文档库 最新最全的文档下载
当前位置:文档库 › 基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法
基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法

(合肥工业大学计算机与信息学院,安徽合肥20009)

摘要:近些年了来随着科技的进步、人们生活水平的提高,为满足生产和生活的需求各种交通工具应用而生。车型和车速的不断提高给道路交通管制带来了许多的不便和麻烦,因此基于交通测速雷达的多目标分辨领域的研究至关重要,能更好的对道路交通进行管理,在跟踪目标,对超速车辆的查找以及统计各类型车辆数量、缓解交通压力等方面有很大的用途。

本文在多普勒雷达的基础上研究发展而来的基于测速雷达的多目标分辨算法。首先介绍了雷达测速的研究背景及意义,多普勒雷达的测速原理,目前的发展状况以及传统雷达的不足之处。接着介绍了多目标分辨的理论依据,也就是本论文主要讲解的超速雷达的多目标分辨。

关键词:多普勒雷达、多目标分辨、频谱分析、幅度比较

一、研究背景

21世纪以来,人类生产力大解放。科技的蓬勃发展,工业革命的不断推进,无论是生产还是生活人类发生了翻天覆地的变化。其中最明显的便是交通运输工具的变化。随着道路基础设施建设水平的提高,人们生活质量的提高促使家庭小汽车的不断增加,同时为满足生产力发展的需求,各种交通工具应用而生。公路交通运输业是推动国民经济发展,促进经济社会繁荣的主动力。为实现对道路交通的有效管制以及行车速度测量及对超速车辆的实时监测控制对道路上的多目标进行分辨至关重要。

从雷达早期出现用于对空中金属物体的探测,到二战以来出现的雷达对空对地的火力控制等,雷达主要应用于军事领域。随着科技的进步,雷达技术的不断发展,雷达不再是一种单纯的军事雷达,其应用领域不断增加,功能不断增强出现了各种各样的雷达,比如气象雷达,道路交通测速雷达等。雷达测速是利用多普勒效应,通过多普勒频移计算目标的速度。雷达测速因其准确性高,速度快,稳定性好,探测距离远,可移动测速,能更好的抑制地无干扰等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给监测控制带来了困难。国内现有超速测量抓拍系统在多车并行时,由于仅能检测出有车辆超速,无法分辨超速车辆,为避免误判只能放弃抓拍,无形中增加了交通事故隐患,严重影响了现代交通的严格法制化管理进程。因此多目标分辨雷达的研究和制造有着非常重要的作用。同时不仅可应用于超速雷达的探测,在对车型检测,缓解交通压力等方面都发挥很大的作用。

二、交通测速雷达发展状况

目前,美国联邦电讯委员会规定警用测速频道为Xband,Kband,Kaband三种,它们对应的微波频率分别为10.525GHZ,24.150GHZ,33.40-36.00GZH。Xband雷达形状为圆型,无法在车阵中锁定超速车辆只能在车阵中检测第一辆车的速度。K band测速雷达为手持式的雷达,国内警方绝大多数使用这种雷达。Ka band雷达与K band雷达相似,由于其微波频率更高,测速范围更加集中,所以不容易被干扰,目前国内基本局限于一般性测量且测量结果较粗糙,在先进技术方面还有很大差距,因此对多目标分辨的研究至关重要,对提高国内雷达水平,方便道路超速车辆管理有重要的作用。

三、多普勒雷达的作用原理

多普勒雷达,又名脉冲多普勒雷达,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。1842年,奥地利物理学家J·C·多普勒发现,当波源和观测者有相对运动时,观测者接受到的波的频率和波源发来的频率不同,这种现象被称为多普勒效应。波是由频率和振幅所构成,而无线电波是随着物体而移动的,当无线电波在行进的过程中,碰到物体

时,该无线电波会被反弹,而且其反弹回来的波,其频率及振幅都会随着所碰到的物体的移动状态而改变。若无线电波所碰到的物体时是固定不动的,那么所反弹回来的无线电波其频率是不会改变的。然而,若物体朝着无线电线发射的方向前进时,此时所反弹回来的无线电波会被压缩,因此该电波的频率会随之增加;反之,若物体是朝着远离无线电波方向行进时,则反弹回来的无线电波,其频率则会随之减小。

多普勒测速原理图

设雷达与动物体之间的距离为s,则雷达电磁波在到达目标并返回的双层路径中,波长为λ的波数为2s/λ,每个波长对应2π rad的相位变化,双程传播路径总相位变化为φ=4πs/λ。如果目标相对与雷达运动,雷达与运动物体目标的距离s和相位变化都会随时间而变化,对上式求导,可得角频率W d=dφ/dt=4πv/λ=2πF d。其中v=ds/dt为物体目标径向速度。F d为多普勒频移。所以F d=2v/λ=2vf/C,其中f=C/λ是雷达发射电磁波频率。利用多普勒频移产生的拍现象可把运动目标的回波从杂波中分离出来。

四、基于幅度比较的多目标分辨方法

多普勒测速雷达因其测速精度高,速度快,稳定性好,探测距离远,可移动等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给违章抓拍带来了困难,因此可以使用基于幅度比较的多目标分辨方法。

基于幅度比较的多目标分辨方法是通过比较回波幅度分辨并行行驶车辆中的超速车辆的方法。该方法利用雷达天线波束增益和角度的关系,结合雷达作用距离与回波功率的关系,通过对不同车道上雷达接收回波的多普勒频率谱幅度值进行分析比较,从而分辨出多车道上并行车辆中的超速车辆。

