48MHZ时钟信号通过分频产生PP2S信号。记录1pps间的

204.8Mhz时钟频率误差以及1pps和PP2S的相位差提供给CPU完成时钟同步算法。配置DA、DDS。

CPU:完成时钟同步算法。时钟同步模块类似锁相环,同步算法相当于鉴相器(部分)和低通滤波器。同步算法根据时钟参考源锁定状态下提供的1PPS信号来调整本板时钟(通常为压控恒温晶振OCXO),使得本板输出的PP2S信号的频率满足要求,且相位与1PPS 相位严格对齐。

GPS接收机:提供基站系统同步所需的时间;提供1pps作为时钟同步的常稳参考源。

方案优点:设计思路简单,通过CPU和FPGA共同来完成时钟同步算法,不仅实现了对频率的校准同时保证相位同步,时钟同步算法自主开发,可维护性强。

方案缺点:受OCXO的频率调整范围限制。由于需要对OCXO进行频率调整,一旦OCXO的频率调整范围超出了时钟同步算法设定的频率调整范围,将无法进行频率校准,必须更换OCXO。

设计难点:时钟同步算法是本方案的设计难点,特别是失锁后的保持算法。

1.2基于AD9548的时钟同步方案

基于AD9548的时钟同步方案框图如下:

图2基于AD9548 的时钟同步方案

关键需求:

1.频率同步要求:0.05ppm

2.相位同步要求:1.5us

基本原理:

GPS等稳定特性好的时钟源作为数字锁相环的参考源,数字锁相环来产生校准后的高精度的系统时钟,通过系统时钟分频产生与1PPS同步的PP2S,从而保证系统的频率

同步和相位同步要求。

组成:AD9548内部的DPLL 完成对同步参考的锁定并输出20.48MHz 的系统时钟,系 统同步信号PP2S 由CPLD 来产生。该方案中CPU 仅对AD9548的配置,不需要完成时钟同 步的算法,节省了 CPU 的资源开销。另外FPGA 关于时钟算法部分的功能也可以省略,由 AD9548来实现,这样方案中也去掉了 FPGA 。同时也不需要DDS 电路、DA 电路。 数字锁相环: ADI 公司新推出的一款数字时钟锁相环芯片

AD9548

,该器件能够产生与外部输入参 考同步的时钟。特点如下:

1. 支持多个外部输入参考源,能够实现多个参考源的无缝切换。该特性有利于现在

BBU 产品中支持多种时钟参考源(GPS 、北斗、1588)间的无缝切换要求的实现

2. 输入参考源的频率范围为1Hz 到750MHz 。该特性满足我们应用中输入参考源为

1PPS 的要求。

3. 输出时钟频率范围为0到450MHz 。

4. 支持多路时钟输出,可以是 LVDS/LVPECL 或单端CMOS 。

5. 对参考时钟的频率精度要求低。该特性可以降低对 OCXO 的频率精度的要求,有

利于降低成本。

6. 支持输入参考源失锁后进入保持模式,保证输出时钟不丢失

集成度高,该芯片内部集成了时钟倍频器,参考监测和选择电路, DPLL ,DAC , 时钟分配电路及配置电路等。其外围电路比较简单。这大大减少了成本并缩小了

板卡体积。

图3 AD9548 的功能框图

7. FUNCTIONAL BLOCK DIAGRAM

FLIER

ST65LE

50URGE REFfPtNCE h|P JT3

MID ^0 Ml TON MUX

CLOCK D?*TFtl&UT10fc

方案优点:集成度高,可以减少DDS、DA等相关电路,降低系统器件成本,减少板卡体积。由于OCXO 仅是AD9548 的参考时钟,不需要进行频率调节,因此不受OCXO 频率调整范围的影响,降低了对OCXO 的要求。

方案缺点:由于AD9548 刚推出不久,测试中仍能发现一些bug,AD9548 仍在改进中。一旦AD9548 出现某些无法规避的问题,只能等待厂商解决,可维护性差。

设计难点:

1.配置DPLL (AD9548)合适参数保证其稳定工作。

2.相位同步实现机制,PP2S 实现机制与以前不同,由于AD9548 仅实现了频率

同步的要求,相位同步仍需要产生同步信号PP2S的机制来实现,因此需要重

点考虑。

3.失锁后的相位同步指标的实现,即保持算法。

网络时钟系统方案

时钟系统 技术方案 烟台北极星高基时间同步技术有限公司 2012年3月 第一部分:时钟系统技术方案 一、时钟系统概述 1.1概述 根据办公楼的实际情况,特制定如下施工设计方案: 时钟系统主要由GPS接收装置、中心母钟、二级母钟(中继器)、全功能数字显示子钟、、传输通道和监测系统计算机组成。 系统中心母钟设在中心机房内,其他楼各设备间设置二级母钟,在各有关场所安装全功能数字显示子钟。 系统中心母钟接收来自GPS的标准时间信号,通过传输通道传给二级母钟,由二级母钟按标准时间信号指挥子钟统一显示时间;系统中心母钟还通过传输系统将标准时间信号直接传给各个子钟,为楼宇工作人员提供统一的标准时间 二、时钟系统功能 根据本工程对时钟系统的要求,时钟系统的功能规格如下: 时钟系统由GPS校时接收装置(含防雷保护器)、中心母钟、扩容接口箱、二级母钟、数字式子钟、监控终端(也称监测系统计算机)及传输通道构成。其主要功能为: ☉显示统一的标准时间信息。 ☉向其它需要统一时间的系统及通信各子系统网管终端提供标准时间信息。 2.1 中心母钟 系统中心母钟设置在控制中心设备室内,主要功能是作为基础主时钟,自动接收GPS的标准时间信号,将自身的精度校准,并分配精确时间信号给子钟,二级母钟和其它需要标准时间的设备,并且通过监控计算机对时钟系统的主要设备进行监控。 中心母钟主要由以下几部分组成: ☉标准时间信号接收单元 ☉主备母钟(信号处理单元) ☉分路输出接口箱 ☉电源

