文档库 最新最全的文档下载
当前位置:文档库 › 数学危机

数学危机

数学危机
数学危机

数学危机

什么是数学危机?

数学中有大大小小的许多矛盾,例如,正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如,有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。

矛盾的消除,危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。

1.第一次数学危机

从某种意义上来讲,现代意义上的数学(也就是作为演绎系统的纯粹数学)来源于古希腊的毕达哥拉斯学派。这个学派兴旺的时期为公元前500年左右,他们重视自然及社会中不变因素的研究,把几何、算术、天文学、音乐称为“四艺”,在其中追求宇宙的和谐及规律性。他们认为“万物皆数”,认为数学的知识是可靠的、准确的,而且可以应用于现实的世界。数学的知识是由于纯粹的思维而获得,并不需要观察、直觉及日常经验。

毕达哥拉斯的数是指整数,他们在数学上的一项重大发现是证明了勾股定理。他们知道满足直角三角形三边长的一般公式,但由此也发现了一些直角三角形的三边比不能用整数来表达,也就是勾长或股长与弦长是不可通约的。这样一来,就否定了毕达哥拉斯学派的信条:宇宙间的一切现象都能归结为整数或整数之比。

不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯(Hipparchus,公元前180~前125)约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之,数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。

同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。

第一次数学危机的产物——欧氏几何学。欧几里得的《原本》对数学发展的作用无须在此多谈。不过应该指出,欧几里得的贡献在于他有史以来第一次总结了以往希腊人的数学知识,构成一个标准化的演绎体系,这对数学乃至哲学、自然科学的影响一直延续到19世纪。牛顿的《自然哲学的数学原理》和斯宾诺莎的《伦理学》等,都采用了欧几里得《几何原本》的体例。

2.第二次数学危机

早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量,这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例,他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论。

第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。

第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟在他的前面。这两个悖论是反对空间、时间无限可分的观点的。

而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时间间隔,飞矢总是在某个空间间隔中确定却有严格的逼近步骤,这就是所谓“穷竭法”,它依靠间接的证明方法,证明了许多重要而难证的定理。

到了16、17世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在17世纪晚期,形成了无穷小演算——微积分这门学科,这也就是数学分析的开端。

牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:第一,把各种问题的解法统一成一种方法,微分法和积分法;第二,有明确的计算微分法的步骤;第三,微分法和积分法互为逆运算。

由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是当趋向于零时的值。是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。

18世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是繁琐。

但也因此而使微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。

18世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等。

一直到19世纪20年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由维尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。

柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量,而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克雷(P.G.Dirichlet,1805~1859)给出了函数的现代定义。

在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。

19世纪70年代初,维尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。

同时,维尔斯特拉斯给出一个处处不可微的连续函数的例子,这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是20世纪数学基础中的首要问题。

3.第三次数学危机

第三次数学危机产生于19世纪末和20世纪初,当时正是数学空前兴旺发达的时期。首先是逻辑的数学化,促使了数理逻辑这门学科诞生。

19世纪70年代康托尔创立的集合论是现代数学的基础,也是产生危机的直接来源。19世纪末,戴德金及皮亚诺对算术及实数理论进行公理化,推动了公理化运动。而公理化运动的最大成就则是希尔伯特在1899年对于初等几何的公理化。

公理化方法是现代数学最重要的方法之一,对于数学基础和数理逻辑的研究也有影响。当时,也是现代数学一些新分支兴起的时期,如抽象代数学、点集拓扑学和代数拓扑学、泛函分析、测度与积分理论等学科。这些学科的发展一直与数学基础及数理逻辑的发展有着密切的关系。数学的更新与发展也对数学哲学有许多新的探讨,数学的陈腐哲学观念在当时已经几乎一扫而空了。

(1)集合论的创立、传播和矛盾

集合论的创立者是格奥尔格,康托尔(Georg Cantor,1845~1918),他在1874年发表的有关集合论的头一篇论文《论所有实代数集合的一个性质》断言,所有实代数数的集合是可数的,所有实数的集合是不可数的。因此,非代数数的超越数是存在的,并且其总数要比我们熟知的实代数数多得多,也就是说超越数的集合也是不可数的。

康托尔的这种证明是史无前例的。他连一个具体的超越数都没有举出来,就“信口开河”地说超越数存在,而且比实代数数的“总数”多得多,这怎么能不引起当时数学家的怀疑甚至愤怒呢?