雷达测速模型:

如图所示基于幅度比较的多普勒测速雷达的模型图。雷达工作频率24GHz,λ=1.25cm,天线口径D=5cm,3dB波束宽度θ=λ/D=0.25rad=14.3。雷达有效作用距离大约为30m,此时波束的方位宽度达到d=θ*R=7.5m,单车道宽度大约为3m,此时单个雷达波束可以覆盖2~3个车道,可以同时检测到多个运动目标。但无法分辨每辆车的速度。该方法模型采用同源多天线结构,即天线发射的雷达信号来自同一个源,再由功分器均分形成。测速雷达分别安装在车道中央通过几部天线测出的多普勒频移正的幅度差异来判断超速车辆所处的车道。测速雷达的工作原理是:雷达向目标发射电磁波并接收回波信号,从回波中提取速度对应的多

普勒频率,进而求出运动目标的速度。

以雷达发射连续波的情况为例,其发射信号可以表示为:

S0(t)=Asin(2πf0t+φ0)

式中,A为振幅,f o为雷达的发射频率,φ0为初相。

按照图所示测速模型,雷达1接收到的有:carl反射的雷达1的回波,carl反射的雷达2的回波,car2反射的雷达l的回波和car2反射的雷达2的回波四个信号。由于雷达位置的不同,虽然发射的是相同的信号,但是carl相对与雷达2的径向速度为:V21=V11*cosθ,不同于相对与雷达1的径向速度,因此多普勒频率分量也不相同,car2的情况同理。同样雷达间的位置差异也决定了距离因子和回波衰减系数的不同。

假设左右两车道雷达接收到的由两个运动目标反射的回波信号分别为S r1(f)和S r2(f),建立回波:

式中,αij为雷达波束方向影响因子;r ij为目标j相对于雷达i的距离因子;f ij=2V ij f0/C,

为运动目标的多普勒频移,其中,V ij代表目标j相对于雷达i的运动速度,c代表电磁波的传播速度。

f d11和f d21分别是目标1相对于两个雷达的多普勒频率,f d12和f d22分别是目标2相对于两个雷达的多普勒频率。设△f d1和△f d2为目标1和目标2相对于两个雷达的多普勒频差:

△f d1=f d11-f d21

△f d2=f d12-f d22

将上式化简为如下两式:

回波信号与本振信号进行自混频得到差频信号S1(t)和S2(t):

(k1=r1α为幅度增益系数)

从差频信号中提取多普勒频率,可由多普勒原理计算出目标的运动速度:

v=f d*c/2f0

雷达回波信号信号功率谱分析

当右车道有车辆行驶时,左右两路雷达会分别接收到该车辆的回波信号,由于位置的差异,所接收的多普勒频率分量和能量值均不相同。显而易见,在相对距离较近,且处于主瓣中心位置的能量最大,即对于右车道的车辆而言,右路雷达接收到的右车道行驶车辆的多普勒频率分量的能量就要大于左路雷达所接收到的右车道行驶车辆的多普勒频率分量的能量。如果对两路雷达在该多普勒频率下的能量值做一个差值比较:

P2(f d2)-P1(f d1)=a

当a>0时,多普勒频移为f d2的车在右车道;当a<0时,多普勒频移为f d1的车在左车道。当两车道都有车辆行驶时,两个雷达会分别接收到两车道上行驶车辆的回波信号,由于位置的差异,所接收的多普勒频率分量和其能量值均不相同。此时先判断是否有超速车辆,再判断是否同时超速:如果仅有一辆车超速,对多普勒频率值最大的分量作比较,判断超速车辆

所处的位置;如果两辆车同时超速,则直接记录然后进行后续处理。以上就是基于测速雷达的多目标分辨算法。

五、总结

随着中国道路交通的不断发展涌现出各种各样的问题,超速行驶在各种违章中占了很大比例,因此对超速行驶车辆的检测和加大力度的惩罚措施至关重要。而对超速行驶的汽车的鉴定便需要对汽车进行分辨识别,本文便是这个研究方向的一些理论依据。

通过这次的学习,我更加清楚地认识到了多普勒雷达的作用原理,同时基于多普勒原理而衍生出来的超速车辆的分辨研究也有了一定的认识和学习,对雷达在道路交通中的应用更加了解,增强了自己对雷达技术研究的兴趣,收获很多。

参考文献

[1]林仲扬漫谈雷达测速江苏省计量测试技术研究所江苏南京2006

[2]刘哲交通测速雷达的检测及技术改进分析云南大学2008

[3] 陈卓交通检测雷达的多目标分辨算法研究西安电子科技大

[4] 李艳雷达多目标分辨方法研究国防科技大学2005

[5] 杨粤湘雷达测速在公安交通管理中的应用广东公安科技2005

[6]周高杯多运动目标的频谱分析及基于DSP的雷达测速仪的设计湖南大学,2005

[7] 孙超脉冲多普勒雷达测速关键问题研究西安电子科技大学2014

[8] 孙朝云,阳红,高怀刚交通测速雷达性能分析与改善《长安大学学报:自然科学版》2003

雷达的目标识别技术

雷达的目标识别技术 摘要: 对雷达自动目标识别技术和雷达目标识别过程进行了简要回顾,研究了相控阵雷达系统中多目标跟踪识别的重复检测问题提出了角度相关区算法,分析了实现中的若干问题,通过在相控阵雷达地址系统中进行的地址实验和结果分析表明:采用角度相关区算法对重复检测的回波数据进行处理时将使识别的目标信息更精确从而能更早地形成稳定的航迹达到对目标的准确识别。 一.引言 随着科学技术的发展,雷达目标识别技术越来越引起人们的广泛关注,在国防及未来战争中扮演着重要角色。地面雷达目标识别技术目前主要有-Se方式,分别是一维距离成象技术、极化成象技术和目标振动声音频谱识别技术。 1.一维距离成象技术 一维距离成象技术是将合成孔径雷达中的距离成象技术应用于地面雷达。信号带宽与时间分辨率成反比。例如一尖脉冲信号经过一窄带滤波器后宽度变宽、时间模糊变大。其基本原理如图1所示。 2.极化成象技术 电磁波是由电场和磁场组成的。若电场方向是固定的,例如为水