中心母钟外观示意图见(附图) 2.1.1标准时间信号接收单元 标准时间信号接收单元是为了向时间系统提供高精度的时间基准而设置的,用以实现时间系统的无累积误差运行。 在正常情况下,标准时间信号接收单元接收来自GPS的卫星时标信号,经解码、比对后,经由RS422接口传输给系统中心母钟,以实现对母钟精度的校准。 系统通过信号接收单元不断接收GPS发送的时间码及其相关代码,并对接收到的数据进行分析,判断这些数据是否真实可靠。如果数据可靠即对母钟进行校对。如果数据不可靠便放弃,下次继续接收。 2.1.2主备母钟 由于母钟是整个时钟系统的中枢部分,其工作的稳定性很大程度上决定了整个系统的可靠性,因此我们充分考虑了系统功能的实现和系统可靠性等综合因素,将其设计为主、副机配置,并且主、副机之间可实现自动或手动切换。 中心母钟通过标准RS422接口接收标准时间信号接收机发送的标准时间信号。标准时间信号接收机正常工作时,该信号将作为母钟的时间基准;标准时间信号接收单元出现故障时,中心母钟将采用自身的高稳晶振产生的时间信号作为时间基准,向其他子系统及各个二级母钟(中继器)发送时间信息,同时向时钟系统网管设备发出告警。 中心母钟能够显示年、月、日、星期、时、分、秒等全时标时间信息,具备12/24小时以及格林威治时间(GMT)三种显示方式的转换功能,也可显示所控制的二级母钟(中继器)的运行信息。中心母钟和校时信号能自动进行调整,可显示并输出任意时区的时间。 中心母钟具有统一调整、变更时钟快慢的功能,可通过设置在前面板上的键盘实现对时间的统一调整。 中心母钟通过标准的RS422/ RS485接口和监控计算机相连,以实现对时钟系统主要设备的维护管理及监控。 中心母钟采用标准的RS422/485接口形式分别和自带子钟连接。通过时钟信号线缆通道定时向子钟发送标准时间信号,使其按统一的时间标准运行。当系统中心母钟出现故障时,能向时钟监测系统计算机发出告警。 中心母钟通过分路输出接口箱采用标准的RS422接口形式和传输子系统连接。通过传输系统定时向各个二级母钟发送标准时间信号(包含毫秒级信号),校准二级母钟。当二级母钟、子钟或传输通道出现故障时,能向时钟系统网管中心发出告警。 中心母钟通过标准的RS422/RS-485,向其它系统提供标准时间信号,以实现各子系统时间的统一。 中心母钟留有标准的RS422/ RS-485外部接口,和此次工程的接口扩容箱对接。 2.1.3分路输出接口箱 系统通过分路输出接口箱实现主备母钟的多路输出,可以为二级母钟提供标准时间信号及监控

北斗卫星时间同步系统的重要性

北斗卫星时间同步系统的重要性 概述 电脑时间走时不准时常有的事,不准确的电脑时钟对时网络结构以及其中的应用程序的安全性会产生较大的影响,尤其是那些对没有实现网络同步而导致的问题比较敏感的网络质量或应用程序。 要得到最佳的网络表现,就得向系统提供标准的时间信息,这时可以选用北斗卫星时间同步系统来实现时间统一,千万不要等到出了问题才认识到时间同步的重要性。如果没有时间同步,网络指令是没法正常运行的,时间同步直接影响网络指令的领域有:记录文件安全、审核和监控、网络错误检查和复原、文件时间戳目录服务、文件及指令存取安全与确认、分散式计算、预设操作、真实世界世界值等等。 北斗授时 北斗授时是通信网络安全组网的根本保证就同步网而言,我国的频率同步网采用的是多基准混合同步方式,即全网部署多个1级基准时钟设备,并且需配置高性能的卫星授时接收机,以保证全网的定时性能。我国的时间同步网则采用分布式组网方式,即在每个时间同步设备上均需配置高性能的卫星授时接收机,以保证全网的时间精度。 就移动通信网络而言,CDMA基站、CDMA2000基站、TD-SCDMA基站等均需要高精度的时间同步,目前是在每个基站上配置GPS授时模块。如果基站与基站之间的时间同步不能达到一定要求,将可能导致在选择器中发生指令不匹配,从而导致通话连接不能正常建立,影响无线业务的接续质量。 北斗授时性能可以满足通信网络的需求,基于北斗/GPS双模的授时设备最早在2003年进入通信领域,在2008年之前主要提供频率同步服务,此后可同时提供时间同步和频率同步服务。根据近十年的多次测试情况,可以看出北斗设备在正常情况下可以满足通信网中对频率同步和时间同步的要求,尤其是2008年以后生产的北斗设备其性能普遍达到了GPS卫星接收机设备的水平,完全可以满足通信网中各种通信设备对频率同步和时间同步的需求。 北斗卫星同步时间的意义 利用北斗卫星,才可在全球范围内用超短波传播时号;用超短波传播时号不

时间同步系统在线监测可行性研究报告

附件4 甘肃电网智能调度技术支持系统 时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号:

年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5主要技术经济指标 1.6经济分析 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题 近期,电力系统时间同步装置在运行中发现的时钟异常跳变、时钟源切换策略不合理及电磁干扰环境下性能下降等问题,反映出电力系统时间同步在运行管理、技术性能、检验检测管理、在线监测手段及相关标准等方面仍需进一步完善和加强。