其实,康托尔的著作主要是证明了无穷之间也有差别,既存在可数的无穷,也存在那种像实数集合那样不可数的、具有“连续统的势”的无穷。过去数学家认为靠得住的只有有限,而无穷最多只是模模糊糊的一个记号。而康托尔把无穷分成许多“层次”,这真有点太玄乎了。

1878年,康托尔发表了集合论第二篇文章,其中把隐含在1847年文章中的“一一对应”概念提出来,作为判断两个集合相同或不同的基础,这就是最原始的等价观念,而两个集合相互之间如果能够一一对应就称为等势,势的概念于是应运而生。

从1879年到1884年,康托尔发表了题为“论无穷线性点集”的一系列文章,共有6篇,这些文章奠定了新集合论的基础。特别是在1883年的文章中引进生成新的超穷数概念,并且提出了所谓连续统假设,即可数基数后面紧接着就是实数基数。他相信这个假设正确,但没能证明。这个假设对于20世纪数学基础的发展起着极其重大的作用。

康托尔最后的集合论著作是1895年和1897年发表的两篇文章,其中最重要的是引进“序型”的概念,并定义相应的序数,这个时期,反对集合论的势力逐渐削弱,但是集合论的内在矛盾已经开始暴露出来了。

康托尔自己最早发现了集合论的内在矛盾。他在1895年文章中遗留下两大问题未解决:一个是连续统假设,另一个是所有超穷基数的可比较性,他虽然认为无穷基数有最小数但没有最大数,但没有明显叙述其矛盾之处。

第一个发表集合论悖论的是意大利数学家布拉里,福蒂(C.Borali-Fort,1861~1931),他指出所有序数的集合这个概念的内在矛盾,但是当时认为这也许能够补救。一直到1903年罗素发表他的著名悖论,集合论的内在矛盾才突出出来,并成为20世纪集合论和数学基础研究的出发点。

康托尔的集合论是数学上最具有革命性的理论,它的发展道路自然很不平坦。在当时,占统治地位的观念是:你要证明什么,你就要具体造出什么来。因此,人们只能从具体的数或形出发,一步一步经过有限多步得出结论来。至于“无穷”的世界,即完全是超乎人的能力之外,绝不是人所能掌握和控制得了的。

反对集合论最激烈的克洛内克认为只有他研究的数论及代数才最可靠。他有一句著名的话:“上帝创造了正整数,其余的是人的工作.”他认为除了由数经过有限多步推出的事实,其他一概无效。他甚至认为圆周率都不存在,证明冗是超越数也毫无意义。当时,柏林是世界数学的中心之一,克洛内克又是柏林学派的领袖人物,他对集合论发展的阻碍作用是非常大的。克洛内克在1891年去世之后,阻力一下子减少了,康托尔发挥出自己的组织才能,积极筹建德国数学联合会(1891年成立)以及国际数学家大会(1897年第一届大会在苏黎世召开),给集合论获得承认铺平了道路。

另一方面,许多大数学家支持康托尔的集合论。除了戴德金以外,瑞典的数学家米太格一莱夫勒在自己创办的国际性数学杂志《数学学报》(1882年创刊)上,把康托尔集合论的论文译成法文转载,从而大大促进了集合论在国际上的传播。柏林大学教授维尔斯特拉斯也是集合论的同情者,为了捍卫集合论而勇敢战斗的则是希尔伯特。

从此,围绕集合论形成了20世纪初关于数学基础的大论战,从而形成了20世纪数学界中的三大数学学派——逻辑主义、直觉主义和形式主义。各学派通过各种努力提出各种方案试图解决罗素悖论。

罗素悖论以其简单明确震动了整个数学界,造成第三次数学危机。但是,罗素悖沦并不是头一个悖论。在罗素之前不久,康托尔和布拉里?福蒂已经发现集合论中的矛盾。罗素悖论发表之后,更出现了一连串的逻辑悖论。这些悖论使人联想到古代的说谎者悖论。即“我正在说谎”,“这句话是谎话”等。这些悖论合在一起,造成极大问题,促使大家都去关心如何解决这些悖论。

罗素在他的《数学的原理》中认为,序数集虽然是全序,但并非良序,不过这种说法靠不住,因为任何给定序数的初始一段都是良序的。不久之后,罗素在1905年一篇文章中对于序数集的存在性提出了疑问,策梅罗也有同样的想法,后来的许多人在这个领域都持有同样的想法。

康托尔1899年7月28日给戴德金的信中,谈到布拉里·福蒂所提到的矛盾,这个矛盾并没有导致康托尔放弃集合的良序性,而放弃了集合性。他把集合分为两类:相容集合和不相容集合,而只把前者叫做集合。这种区分法,预示了冯·诺依曼(JohnVon Neumann,1903~1957)在1925年引进的集合和类的区别。但是康托尔对于这种区分的判断标准仍然是不精确的。如果我们把一个集体考虑为一个对象而没有矛盾,它是一个集合。这个想法后来改进为:当一个集体是另一个集体的元素,它是一个集合。