平方向或垂直方向,则叫做线性极化电磁波。线性极化电磁波的反射与目标的形状密切相关。当目标长尺寸的方向与电场的方向一致时,反射系数增大,反之减小。根据这一特征,向目标发射不同极化方向的线性极化电磁波,分别接收它们反射(散射)的回波。通过计算目标散射矩阵便可以识别目标的形状。该方法对复杂形状的目标识别很困难。 3.目标振动声音频谱识别技术 根据多普勒原理,目标的振动、旋转翼旋转将引起发射电磁波的频率移动。通过解调反射电磁波的频率调制,复现目标振动频谱。根据目标振动频谱进行目标识别。 传统上我国地面雷达主要通过两个方面进行目标识别:回波宽度和波色图。点状目标的回波宽度等于入射波宽度。一定尺寸的目标将展宽回波宽度,其回波宽度变化量正比于目标尺寸。通过目标回波宽度的变化可估计目标的大小。目标往往有不同的强反射点,如飞机的机尾、机头、机翼以及机群内各飞机等,往往会在回波上形成不同形状的子峰,如图2所示。 这类波型图叫作波色图。根据波色图内子峰的形状,可获得一些目标信息。熟练的操作员根据回波宽度变化和波色图内子峰形状,进行目标识别。

目标检测算法

function MovingTargetDetectionByMMI() %Moving Target Detection %Based on Maximun Mutual Information % %EDIT BY PSL@CSU %QQ:547423688 %Email:anyuezhiji@https://www.wendangku.net/doc/6d18485069.html, %2012-06-01 %读文件 Im1=imread('001.jpg'); Im2=imread('002.jpg'); Im3=imread('003.jpg'); Im1=rgb2gray(Im1); Im2=rgb2gray(Im2); Im3=rgb2gray(Im3); tic; d12=GetDifferenceImg(Im2,Im1); d23=GetDifferenceImg(Im2,Im3); d=d12.*d23; se =; for i=1:4 d = imfilter(d,se); end for i=1:2 d = medfilt2(d,); end %%d=abs((d12-d23).^0.7); d=uint8(d/max(max(d))*255); level = graythresh(d); BW = im2bw(d,level); s=regionprops(BW,'BoundingBox'); figure(1)

subplot(2,2,1); imshow(uint8(d12/max(max(d12))*255)); title('参考帧与前一帧的差值') subplot(2,2,2); imshow(uint8(d23/max(max(d23))*255)); title('参考帧与后一帧的差值') subplot(2,2,3); imshow(BW); title('由前后帧得出的差值') subplot(2,2,4); imshow(Im2); %imshow(d); rectangle('Position',s(1).BoundingBox,'Curvature',,'LineWidth',2,'LineStyle','--','EdgeColor', 'r') title('参考帧与检测结果') %求相邻两帧重合部分差值主函数 function outImg=GetDifferenceImg(R,F) =dwt2(R,'db1'); =dwt2(F,'db1'); CA1=uint8(CA1); CA2=uint8(CA2); fprintf('\n------PSO start\n'); =PSO(CA1,CA2); while mi<1.2 =PSO(CA1,CA2); end fprintf('tx:%f ty:%f ang:%f mi:%f\n',pa(1),pa(2),pa(3),mi); fprintf('------PSO end\n\n'); %pa=; fprintf('------Powell start\n'); mi_old=0; while abs(mi-mi_old)>0.01