网络时钟系统方案

网络时钟系统方案

时钟系统 技术方案 烟台北极星高基时间同步技术有限公司 3月

第一部分:时钟系统技术方案 一、时钟系统概述 1.1概述 根据办公楼的实际情况,特制定如下施工设计方案: 时钟系统主要由GPS接收装置、中心母钟、二级母钟(中继器)、全功能数字显示子钟、、传输通道和监测系统计算机组成。 系统中心母钟设在中心机房内,其它楼各设备间设置二级母钟,在各有关场所安装全功能数字显示子钟。 系统中心母钟接收来自GPS的标准时间信号,经过传输通道传给二级母钟,由二级母钟按标准时间信号指挥子钟统一显示时间;系统中心母钟还经过传输系统将标准时间信号直接传给各个子钟,为楼宇工作人员提供统一的标准时间 二、时钟系统功能 根据本工程对时钟系统的要求,时钟系统的功能规格如下: 时钟系统由GPS校时接收装置(含防雷保护器)、中心母钟、扩容接口箱、二级母钟、数字式子钟、监控终端(也称监测系统计算机)及传输通道构成。其主要功能为: ☉显示统一的标准时间信息。 ☉向其它需要统一时间的系统及通信各子系统网管终端提供标准时间信息。

2.1 中心母钟 系统中心母钟设置在控制中心设备室内,主要功能是作为基础主时钟,自动接收GPS的标准时间信号,将自身的精度校准,并分配精确时间信号给子钟,二级母钟和其它需要标准时间的设备,而且经过监控计算机对时钟系统的主要设备进行监控。 中心母钟主要由以下几部分组成: ☉标准时间信号接收单元 ☉主备母钟(信号处理单元) ☉分路输出接口箱 ☉电源 中心母钟外观示意图见(附图) 2.1.1标准时间信号接收单元 标准时间信号接收单元是为了向时间系统提供高精度的时间基准而设置的,用以实现时间系统的无累积误差运行。 在正常情况下,标准时间信号接收单元接收来自GPS的卫星时标信号,经解码、比对后,经由RS422接口传输给系统中心母钟,以实现对母钟精度的校准。 系统经过信号接收单元不断接收GPS发送的时间码及其相关代码,并对接收到的数据进行分析,判断这些数据是否真实可靠。如果数据可靠即对母钟进行校对。如果数据不可靠便放弃,下次继续接收。 2.1.2主备母钟

北斗校时服务器在网络摄像机时间同步的解决方案

北斗校时服务器在网络摄像机时间同步的解决方案关键词:北斗校时服务器,校时服务器,北斗校时装置 网络摄像机相比于模拟摄像机的功能多增加了数字化压缩控制器和基于WEB管理界面的操作系统和内部时钟系统(可自行走时、也可获取外部时间作为基准),使得拍摄到的视频经处理后,通过有线网或者无线网送至终端用户显示出来或者存储。网络摄像机则需要北斗校时服务器来提供标准的时间,而用户可在PC终端或者是手机终端使用标准的客户端软件实现实时监控目标现场的情况,并可对图像及视频资料进行实时编辑和存储,同时还可以控制摄像机的云台和镜头,进行全方位地监控。 视频监控系统一般由网络摄像机、传输设备、后端存储、网络硬盘录像机及显示设备这五大部分组成,与时间关联最紧密的是网络摄像机和网络硬盘录像机。 1、网络摄像机问题:有的网络摄像机就没有网络硬盘录像机,例如家用网络摄像头,或是设备处于封闭互联网中,不能和网络进行时间同步,用的是系统默认的时间继续走时。 2、网络硬盘录像机问题:排除线路故障等原因未能和标准的北京时间同步原因外,还有可能是网络硬盘录像机主板的故障了,假设监控系统显示出的时间和标准的北京时间有偏差,各个网络摄像头显示时间也各不同,有的显示相差约几分钟,有的显示相差几秒,对于监控系统显示时间和标准时间相差约几秒的时间,产生误差的原因每个网络摄像机和硬盘录像机都是单独的个体,每个在没授时的情况下

自行走时,时间越久,偏差会越大,最常用的解决方法主要有以下二种: 1、对于接入互联网的摄像头或是NVR,可以通过NTP协议校时对准。在网络摄像头或硬盘录像机配置界面,通过填写网络时钟服务器地址后接入Internet就可以校准时钟。由于视频监控网络与Internet网络中的NTP时间服务器之间的网络情况复杂,设置NTP 时间服务器能够完成视频监控网络的时间同步,可靠性较高,但准确性欠佳,由于时延、网络拥塞以及外部权威时钟源地理位置等因素,也有可能出现对安防视频监控网络中的设备进行时钟校对的失准,同时也不安全,黑客可以通过互联网窃取视频信息。 2、如果是局域网的应用或是专网摄像头和网络录像机,必须先在网络内部架设配置NTP时钟服务器,再把SYN2151型校时服务器,的IP地址填入到每个网络摄像头或是网络硬盘录像机的配置界面内,才能保证时间同步。注意:在这种情况下需要保证地本时钟服务器的时钟精确度,一般使用高精度的本地时钟源需要较高的成本,SYN2151型北斗校时装置使用GPS定位校准等方式,统一用支持校时的标准协议NTP协议连接设备、保障平台和各设备符合标准协议里时钟同步约定的遵守,在低成本的条件下保证视频监控网络时间同步,减少系统时钟错乱问题。 故障二中各个网络摄像头显示时间部分不同,最大的相差约十几秒,最主要的问题来自于网络交换延迟。网络摄像机视频采集和编码输出需要时间,同时经过网络摄像机编码后的数字信号通过网络传输