这种相容集体和不相容集体的区别早已被施罗德引进来。他认为,如果集体的元素彼此是相容的,它是相容的;而如果集体的元素彼此是不相容的,它是不相容的。有趣的是施罗德引进的这种区分和悖论没有关系,因为这种现代形式的悖论当时还不知道。康托尔关于集体的叙述——两个等价的集体或者都是集合,或者都是不相容的,可以看成是取代公理的最早的表述。这个公理是弗兰克尔和斯科兰姆在1922年提出的.布拉里,福蒂的悖论,揭示了康托尔集合论的矛盾。其实,康托尔本人在这之前已经意识到集合论的内在矛盾,他在1899年7月28日给戴德金的信中指出,不能谈论由一切集合构成的集合,否则就会陷入矛盾。实际上这就是罗素悖论的内容。

康托尔最大基数悖论和布拉里,福蒂悖论到罗素悖论都是集合论悖论,它们直接同康托尔朴素集合论的不严格性有关。毛病出在集合的定义上,也就是任何性质就对应一个具有这种性质的集合,这就是所谓内函公理组。集合论的这种矛盾必须通过削弱这个错误的公理组才能解决。

(2)悖论动摇了整个数学的基础

1900年左右,数学已经发展成为一个庞大的领域了。当时纯数学大致分为算术、代数、几何和数学分析。随着第二次数学危机的解决,数学分析建立在极限理论基础上。而极限理论中,有些基本性质要由“单调有界的数列必有极限”这个定理来证明。这个定理从直观上看尽管很明显,但是追求严密性的数学家很早就要求不靠直观而靠逻辑来证明,要求一切定理都从比较简单的公理推导出来。

要推导极限的性质,必须对数列有明确的概念。这里的数不只是有理数,还包括无理数,这两种数构成实数的集合。所以,当务之急就是建立起严格的“实数”理论。戴德金在1872年发表了《连续性与无理数》这本专著,同年康托尔也发表实数理论的文章。康托尔通过一定的有理数序列(基本序列)来定义实数。而戴德金则利用有理数集合的分割来定义实数。他们的理论虽然逻辑上可靠,但是都不太自然,依赖于有理数的集合概念。这样一来,实数理论的无矛盾性就归结为有理数论,进而归结成自然数论的无矛盾了。

自古以来,大家都认为自然数的算术是天经地义、不容怀疑的。不过有些数学家如弗雷格和戴德金又进一步把自然数归结为逻辑与集合论。这样一来,集合论与逻辑成为整个数学的基础,罗素悖论一出现,集合论靠不住了,自然数的算术也成问题,这样一来,整个数学大厦都动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第二卷末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。当本书等待付印的时候,罗素先生的一封信把我置于这种境地。”戴德金原来打算把《连续性与无理数》第三版付印,这时他把稿件抽了回来。他也觉得由于罗素悖论,整个数学的基础都靠不住了。

悖论涉及的是集合、属于、所有(全部)性质与集合的对应关系、无穷这些最基本的概念。概念在数学中是天天必须用到的。如果不加以澄清,在数学证明的过程中,不是这里就是那里就会出毛病。

有了毛病,有的人就主张把集合论全盘推倒,只考虑有限的东西,这样不仅把数学内容砍掉了一大半,而且无穷的问题仍会出现。另一部分人则主张限制这些概念的使用范围,当然限制太多了,就缩小了数学领域,而限制太少了又会出现矛盾,所以要在这两者之间找到一种最好的解决办法。从20世纪初,人们就一直在找,虽然并没有得到最终满意的解决,不过给数学提供一个可靠的基础还是可以办得到的。

(3)哥德尔的发现——意想不到的结果

在数理逻辑的历史上,哥德尔的工作起着承前启后的作用。1928年,希尔伯特在意大利波伦那召开的国际数学家大会上提出的四个问题,很快就被哥德尔原则上解决了。尤其是他的不完全性定理,把人们引向一种完全不同的境界,从此,数理逻辑开始了一个新的时代。

1930年前,整个数学界是非常乐观的:希尔伯特的思想占统治地位;数学是建立在集合论和数理逻辑两块基石之上;康托尔的朴素集合论已被公理集合论所代替,从而消除了悖论;选择公理是一个很好的工具,数学中许多部门都要用到它;连续统假设仍然是悬案,不过希尔伯特多次觉

得自己已接近解决这个难题,看来前景是乐观的;大部分数学可以建立在谓词演算的基础上,而一阶谓词演算的公理系统是无矛盾的,尽管其完全性仍有待证明;整个数学的基本理论是自然数的算术和实数理论,它们都已经公理化。这些公理系统应该是无矛盾的、完全的,如果它们能够得证,并且集合论公理系统也能得到同样的结果,那么,整个数学就比较牢靠了。