目标识别技术

目标识别技术 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高

雷达运动目标检测大作业

非均匀空时自适应处理 摘要 本文首先依次介绍了在非均匀环境下的STAP处理法,包括降维、降秩以及LSMI方法,接着重点分析了直接数据域(DDD)方法的原理及实现过程,最后针对直接数据域方法进行了仿真实验。 引言 机载雷达对运动目标检测时, 面临的主要问题是如何抑制强大的地面杂波和各种类型的干扰,空时自适应处理(STAP)是解决该问题的关键技术。STAP 技术通过对杂波或干扰训练样本分布特性的实时学习来来形成空域—时域二维自适应权值,实现对机载雷达杂波和干扰的有效抑制。 STAP技术在形成自适应权值时,需要计算杂波协方差矩阵R。实际系统的协方差矩阵是估计得到的,即先在待检测距离单元的临近单元测得K个二维数 据矢量样本V i(i=1,2…K),再计算R的估计值?=Σ i=1K V i V i H∕K,然后可得自 适应权值W=μR^-1S,其中μ为常数,S为空时导向矢量。临近训练样本的选择必须满足独立同分布(IID)条件。同时,为了使由杂波协方差矩阵估计引起的性能损失控制在3dB内,要求均匀训练样本数K至少要2倍于其系统自由度(DOF)。如果所选样本非均匀,则形成的权值无法有效对消待检测单元中所含有的杂波和干扰,从而大大降低对运动目标的检测性能。 在实际应用中, 机载雷达面临的杂波环境往往是非均匀的, 这对经典的S T A P 技术带来了极大的挑战。针对这一难题, 许多新的适用于非均匀杂波环境的S T A P 方法不断被提出。 1、解决非均匀样本的方法 1.1、降维方法 降维方法的最初目的是为了减少空时自适应处理时所需的巨大运算量, 但后来发现该类方法同时大大减少了对均匀训练样本数的需求, 对非均匀情况下杂波抑制起到了积极的作用。降维方法将每次自适应处理所需要抑制的杂波范围限制在某一个较小杂波子空间内, 根据RMB准则和Brennan定理, 自适应处理时所需要的均匀训练样本数由2 倍于整体系统自由度减至降维后2 倍于子空间系统自由度。降维程度越高, 对均匀训练样本的需求就越少。降维方法属固定结构方法, 无法充分利用杂波的统计特性。当辅助波束与杂波谱匹配很好时, 处理性能往往很好。反之, 则性能下降。 1.2、降秩方法 与固定结构降维方法相反, 降秩方法充分利用回波中杂波的分布特性, 每次处理选取完备杂波空间来形成自适应权值对消杂波分量, 可看作依赖回波数据的自适应降维方法。该类方法在形成权值过程中利用的信息中不含噪声分量, 所以避免了小样本情况下噪声发散带来的性能下降问题, 故减少了对均匀训练样本数的需求。同样, 该类方法在满足信杂噪比损失不超过 3 d B 条件时所需的训练样本数约为 2 倍的杂波子空间的维数。从处理器结构上来看, 降秩方法可

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。目标跟踪理论在军、民用领域都有重要的应用价值。在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。 0 引言 目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系

统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。 1用扩展卡尔曼滤波算法预测机动目标轨迹 首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况: 其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。 然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为: 式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。 由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

【CN110133630A】一种雷达目标检测方法及应用其的雷达【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910344449.2 (22)申请日 2019.04.26 (71)申请人 惠州市德赛西威智能交通技术研究 院有限公司 地址 516006 广东省惠州市仲恺高新区和 畅五路西8号投资控股大厦 (72)发明人 孙靖虎 曾迪 黄力 温和鑫  盘敏容 蒋留兵  (74)专利代理机构 惠州创联专利代理事务所 (普通合伙) 44382 代理人 韩淑英 (51)Int.Cl. G01S 13/02(2006.01) G01S 13/08(2006.01) G01S 13/58(2006.01) G01S 7/41(2006.01) (54)发明名称 一种雷达目标检测方法及应用其的雷达 (57)摘要 本发明涉及一种雷达目标检测方法。本发明 提供了一种运行速度快、探测精度高的雷达目标 检测方法,本发明中,雷达的一帧检测中第二发 射波的发射次数可与第一发射波不同,可通过设 置较少的第二发射波的发射次数来缩短雷达的 检测帧周期;本发明中第二发射波只需要进行一 次一维FFT而无需进行二维FFT,降低了计算复杂 度, 提高了数据处理速度。权利要求书2页 说明书7页 附图4页CN 110133630 A 2019.08.16 C N 110133630 A

1.一种雷达目标检测方法,其特征在于,包括以下步骤: 步骤一、发射K1次周期为T1、的第一发射波,所述第一发射波被目标反射后被天线接收得到第一回波; 步骤二、对每个周期的第一回波进行N点采样一维FFT变换得到第一回波一维FFT结果; 步骤三、对所述第一回波一维FFT结果进行二维FFT变换得到坐标对应第一距离单元号、第一模糊速度号的距离多普勒谱,其中第一距离单元号为对单个周期的第一回波进行一维FFT采样的序号,第一模糊速度号为所述第一发射波的发射周期的序号;根据第一回波的目标检测距离、目标检测模糊速度与所述距离多普勒谱的峰值的对应关系求第一回波的目标检测距离及目标检测模糊速度; 步骤四、发射K2次与所述第一发射波频率互质的周期为T2的第二发射波,所述第二发射波被目标发射后被所述天线接收得到第二回波,对每个周期的第二回波进行N点采样一维FFT变换得到对应不同第二距离单元号、第二模糊速度号的第二回波一维FFT结果,其中第二距离单元号为对单个周期的第二回波进行一维FFT采样的序号,第二模糊速度号为所述第二发射波的发射周期的序号; 步骤五、根据步骤三得到的第一回波的目标检测模糊速度与目标真实速度可能值之间的关系求目标真实速度可能值的速度旋转因子,并将该速度旋转因子与步骤四得到的第二回波一维FFT结果形成关联,然后对该关联结果进行解模糊,再根据解模糊的结果对步骤2求得的第一回波的目标检测距离、目标检测模糊速度进行修正从而求得目标真实速度及目标真实距离;以及 步骤六、输出步骤四获得的目标真实速度及目标真实距离。 2.根据权利要求1所述的一种雷达目标检测方法,其特征在于,步骤三中求第一回波的目标检测距离及目标检测模糊速度方法为: 在所述距离多普勒中寻找峰值,该峰值对应的距离单元号、模糊速度号即为目标所处 的第一距离单元号 第一模糊速度号 再根据目标所处的第一距离单元号电磁波的传播速度C、第一发射波的射频带宽B1计算第一回波的目标检测距离以及 根据目标所处的第一模糊速度号所述天线中心频率对应的波长λ、步骤1中所述第一发射波的发射次数K1及周期T1计算第一回波的目标检测模糊速度 3.根据权利要求2所述的一种雷达目标检测方法,其特征在于,所述步骤五具体包括: 定义目标真实速度可能值的速度旋转因子V DFT : 式中V r为目标真实速度可能值;z为所述第二模糊速度号; 将第一回波的目标检测模糊速 度与目标真实速度可能值V r之间的关 系代入步骤4.1中目标真实速度可能值的速度旋转因子V DFT的定义公式中, 式中m为取值范围为[-d,d]的模糊数单元号,其中d为正整数,从而求得目标真实速度可能值的速度旋转因子; 权 利 要 求 书1/2页 2 CN 110133630 A