时钟系统设计

《单片机原理及接口》 课程设计报告 题目:时钟系统设计 专业名称:电子信息工程 班级: 092 学号: 910706220 姓名: 2011年 12月

时钟系统设计 陈 (电子信息工程学系) 中文摘要:本设计基于单片机仿真技术,以单片机芯片AT89C52作为核心控制器,通过硬件电路的制作以及软件程序的编制,设计制作出一个多功能数字时钟系统。单片机扩展的LCD显示器用来显示秒、分、时计数单元中的值。整个设计包括两大部分:硬件部分和软件部分,以单片机为核心,蜂鸣器,数码管,晶体管等为外围器件,设计一个正常走时,报时、初始化、闹钟的数字时钟。 关键词:单片机;数字时钟;AT89C52;闹钟 1、设计目标 设计一时钟系统,系统具有时钟功能,能准确显示时、分、秒,系统还应具有校正功能:能够修改当前的时间。 2、设计环境 Windows7 Keil uVision3 Proteus7.5 3、系统硬件设计 3.1单片机控制系统: 本设计基于单片机技术原理,以单片机芯片AT89C52作为核心控制器,通过硬件电路的制作 以及软件程序的编制,利用单片机的控制作用通过LCD来直接时、分、秒,并能对其分别进行设 置、修改;利用对蜂鸣器的控制来实现闹钟功能。同时使用C语言程序来控制整个时钟显示,使 得编程变得更容易,这样通过三个模块:键盘、芯片、显示屏即可满足设计要求。 3.2各部分功能实现: 单片机采用52系列单片机。由ATMEL公司生产的AT89S52是一种低功耗、高性能CMOS8位微控 制器,具有8K在系统可编程Flash存储器。使用Atmel公司高密度非易失性存储器技术制造,与工 业80C51产品指令和引脚完全兼容。在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使 得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。AT89S52具有以下标准功能: 8K字节Flash,256字节RAM,32位I/O口线,2个数据指针,三个16位定时器/计数器,一个6向量2 级中断结构,全双工串行口,片内晶振及时钟电路。空闲模式下,CPU停止工作,允许RAM、定时 器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一 切工作停止,直到下一个中断或硬件复位为止。而且,它还具有一个看门狗(WDT)定时/计数器, 如果程序没有正常工作,就会强制整个系统复位,还可以在程序陷入死循环的时候,让单片机复

XP系统时间同步解决方案

XP系统时间同步不成功_Windows time服务无法启动解决 同步时间的服务器是:210.72.145.44 xp自带的时间同步服务器老是会连不上,而且时间还会差一秒。 这里就教大家换成中科院国家授时中心的服务器,同步就方便多了。 1.双击右下角的时间。 2.把服务器改成210.72.145.44 3.按同步就可以了,一般不会出错。即使是高峰时期,三次之内闭成功,比美国的服务器好多了。 另外系统默认的时间同步间隔只是7天,我们无法自由选择,使得这个功能在灵活性方面大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Nt pClient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 而这时在对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的,看明白了吧,如果您想让XP以多长时间自动对时,只要按这个公式算出具体的秒数,再填进去就好了。比如我填了3天,就是259200。 Windows time服务用于和Internet同步系统时间,如果时间无法同步有可能是服务没有随系统启动,可以在运行处输入"services.msc"打开服务控制台,找到"windows time"服务设置为自动并启动即可。 如果启动该服务时提示: 错误1058:无法启动服务,原因可能是已被禁用与其相关联的设备没有启动。 原因是windows time服务失效。 修复: 1.运行cmd 进入命令行,然后键入 w32tm /register 正确的响应为:W32Time 成功注册。 如果提示w32tm命令不内部或外部命令……,是因为系统盘下的system32目录不存在w32tm.exe和w32time.dll这两个文件,到网上下载一个或者到其他电脑复制过来放下这个目录下再运行 2.如果上一步正确,在cmd命令行或运行里用net start "windows time" 或net start w32time 启动服务。 如果无法启动Windows Time服务,同时提示:系统提示“错误1083:配置成在该可执行

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

全厂网络时钟同步方案

全厂网络时钟同步方案 陈银桃,陆卫军,张清,章维 浙江中控技术股份有限公司,浙江杭州,310053 摘要:当前工控领域石化项目如乙烯、炼油日益趋向大型化、一体化和智能化。一个大型石化项目往往集成多套独立系统如DCS、SIS、CCS等,同时要求所有系统使用同一套网络时钟同步系统。本文提供了几种全厂网络时间同步方案,并分析了每个方案的优缺点和适用场合。 关键词:全厂网络时钟同步,SNTP,二级网络时钟同步方案,Private VLAN,ACL,路由,NAT Ways to Implement The Network Time Synchronization In The Plant Chen Yintao Zhejiang SUPCON Co., Ltd., Hangzhou, Zhejiang, 310053 Abstract:The petrochemical projects in the industrial control area run to large, integrative and intelligentized.A large petrochemical project always need to be integrated with many systems like DCS, SIS, CCS and so on .The network of these systems must be independent,while they should use the same network time synchronizer to achieve time synchronization.This article propose several implements of the network time synchronization in the whole plant. Keywords:Network Time Synchronization, NTP, Private VLAN, ACL, Route, NAT. 引言 随着国民经济发展,工控领域也随之蓬勃发展,石化项目如乙烯、炼油等日益趋向大型化、一体化和智能化。大型化体现在项目规模的剧增,典型项目如百万吨乙烯、千万吨炼油。一体化体现在一个大型石化项目往往集成多套系统如DCS、SIS、CCS,这些系统在功能、网络上分别独立,但需要实现全厂统一的时钟同步,以保持全厂所有系统的时钟同步。 普通的网络时钟同步服务器提供的网口较少,一般都在4个以下,同时可支持1-4个网络的系统时钟同步。当需要同步的子系统较多时,则需要配置可同时支持二三十个网络的特殊网络时钟同步服务器。但是在企业建设初期,往往很难准确预计将来的网络发展规模,这就需要事先规划设计