雷达目标识别

目标识别技术 2009-11-27 20:56:41| 分类:我的学习笔记| 标签:|字号大中小订阅 摘要: 针对雷达自动目标识别技术进行了简要回顾。讨论了目前理论研究和应用比较成功的几类目标识别方法:基于目标运动的回波起伏和调制谱特性的目标识别方法、基于极点分布的目标识别方法、基于高分辨雷达成像的目标识别方法和基于极化特征的目标识别方法,同时讨论了应用于雷达目标识别中的几种模式识别技术:统计模式识别方法、模糊模式识别方法、基于模型和基于知识的模式识别方法以及神经网络 模式识别方法。最后分析了问题的可能解决思路。 引言: 雷达目标识别技术回顾及发展现状 雷达目标识别的研究始于"20世纪50年代,早期雷达目标特征信号的研究工作主要是研究达目标的有效散射截面积。但是,对形状不同、性质各异的各类目标,笼统用一个有效散射面积来描述,就显得过于粗糙,也难以实现有效识别。几十年来,随着电磁散射理论的不断发展以及雷达技术的不断提高,在先进的现代信号处理技术条件下,许多可资识别的雷达目标特征信号相继被发现,从而建立起了相应的目标 识别理论和技术。 随着科学技术的飞速发展,一场以信息技术为基础、以获取信息优势为核心、以高技术武器为先导的军事领域的变革正在世界范围内兴起,夺取信息优势已成为夺取战争主动权的关键。电子信息装备作为夺取信息优势的物质基础,是推进武器装备信息化进程的重要动力,其总体水平和规模将在很大程度上反 映一个国家的军事实力和作战能力。 雷达作为重要的电子信息装备,自诞生起就在战争中发挥了极其重要的作用。但随着进攻武器装备的发展,只具有探测和跟踪功能的雷达也已经不能满足信息化战争的需要,迫切要求雷达不仅要具有探测和跟踪功能,而且还要具有目标识别功能,雷达目标分类与识别已成为现代雷达的重要发展方向,也是未来雷达的基本功能之一。目标识别技术是指:利用雷达和计算机对遥远目标进行辨认的技术。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。目标识别还可利用再入大气层后的大团过滤技术。当目标群进入大气层时,在大气阻力的作用下,目标群中的真假目标由于轻重和阻力的不同而分开,轻目标、外形不规则的目标开始减 速,落在真弹头的后面,从而可以区别目标。 所谓雷达目标识别,是指利用雷达获得的目标信息,通过综合处理,得到目标的详细信息(包括物理尺寸、散射特征等),最终进行分类和描述。随着科学技术的发展,武器性能的提高,对雷达目标识别 提出了越来越高的要求。 目前,目标识别作为雷达新的功能之一,已在诸如海情监控系统、弹道导弹防御系统、防空系统及地球物理、射电天文、气象预报、埋地物探测等技术领域发挥出很大威力。为了提高我国的军事实力,适应未来反导弹、反卫、空间攻防、国土防空与对海军事斗争的需要,急需加大雷达目标识别技术研究的力度雷达目标识别策略主要基于中段、再入段过程中弹道导弹目标群的不同特性。从结构特性看,飞行中段

视觉目标检测算法说明

视觉目标检测算法说明 1.功能 通过安装在战车上的摄像头,检测视野范围内的敌方战车。 2.算法: 2.1目标检测与识别 1.颜色检测 采集大量敌方机器人的图片数据,并进行训练,得到对方机器人的颜色区间, 并以此为阈值对整幅图像进行颜色检测,找到疑似敌方机器人的区域,量化 成二值图。 2.滤除噪声点 对得到的二值图像进行开运算处理,滤除颜色检测结果中的噪声点。 3.连通区域检测 对图像中的疑似区域进行连通区域检测,计算出每个疑似区域的外部轮廓, 用矩形近似表示。 4.连通区域合并 根据连通区域之间的距离和颜色相似性,将距离接近且相似性高的连通区域 进行合并。 5.形状和大小过滤 对大量敌方机器人图片进行训练,得到对方机器人的形状信息(例如长宽比) 和大小信息(面积),并以此为依据将不符合的区域过滤掉。 经过以上五步的处理,可以初步得到敌方机器人的位置、大小和形状信息。 2.2目标运动跟踪 对上步中的检测结果进行运动跟踪。 1.状态估计 根据上一时刻地方机器人的运动状态(包括位置和速度),估算当前时刻机 器人的运动状态。 2.轨迹关联 根据位置和颜色信息,对当前时刻机器人的估计状态和检测结果进行关联。 3.状态更新 若上一步中关联成功,更新当前时刻的运动状态。 通过对检测结果进行运动跟踪,可以计算出当前时刻敌方机器人的运动速度和方 向。 2.3预估提前量

1.评估延迟时间 根据己方机器人实际的调试情况,通过多次试验和统计的方法,估算己方机器人从接收命令到炮弹(或子弹)击中目标区域的时间延时(包括图像处理 时间、落弹时间和炮弹飞行时间)。 2.计算提前量 根据延迟时间和敌方机器人的运动速度,计算炮弹发射的提前量,补偿到敌方机器人的运动状态中。 3.总结: 对于机器人战车中的敌方目标检问题,有很多种方法可以实现,视觉检测只是其中的一种方法,而基于颜色识别的目标检测也只是视觉算法中比较简单有效的一种。所以,本段代码只是抛砖引玉的一个样本,适用范围只针对于2014年RoboMasters夏令营的场地和战车,希望可以看到大家更加简单有效的算法。

雷达机动目标跟踪技术研究精编

雷达机动目标跟踪技术 研究精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

1 绪论 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研

究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。 一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。图给出了机动目标跟踪的基本原理图。

视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在 视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1 帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设(,)k f x y 和(1)(,)k f x y +分别为图像序列中的第k 帧和第k+1帧中象素点(x ,y)的象素值,则这两帧图像的差值图像就如公式2-1 所示: 1(1)(,)(,)k k k Diff f x y f x y ++=- (2-1) 2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1 式得到第k 帧和第k+1帧的差值图像1k Diff +;2、对所得到的差值图像1k Diff +二值化(如式子2-2 示)得到Qk+1;3、为消除微小噪声的干扰,使得到的运动目标更准确,对1k Q +进行必要的滤波和去噪处理,后处理结果为1k M +。 111255,,(,)0,,(,)k k k if Diff x y T Q if Diff x y T +++>?=?≤? (T 为阈值) (2-2)

雷达目标识别发展趋势

雷达目标识别发展趋势 雷达具备目标识别功能是智能化的表现,不妨参照人的认知过程,预测雷达目标识别技术的发展趋势: (1)综合目标识别 用于目标识别的雷达必将具备测量多种目标特征的手段,综合多种特征进行目标识别。我们人类认知某一事物时,可以通过观察、触摸、听、闻、尝,甚至做实验的方法认知,手段可谓丰富,确保了认知的正确性。 目标特征测量的每种手段会越来越精确,就如同弱视的人看东西,肯定没有正常人看得清楚,也就不能认知目标。 识别结果反馈给目标特征测量,使目标特征测量成为具有先验信息的测量,特征测量精度会有所提高,识别的准确程度也会相应提高。 雷达具备同时识别目标和背景的功能。人类在观察事物的时候,不仅看到了事物的本身,也看到了事物所处的环境。现有的雷达大多通过杂波抑制、干扰抑制等方法剔除了干扰和杂波,未来的雷达系统需要具备识别目标所处背景的能力,这些背景信息在战时也是有用的信息。 雷达具备自适应多层次综合目标识别能力。用于目标识别的雷达虽然需要具备测量多种目标特征的手段,但识别目标时不一定需要综合所有的特征,这一方面是因为雷达系统资源不允许,另一方面也是因为没有必要精确识别所有的目标。比如司机在开车时,视野中有很多目标,首先要评价哪几个目标有威胁,再粗分类一下,是行人还是汽车,最后再重点关注一下靠得太近、速度太快的是行人中的小孩子还是汽车中的大卡车。 (2)自学习功能 雷达在设计、实现、装备的过程中,即具备了设计师的基因,但除了优秀的基因之外,雷达还需要具有学习功能,才能在实战应用中逐渐成熟。 首先,要具有正确的学习方法,这是设计师赋予的。对于实际环境,雷达目标识别系统应该知道如何更新目标特征库、如何调整目标识别算法、如何发挥更好的识别性能。 其次,要人工辅助雷达目标识别系统进行学习,这就如同老师和学生的关系。在目标识别系统学习时,雷达观测已知类型的合作目标,雷达操作员为目标识别系统指出目标的类型,目标识别系统进行学习。同时还可以人为的创造复杂的电磁环境,使目标识别系统能更好地适应环境。 (3)多传感器融合识别 多传感器的融合识别必定会提高识别性能,这是毋容置疑的。这就好比大家坐下来一起讨论问题,总能讨论出一个好的结果,至少比一个人说的话更可信。但又不能是通过投票的方式,专家的话肯定比门外汉更有说服力。多传感器融合识别需要具备双向作用的能力。 并不是给出融合识别的结果就结束了,而是要利用融合识别的结果反过来提高各个传感器的识别性能,这才是融合识别的根本目的所在。反向作用在一定程度上降低了人工辅助来训练目标识别系统的必要性,也减少了分别进行目标识别试验的总成本。