弱电系统解决方案

新兴物流园门禁系统解决方案 一、系统项目概述 随着高科技的蓬勃发展,智能化管理已经走进了人们的社会生活,一座座智能化建筑拔地而起,适应信息的时代需要,作为跨世纪使用的建筑环境,必须在功能上满足当前和未来发展的需求,成为文化和经济发展的基地。 感应式IC/ID 卡出入管理控制系统(简称门禁系统),具有对门户出入控制、实时监控、保安防盗报警等多种功能,它主要方便内部员工出入,杜绝外来人员随意进出,既方便了内部管理,又增强了内部的保安,从而为用户提供一个高效和具经济效益的工作环境。它在功能上实现了通讯自动化(CA) 、办公自动化(OA) 和管理自动化(BA) ,以综合布线系统为基础,以计算机网络为桥梁,全面实现对通讯系统、办公自动化系统的综合管理。 门禁系统作为一项先进的高科技技术防范和管理手段,在一些经济发达的国家和地区已经广泛应用于科研、工业、博物馆、酒店、商场、医疗监护、银行、办公大楼、物流园、监狱等,特别是由于系统本身具有隐蔽性,及时性等特点,在许多领域的应用越来越广泛。 二、方案设计依据和设计原理 系统设计所涉及的设计标准和规范主要有: 《智能建筑设计标准》(GB/T50314-2000) 《民用建筑电气设计规范》( JGJ/T16-92 ) 《工业企业通信接地设计规范》(GBJ79-1985) 《电气装置安装工程电缆线路施工及验收规范》( GB50168- 92 ) 《安全防范工程程序与要求》( GA/T75-94 ) 《安全防范系统适用图形符号》( GA/74-94 ) 《低压配电设计规范》(GB50054-95) 《建筑物防雷设计规范》(GB50057-2904) 《商用建筑线缆标准》(EIA/TIA-569) 设计原理: 由于安全性和高效率管理的需要,门禁系统的设计应遵循下列原则: 系统的实用性 门禁系统的内容应符合实际需要,不能华而不实。如果片面追求系统的超前性,势必造成投资过大,离实际需要偏离太远。因此,系统的实用性是首先应遵循的第一原则。同时,系统的前端产品和系统软件均有良好的可学习性和可操作性。特别是可操作性,使具备电脑初级操作水平 的管理人员,通过简单的培训就能掌握系统的操作要领,达到能完成值班任务的操作水平。

机场航站楼时钟系统设计方案

机场航站楼时钟系统设计方案为适应明勇机场建设发展需要,保证民用机场航站楼弱电系统工程设计质量,特根据《MHT5019-2014民用机场航站楼时钟系统工程设计规范》设计出本时钟系统方案。 专用术语解析 1、母钟:接受标准卫星时间信息,与自身所设的时间信号源进行高科技的校正、处理后,发送时间信号给所属子系统的装置, 2、子钟:接收母钟所发送的信号,进行显示的装置 3、GPS时钟信号:全球定位系统发送的格林威治标准时间信号 一般规定 母钟:SYN4505型标准同步时钟 子钟:SYN6109型NTP子钟 a、常见的民用机场航站楼的时钟系统的作用,应能为机场工作人员、旅客及各计算机管理系统提供准确统一的时间服务。 b、一般机场只设常规子母钟系统,显示北京时间信息,有国际航班的机场,应增设世界钟显示有关城市的当地时间。 子钟的类型分为单面子钟和双面子钟,单面子钟可采用指针式或者数显式。双面子钟宜采用数显式。各类子钟的显示内容可根据实际情况而定,但至少宜显示时分秒,数显钟应进行无反光处理,以保证显示效果。 子钟安装位置 1、指挥调度中心、广播室、会议室、航行气象情报室、机组签

派室及其他对时间有特殊要求的地点宜装设子钟。 2、对时间有特殊要求地航班动态显示机房及其他设备机房等宜装设子钟。 3、在航站楼迎客、送客、候机、办理乘机手续、通道等场所醒目的地方宜装设子钟;在旅客餐厅、休息场所,也宜设置子钟。 4、行李分拣、提取大厅宜装设子钟。 5、由母钟统一校时的航显系统,在设置有能显示时间的航显终端的场所,应尽量减少或取消子钟的安装。 子钟的规格应根据安装的高度和视距的远近而定。安装高度一般距地面2.5m~5m,特殊场合可适当调整,但应满足美观。名目的使用要求。 供电要求 a、母钟和子钟的供电电源,一般由系统所在的电子设备机房的电源供给,当供电距离较远时,也可由就近的可靠电源提供

最新轨道交通时钟系统解决方案复习过程

轨道交通时钟系统解决方案 轨道交通时钟系统解决方案 地铁通信系统一般包括: 时钟系统是轨道交通重要的组成部分之一,而其在地铁站的主要作用是为上班族、来往的游客工作人员提供准确的时间信息,同时时

钟系统要为其他监控系统、控制系统等弱电子系统提供统一的时钟信号,使各系统的定时集中同步,在整个地铁系统中使用相同的定时标准。站厅及站台位置的时钟可以为旅客提供准确的时间信息;各车站办公室内及其它停车场内的时钟可以为工作人员提供准确的时间信息;向其它地铁通信子系统提供的时钟信息为地铁运行提供了标准的时间,保证了轻轨系统运行的准时,安全。 时钟子系统能够向地铁全部通信子系统提供准确的时钟信号。时钟信号以卫星自动定位系统所发的格林威治标准世界时间为准辅以铷原子钟或石英钟。时钟系统的控制中心向各分站或车场二级母钟发送时钟信号,再由二级母钟向其对应的子钟发送时钟信号;同时每站的各路时钟信号均需上传至时钟系统的监控中心,使之可以完成对全路各站所有时钟工作状态的监测和控制,并可在相应的管理客户机上完成各种需要的管理及配置功能。

设计区域:换乘大厅、进出口、监控室、控制室控制中心调度大厅和各车站的站厅、站台、车站控制室、公安安全室、票务室、变电所控制室及其它与行车有关的处所,并在车辆段/停车场信号楼运转室、值班员室、停车列检库、联合检修库等有关地点设置子钟。

相关产品 第一章教育和教育学 1 教育的发展 一、教育的概念 考点:教育是培养人的一种社会活动,是传承社会文化、传递生产经验的和社会生活经验的基本途径。 考点广义:凡是增进人们的知识和技能,影响人们思想观念的活动,都具有教育作用。 狭义:主要指学校教育。 学校教育是教育者根据一定的教育要求,有目的、有计划、有组织的通过学校的教育工作,对受教育者的身心施加影响,促使他

跨时钟域信同步方法种

跨时钟域信号同步方法6种 ASIC中心 1 引言 基于FPGA的数字系统设计中大都推荐采用同步时序的设计,也就是单时钟系统。但是实际的工程中,纯粹单时钟系统设计的情况很少,特别是设计模块与外围芯片的通信中,跨时钟域的情况经常不可避免。如果对跨时钟域带来的亚稳态、采样丢失、潜在逻辑错误等等一系列问题处理不当,将导致系统无法运行。本文总结出了几种同步策略来解决跨时钟域问题。 2 异步设计中的亚稳态 触发器是FPGA设计中最常用的基本器件。触发器工作过程中存在数据的建立(setup)和保持(hold)时间。对于使用上升沿触发的触发器来说,建立时间就是在时钟上升沿到来之前,触发器数据端数据保持稳定的最小时间。而保持时间是时钟上升沿到来之后,触发器数据端数据还应该继续保持稳定的最小时间。我们把这段时间成为setup-hold时间(如图1所示)。在这个时间参数内,输入信号在时钟的上升沿是不允许发生变化的。如果输入信号在这段时间内发生了变化,输出结果将是不可知的,即亚稳态 (Metastability) 图1 一个信号在过渡到另一个时钟域时,如果仅仅用一个触发器将其锁存,那么采样的结果将可能是亚稳态。这也就是信号在跨时钟域时应该注意的问题。如图2所示。 信号dat经过一个锁存器的输出数据为a_dat。用时钟b_clk进行采样的时候,如果a_dat正好在b_clk的setup-hold时间内发生变化,此时b_ dat就既不是逻辑"1",也不是逻辑"0",而是处于中间状态。经过一段时间之后,有可能回升到高电平,也有可能降低到低电平。输出信号处于中间状态到恢复为逻辑"1"或逻辑"0"的这段时间,我们

BBU时钟同步方案学习资料

1.1目前BBU采用的时钟同步方案 在NodeB的BBU时钟同步方案应用中,目前产品中采用方案如下: 图1目前BBU时钟同步方案 关键需求: 1.频率同步要求:0.05ppm 2.相位同步要求:1.5us 基本原理: 通过使用GPS等稳定特性好的时钟源来校准精度较高的本地时钟,可以将GPS的长 期稳定特性与本地时钟晶振的短期稳定特性很好的结合起来,为整个系统提供可靠的系统时间和工作时钟,保证系统的频率同步和相位同步要求。 组成: 频率合成:本方案中频率合成指的是将OCXO输出的10MHZ的时钟进行变频,转换成系统时钟(目前系统时钟频率为20.48MHZ),这部分功能是采用专用的数字频率合成芯片DDS (AD9851 )来完成的;方案中共用到了两路DDS,其中的一路频率合成电路 (DDS1的输出(20.48MHZ作为同步算法的高频参考时钟输入到FPGA在FPGA内部经过DCM 模块变成高频时钟(200MH竝右);另一路频率合成电路(DDS2的输出(20.48MHZ 经过驱动电路后输出到背板提供给各个单板使用,由于输出到背板的时钟需要实时跟踪主 用板输出时钟的相位,所以会实时调节这一路AD9851 ( DDS2输出信号的相位。而另一 路AD9851 (DDS1的输出相位不作任何调整,这样就保证了同步算法的正确性。 OCXO的频率调整电路:OCXO的输出频率会受环境温度、负载、电源的影响,而且OCXO 自身也会老化。为了保证OCXO输出时钟的精度需要根据实际情况调整OCXO 的输出频率。OCXO有时钟频率调整端,此管脚的电压值将直接控制OCXO的输出频率。

DA变换在本板中的作用是产生OCXO的频率控制电压,CPU经过时钟算法处理后推算出OCXO的频率与GPS的时钟相比的误差,结合OCXO的频率调整范围以及预计调整的频率值,推算出应该设定的频率控制电压;知道了OCXO的频率控制电压后,再结合DA转换器的工作范围,就可以推算出DA转换器要设定的数字量。 FPGA: DDS2输出的20.48MHZ时钟信号通过分频产生PP2S信号。记录1pps间的 204.8Mhz时钟频率误差以及1pps和PP2S的相位差提供给CPU完成时钟同步算法。配置DA、DDS。 CPU:完成时钟同步算法。时钟同步模块类似锁相环,同步算法相当于鉴相器(部分)和低通滤波器。同步算法根据时钟参考源锁定状态下提供的1PPS信号来调整本板时钟(通常为压控恒温晶振OCXO),使得本板输出的PP2S信号的频率满足要求,且相位与1PPS 相位严格对齐。 GPS接收机:提供基站系统同步所需的时间;提供1pps作为时钟同步的常稳参考源。 方案优点:设计思路简单,通过CPU和FPGA共同来完成时钟同步算法,不仅实现了对频率的校准同时保证相位同步,时钟同步算法自主开发,可维护性强。 方案缺点:受OCXO的频率调整范围限制。由于需要对OCXO进行频率调整,一旦OCXO的频率调整范围超出了时钟同步算法设定的频率调整范围,将无法进行频率校准,必须更换OCXO。 设计难点:时钟同步算法是本方案的设计难点,特别是失锁后的保持算法。 1.2基于AD9548的时钟同步方案 基于AD9548的时钟同步方案框图如下: 图2基于AD9548 的时钟同步方案 关键需求: 1.频率同步要求:0.05ppm 2.相位同步要求:1.5us 基本原理: GPS等稳定特性好的时钟源作为数字锁相环的参考源,数字锁相环来产生校准后的高精度的系统时钟,通过系统时钟分频产生与1PPS同步的PP2S,从而保证系统的频率