雷达空间目标识别技术综述

2006年10月第34卷 第5期 现代防御技术 MODERN DEFENCE TECHNOLOGY O ct.2006 V o.l34 N o.5雷达空间目标识别技术综述* 马君国,付 强,肖怀铁,朱 江 (国防科技大学ATR实验室,湖南 长沙 410073) 摘 要:随着人类航天活动的增加,对于卫星和碎片等空间目标进行监视变得非常重要。为了实现空间监视任务,对空间目标进行识别是非常必要的。对空间目标的轨道特性与动力学特性进行了介绍,对雷达空间目标识别技术的研究现状和发展趋势进行了详细的综述。 关键词:空间目标识别;低分辨雷达;高分辨雷达成像 中图分类号:TN957 52 文献标识码:A 文章编号:1009 086X(2006) 05 0090 05 Survey of radar space target recognition technology MA Jun guo,F U Q iang,X I AO Huai tie,Z HU Jiang (ATR L ab.,N ationa lU n i versity o f De fense T echno l ogy,Hunan Changsha410073,Ch i na) Abst ract:W ith t h e deve l o pm ent of spacefli g ht acti v ity of hum an,surveillance of space tar get such as sate llite and debris beco m es very i m portan.t In or der to i m p le m ent surveillance task,space target recogni ti o n is ver y necessary.Orb it property and dyna m ics property of space targe t are i n troduced,a deta iled sur vey is set forth about current research state and developi n g trend of radar space target recogn iti o n techno l ogy. K ey w ords:space tar get recogniti o n;lo w reso lution radar;h i g h reso lution radar i m aging 1 引 言 自从前苏联发射了第1颗人造地球卫星以来,卫星在预警、通信、侦察、导航定位、监视和气象等方面具有不可替代的优势。随着人类航天活动的增加,空间碎片日益增多,对于卫星等航天器的安全造成极大的威胁,因此对于卫星和碎片等空间目标进行监视变得非常重要。其中空间目标识别是空间监视任务中不可或缺的基本条件,空间目标识别主要是利用雷达等传感器获取空间目标的回波信号,从中提取目标的位置、速度、结构等特征信息,进而实现对空间目标的类型或属性进行识别。 2 空间目标的轨道特性与动力学特性 (1)轨道特性[1,2] 空间目标在轨道上的运动是无动力惯性飞行,本质上空间目标与自然天体的运动是一致的,故研究空间目标的运动可以用天体力学的方法。空间目标在运动时受到地球引力、月球引力、太阳及其他星体引力、大气阻力和太阳光辐射压力等的作用,轨道存在摄动。但是对轨道的实际分析表明,空间目标受到的主要力是地球引力。假设空间目标只是受到地球引力的作用,同时假设地球是一个质量均匀分布的球体,则空间目标与地球构成二体运动系统,开 *收稿日期:2005-12-15;修回日期:2006-01-23 作者简介:马君国(1970-),男,吉林长春人,博士生,主要从事目标识别与信号处理研究。 通信地址:410073 湖南长沙国防科技大学ATR实验室 电话:(0731)4576401

基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法 (合肥工业大学计算机与信息学院,安徽合肥20009) 摘要:近些年了来随着科技的进步、人们生活水平的提高,为满足生产和生活的需求各种交通工具应用而生。车型和车速的不断提高给道路交通管制带来了许多的不便和麻烦,因此基于交通测速雷达的多目标分辨领域的研究至关重要,能更好的对道路交通进行管理,在跟踪目标,对超速车辆的查找以及统计各类型车辆数量、缓解交通压力等方面有很大的用途。 本文在多普勒雷达的基础上研究发展而来的基于测速雷达的多目标分辨算法。首先介绍了雷达测速的研究背景及意义,多普勒雷达的测速原理,目前的发展状况以及传统雷达的不足之处。接着介绍了多目标分辨的理论依据,也就是本论文主要讲解的超速雷达的多目标分辨。 关键词:多普勒雷达、多目标分辨、频谱分析、幅度比较 一、研究背景 21世纪以来,人类生产力大解放。科技的蓬勃发展,工业革命的不断推进,无论是生产还是生活人类发生了翻天覆地的变化。其中最明显的便是交通运输工具的变化。随着道路基础设施建设水平的提高,人们生活质量的提高促使家庭小汽车的不断增加,同时为满足生产力发展的需求,各种交通工具应用而生。公路交通运输业是推动国民经济发展,促进经济社会繁荣的主动力。为实现对道路交通的有效管制以及行车速度测量及对超速车辆的实时监测控制对道路上的多目标进行分辨至关重要。 从雷达早期出现用于对空中金属物体的探测,到二战以来出现的雷达对空对地的火力控制等,雷达主要应用于军事领域。随着科技的进步,雷达技术的不断发展,雷达不再是一种单纯的军事雷达,其应用领域不断增加,功能不断增强出现了各种各样的雷达,比如气象雷达,道路交通测速雷达等。雷达测速是利用多普勒效应,通过多普勒频移计算目标的速度。雷达测速因其准确性高,速度快,稳定性好,探测距离远,可移动测速,能更好的抑制地无干扰等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给监测控制带来了困难。国内现有超速测量抓拍系统在多车并行时,由于仅能检测出有车辆超速,无法分辨超速车辆,为避免误判只能放弃抓拍,无形中增加了交通事故隐患,严重影响了现代交通的严格法制化管理进程。因此多目标分辨雷达的研究和制造有着非常重要的作用。同时不仅可应用于超速雷达的探测,在对车型检测,缓解交通压力等方面都发挥很大的作用。 二、交通测速雷达发展状况 目前,美国联邦电讯委员会规定警用测速频道为Xband,Kband,Kaband三种,它们对应的微波频率分别为10.525GHZ,24.150GHZ,33.40-36.00GZH。Xband雷达形状为圆型,无法在车阵中锁定超速车辆只能在车阵中检测第一辆车的速度。K band测速雷达为手持式的雷达,国内警方绝大多数使用这种雷达。Ka band雷达与K band雷达相似,由于其微波频率更高,测速范围更加集中,所以不容易被干扰,目前国内基本局限于一般性测量且测量结果较粗糙,在先进技术方面还有很大差距,因此对多目标分辨的研究至关重要,对提高国内雷达水平,方便道路超速车辆管理有重要的作用。 三、多普勒雷达的作用原理 多普勒雷达,又名脉冲多普勒雷达,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。1842年,奥地利物理学家J·C·多普勒发现,当波源和观测者有相对运动时,观测者接受到的波的频率和波源发来的频率不同,这种现象被称为多普勒效应。波是由频率和振幅所构成,而无线电波是随着物体而移动的,当无线电波在行进的过程中,碰到物体

多目标跟踪雷达

多目标跟踪雷达 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

多目标跟踪雷达 路口存在检测方案 采用多维式扫描雷达天线和先进DSP跟踪算法,对路口单方面向最少四车道、最多八车道的车辆进行精准的存在检测或感应检测,同时还能提供精准的单车及时测度、车辆位置信息以及停止线的车流量、平均速度和占有率等交通刘统计数据。路段多功能检测,能对横向四车道八车道、纵向160米范围的大视域内车辆进行实时检测。跟踪区域内所有车辆的行为轨迹、真实量化还原路况状态,提供精准的单车即时时速度、车辆位置、车型信息,同时提供精准的断面的车流量平均车速和占有率等交通流统计数据,以及对区域内多种异常事件及时报警,为交通诱导系统和交通事件检测系统提供数据支撑,

随着城市车辆快速增长,路口的管理压力越来越大,配套的信号控制系统、交通诱导、交通仿真系统等对数据的要求也越来越高。而路口车辆存在信息是实现高效、稳定信号控制的基本要求,也是现阶段国内外主流交通信号控制系统应用最为成熟的数据模型之一。因此,交叉路口的车辆存在信息就显的尤为重要。 城市路口车辆存在检测系统通过建立覆盖路口特定位置的采集点位,配备前端感知检测,实时吧存在信息传送之信号机控制及系统,对路口信号配时,优化提供支撑。同时,公安交通管理部门可以根据车流量历史统计数据、分析路口车辆运行规律,针对性制定控制管理策略。 需求说明: 城市路口存在检测系统,主要完成路口停车线、或特定断面的车辆存在信息采集,可以及时掌握路口特定位置车流量状态,为信号机控制、交通诱导等系统提供数据支撑。 1、在城市重要路口设立和完善的存在检测点、检测各方的车流量信息。 2、建立城市的数据传输、应用接口模块。实现无缝对接信号机控制系统。 3、用户可以通过实时数据库、以及客户端管理进行查看每个路口车辆存在信息、车流量、占有率等,可以连续24时实时检测。 4、具备数据存储功能。可以作为路口管理的数据支撑。 系统说明:

雷达目标识别技术

雷达目标识别技术述评 孙文峰 (空军雷达学院重点实验室,湖北武汉430010) 摘要:首先对雷达目标识别研究领域已经取得的成果和存在的问题进行简单的回顾,然后结合对空警戒雷达,阐明低分辨雷达目标识别研究的具体思路。 关键词:雷达目标识别;低分辨雷达 Review on Radar Target Recognition SUN Wen-feng (Key laboratory, Wuhan Radar Academy, Wuhan 430010, China)Abstract: The acquired productions and existent problems of radar target recognition are reviewed simply, then the specific considerations of target recognition with low resolution radar are illustrated connect integrating with air defense warning radar in active service. Key words: radar target recognition; low resolution radar 1.引言 雷达目标识别(RTR—Radar Target Recognition)是指利用雷达对单个目标或目标群进行探测,对所获取的信息进行分析,从而确定目标的种类、型号等属性的技术。1958年,D.K.Barton(美国)通过精密跟踪雷达回波信号分析出前苏联人造卫星的外形和简单结构,如果将它作为RTR研究的起点,RTR至今已走过了四十多年的历程。目前,经过国内外同行的不懈努力,应该说RTR已经在目标特征信号的分析和测量、雷达目标成像与特征抽取、特征空间变换、目标模式分类、目标识别算法的实现技术等众多领域都取得了不同程度的突破,这些成果的取得使人们有理由相信RTR是未来新体制雷达的一项必备功能。目前,RTR技术已成功应用于星载或机载合成孔径雷达(SAR—Synthetic Aperture Radar)地面侦察、毫米波雷达精确制导等方面。但是,RTR还远未形成完整的理论体系,现有的R TR 系统在功能上都存在一定的局限性,其主要原因是由于目标类型和雷达体制的多样化以及所处环境的极端复杂性。本文首先对RTR研究领域已经取得的成果和存在的问题进行简单的回顾,最后结合对空警戒雷达,阐明了低分辨雷达目标识别研究的具体思路。 2.雷达目标识别技术的回顾与展望 雷达目标识别研究的主体有三个,即雷达、目标及其所处的电磁环境。其中任何一个主体发生改变都会影响RTR系统的性能,甚至可能使系统完全失效,即RTR研究实际上是要找到一种无穷维空间与有限类目标属性之间的映射。一个成功的RTR系统必定是考虑到了目标、雷达及其所处电磁环境的主要可变因素。就目标而言主要有目标的物理结构、目标相对于雷达的姿态及运动参数、目标内部的运动(如螺旋桨等)、目标的编队形式、战术使用特点等等;就雷达而言主要有工作频率、带宽、脉冲重复频率(PRF)、天线方向图、天线的扫描周期等等;环境因素主要有各种噪声(如内部噪声和环境噪声)、杂波(如地杂波、海杂波和气象杂波)和人为干扰等。在研制RTR系统时必须综合考虑这些因素,抽取与目标属性有关的特征,努力消除与目标属性无关的各种不确定因素的影响。

相关文档