GPS时钟系统(GPS同步时钟)技术方案(1)

GPS 时钟系统(GPS 同步时钟技术方案 技术分类:通信 | 2010-11-08 维库 在电力系统、 CDMA2000、 DVB 、 DMB 等系统中 , 高精度的 GPS 时钟系统(GPS 同步时钟对维持系统正常运转有至关重要的意义。 那如何利用 GPS OEM来进行二次开发 , 产生高精度时钟发生器是一个研究的热点问题。如在 DVB-T 单频网 (SFN中 , 对于时间同步的要求 , 同步精度达到几十个 ns, 对于这样高精度高稳定性的系统 , 如何进行商业级设计 ? 一、引言 在电力系统的许多领域,诸如时间顺序记录、继电保护、故障测距、电能计费、实时信息采集等等都需要有一个统一的、高精度的时间基准。利用 GPS 卫星信号进行对时是常用的方法之一。 目前, 市场上各种类型的 GPS-OEM 板很多, 价格适中, 具有实用化的条件。利用 GPS-OEM 板进行二次开发,可以精确获得 GPS 时间信息的 GPS时钟系统 (GPS 同步时钟。本文就是以加拿大马可尼公司生产的 SUPERSTAR GPS OEM板为例介绍如何开发应用于电力系统的的 GPS 时钟系统(GPS 同步时钟。 二、 GPS 授时模块 GPS 时钟系统 (GPS 同步时钟采用 SUPERSTAR GPS OEM 板作为 GPS 接受模块, SUPERSTAR GPS OEM 板为并行 12跟踪通道,全视野 GPS 接受模块。 OEM 板具有可充电锂电池。 L1频率为 1575.42MHz ,提供伪距及载波相位观测值的输出和 1PPS (1 PULSE PER SECOND脉冲输出。 OEM 板提供两个输入输出串行口,一个用作主通信口,可通过此串行口对 OEM 板进行设置,也可从此串口读取国际标准时间、日期、所处方位等信息。另一个串行口用于 RTCM 格式的差分数据的输出,当无差分信号或仅用于 GPS 授时,此串行口可不用。 1PPS 脉冲是标准的 TTL 逻辑

GPS时钟技术方案

GPS时钟系统 目录 5、GPS时钟系统 (2) 5.1系统功能 (2) 5.1.1卫星接收转换系统 (2) 5.1.2 中心母钟 (2) 5.1.2.1高精度石英基准时钟 (2) 5.1.2.2信号处理切换 (2) 5.1.2.3中心监控及故障报警 (3) 5.1.2.4系统信息显示 (3) 5.1.2.5中心传输接口 (3) 5.1.2.6内部在线不间断电源 (3) 5.1.3监控计算机(软件名称:UNITIME) (3) 5.1.3.1硬件要求 (4) 5.1.3.2系统监控软件 (4) 5.1.4子钟 (4) 5.1.4.1指针式子钟 (4) 5.1.4.2数显式子钟的功能 (5) 5.2 系统组成 (5) 5.2.1卫星接收转换器 (5) 5.2.2中心母钟 (6) 5.2.3监控计算机(软件名称:UNITIME) (7) 5.2.4数字式日历子钟 (7) 5.2.5指针式子钟 (8) 5.3系统部署 (8) 5.4系统连接 (8)

5、GPS时钟系统 5.1系统功能 5.1.1卫星接收转换系统 卫星接收转换系统为整个时钟系统提供绝对准确的时间基准,其核心是全球卫星定位系统(GPS)信号接收天线和信号接收转换器,自动接收并以GPS时间信号作为系统标准时间信号。 GPS接收转换系统是以目前形成的全球卫星定位系统(GPS)的卫星信号传输网络为基础,接收并分析卫星信号进而获得时间信息。GPS时间信号的特点是覆盖全球、精度高、无累积误差,是全球统一的时间标准。经GPS 接收转换系统处理后,时间信号以两种方式向时钟系统及其它应用设备发送信号,两种方式的信号在设备上均采用: 1、标准秒脉冲信号:精度为110nS,信号无累积误差; 2、全时标信号:信号含年、月、日、时、分、秒数字信号。 5.1.2 中心母钟 中心母钟是整个时钟系统的核心,通过GPS卫星时间接收器接收标准时间,并传输给系统内各级时钟设备,使整个时钟系统保持同步并监测管理系统的运行状况。如果系统需要,可以采用主备冗余设计,在系统需要时,自动切换。 5.1.2.1高精度石英基准时钟 由高精度的石英振荡器通过分频及译码电路产生高精度时间信息,作为中心母钟的自身时间基准。当GPS时间信号不能完整获得时,系统将采用中心母钟自身的时间基准同步系统。中心母钟的自身时间基准精度高于0.1秒/天。 5.1.2.2信号处理切换 信号处理切换单元接收来自卫星接收转换系统的标准时间信号,用以同步自身时间精度,并将同步信号通过系统接口传送给子钟、监控计算机和其它系统,同时与之相关联设备的工作信息、指令也需经信号处理单元处理后再进行相应的馈送、显示、动作等。 当GPS接收转换系统的标准时间信号无法完整获得时,时间信号处理

电脑时间不同步原因及解决办法

电脑时间不同步原因及解决办法 电脑时间不同步原因及解决办法我们经常会遇到电脑时间不能同步,电脑时间不准确的现象,这个问题,可能对于很多电脑新手是个不小的麻烦,下面我就对此类问题分析,总结出几种原因,并给出解决办法,帮助大家解除此类烦恼。原因一:电脑主板中CMOS 电池老化在电脑主板上有块纽扣大的电池,这块电池的作用是在电脑关闭以后继续为主板上的BIOS 模块供电以保存BIOS 设置信息。同样,它也记录了电脑上的时间,并在断电的情况下让时间的走动,以保证此次开始时间的准确性。如果此电池老化,没电,或者出现故障,都可以导致电脑时间的不同步。解决办法:更换新的同类型纽扣电池,保证程序正常运行原因二:系统设置错误,导致时间不能同步更新在windows 系统中,有专门针对时间更新方面的设置,如果没有设置正确,也会导致出现电脑时间不能同步的问题解决办法:按一下步骤进行系统的正确设置 1、双击电脑右下角时间栏,或右键单击时间选择“调整日期/ 时间” 一一gt;在弹出的“日期和时间属性”窗口中选择“时区” 选项卡——> 将时区选择为“ (GMT+08:00) 北京,重庆,香港特别行政区,乌鲁木齐”——> 点击“应用”,不要关闭“时间和日期属性”窗口

2、在“日期和时间属性”窗口中选择“时间和日期”选项,点击“立即更新”是当前电脑时间恢复正常,再选择“ Internet 时间” 选项卡--- >将“自动与Internet时间服务器同步(S) ”前面 打上勾——> 点击“确定”退出 原因三:系统本地服务设置错误在系统中,有专门针对时间同步更新的设置,如果此项服务没有开启,那也会出现电脑时间不同步的情况 解决办法:找到相应服务,并正确设置,步骤如下: 1、点击开始,打开“运行”选型,就在电脑左下角开始开始运行输入services.msc ,并点击“确定” 2、在弹出窗口中右侧列表中,找到Windows Time 项,鼠标右击,选择启动,这样我们的电脑时间就能同步了原因四: 电脑系统受病毒干扰,使系统时间产生错误 当电脑安装了一些恶意程序,或者中了一些修改时间的病毒或木马时,也会导致电脑系统时间出现错误,这主要是由于用户安装来源不明的程序,或对自己电脑保护不够所致。 解决办法:首先保证电脑里有主流的杀毒软件,并将其病毒库更新到最

标准化考点建设无线同步时钟方案

大型的考试如高考、研究生入学考试、公务员考试、中考等具有多个考点,这些考点分布范围很广。比如高考是覆盖全国范围的统一考试,考试的严密组织需要严格的时间统一,然而如何统一多个考点的时间一直是困扰考试组织人员的问题。早些年,多次出现“考点时钟不准导致错误计时,对部分考生的考试成绩造成不利影响”的话题,引起媒体广泛关注。”标准化考点所使用的钟主要是电波钟,电波钟是通过接收国家授时中心以无线电长波传送的标准时间信号BPC (68.5KHz),由机芯内置的微处理器转换,控制时钟指针的走动,使时钟显示时间与北京标准时间保持准确一致。 普通电波钟使用管理办法: 1. 考试前模拟演练时,考点要安排专人对所有考场电波钟进行检测。如发现有时间不准的,要按使用方法进行自动校时;如接收不到信号,无法自动校时时,应手动调整强制校准时间。 2. 3. 当次考试开始前15分钟,监考教师负责检查电波钟显示时间与考点统一 显示时间是否一致(使用同步指令系统的以同步指令播放时间为准)。如不一致,且误差时间超过一分钟,则由另一名监考教师当众提示考生电波钟的误差时间。并在黑板上注明,提醒考生注意考试时间。 4. 5.

考试过程中,每隔半个小时,监考老师需观察电波钟是否正常运行。如发现电波钟停走,则监考老师应及时联系流动监考老师,通知考点主考官,讲考务室备用电波钟更换至考场使用,并提示考生注意掌握考生时间。 6. 可以看出,普通电波钟的使用麻烦,而且时间很难同步,常常需要人为手动进行校准。以上这些问题我国北斗卫星系统的建设迎刃而解。北斗系统是我国自行建设具有定位导航授时的全球卫星导航系统,目前已进入正式运营阶段。20多颗北斗卫星覆盖我国国土,24小时不间断发送信号,信号中包含了我国北京时间信息。在全国各地的任意地理位置,只需接收到一颗卫星信号,即可实现与北京时间同步。因此,在大范围的信息网络中,采用北斗进行时间同步是可行的,一方面成本较低,另一方面同步精度也较高。随着北斗系统性能日益增强,北斗卫星信号覆盖范围也在不断扩展。 北斗卫星自动同步时钟方案: 1. 采用北斗/GPS卫星信号作为时间来源,可实现全国各省市地区考场时间同步,同步精度<1us。 2. 内置高精度温度补偿晶振,即使20天未收到卫星信号,累计误差也小于1秒。 3. 高灵敏信号接收捕获技术,室内只需要接近窗边即可接收到卫星信号或采用天线外置方法。 4.采用RDP6010子母钟设计,实现统一精准同步。 北斗卫星自动校时钟管理办法: 1. 考前15分钟观察时钟时间是否与标准时间一致,若不一致只需要断电后 重新上电即可自动同步北京时间。 2. 3. 自动校时完成后即可打开信号干扰器,内置高精度晶振,即使收不到卫星 信号也能精准走时。 4.

相关文档
相关文档 最新文档