为了不使一小撮直觉主义者指手画脚、评头晶足,希尔伯特提出他的计划:把理论系统形式化,然后通过有限多步证明它们没有矛盾。数学家期望数学有一个既广阔又严格的基础,在这个基础上数学家可以放心地去干他们愿意干的事。哥德尔的不完全性定理使这种想法破灭了。悖论所造成的危机虽然可以暂时回避,然而想从原则上一揽子解决是毫无希望的。从此之后,数学家只满足于使用集合论一些最简单的结果,而对更深入的数理逻辑与数学基础问题则不那么关心了。

同时,由于哥德尔在证明中发展的一些技术,也使数理逻辑成为一门具有自己独立技术和方法的数学分支。现在的数理逻辑,不管是公理集合论、模型论还是证明论、递归论都已经变得十分专门。就像代数拓扑学、算子代数、随机过程等学科,对于非本行专家来说,简直是难以理解的。

哥德尔的论文在1931年发表之后,立即引起逻辑学家的莫大兴趣。它开始虽然使人们感到惊异不解,不久即得到广泛承认,并且产生巨大的影向。

哥德尔的证明对希尔伯特原来的计划是一个巨大的打击,因此把整个数学形式化的打算是注定要失败的,因而逻辑主义和形式主义的原则是不能贯彻到底的;“希尔伯特计划”中证明论的有限主义观点必须修正,从而使证明论的要求稍稍放宽。

哥德尔不完全定理的证明结束了关于数学基础的争论不休的时期,数学基础的危机不那么突出地表现出来。数理逻辑形成了一个带有强技巧性的独立学科,而绝大部分数学家仍然把自己的研究建立在朴素集合论或ZF公理集合论的基础上。

尽管集合论中存在矛盾,但这些矛盾大部分均可回避。研究这些矛盾,特别是集合论的矛盾变成数理逻辑学家的事业。另外一方面,直觉主义和构造主义数学虽然也有发展,但终究是一小部分,半个世纪以来,在数学中始终不占统治地位。因为矛盾也好、危机也好,根源在于无穷,但是数学中毕竟少不了无穷。归根结蒂,数学终究是研究无穷的科学。

总地说来,数学素以精确严密的科学著称,可是在数学发展的历史长河中,仍然不断地出现矛盾以及解决矛盾的斗争。从某种意义上讲,数学就是要解决一些问题,问题不过是矛盾的一种形式。

有些问题得到了解决,例如,任何正整数都可以表示为4个平方数之和。有些问题至今没有得到解决,如哥德巴赫猜想:任何大偶数都再可以表示为两个素数之和。我们还很难说这个命题是对还是不对,因为随便给一个偶数,经过很多次试验总可以得出结论,但是偶数有无穷多个,你用毕生精力也不会验证完。也许你能碰到一个很大的偶数,找不到两个素数之和等于它,不过即使这样,你也难以断言这种例外偶数是否有限多个,也就是某一个大偶数之后,上述哥德巴赫猜想成立。这就需要证明,而证明则要用有限的步骤解决涉及无穷的问题。借助于计算机完成的四色定理的证明,也要把无穷多种可能的地图归结成有限的情形,没有有限,计算机也是无能为力的。数学永远回避不了有限与无穷这对矛盾。只要无穷存在,你就要应付它。这可以说是数学矛盾的根源之一。

在处理出现矛盾的过程中,数学家不可能不进行“创造”,这首先表现在产生新概念上,我们不妨先不管自然数。为了解决实际问题,人们必须发明出“零”来,然后要造出负数、有理数、无理数乃至虚数。所谓虚,就是不实,凭空想像出来的意思,不过解代数方程有必要把它请进来,请进来后又觉得它不实在、不太放心.后来它用处很大,能解决非它不可的问题,于是轰也轰不走了。

复数挤进数学王国之后,跟着四元数、八元数、超复数……都来了,它们可没有复数那么大的用处,甚至根本没用。要还是不要呢?这也使数学家处于为难的境地。数学家经常处于这种矛盾的过程中。

什么是存在?这是数学的一个基本问题。什么东西可以挤进数学王国?直觉主义者规定一个较窄的限制:必须能够一步一步构造出来。而形式主义者规定一个较宽的限制:只要没有矛盾就行了。不过什么叫没有矛盾?当然逻辑没有矛盾,其实就是遵守形式逻辑规律。可是形式逻辑是从人类有限经验推出来的,对于无穷情形还灵不灵?这当然存在问题,可是不许推广,那数学还能剩下多少靠得住的东西呢?

在数学史上这种矛盾也是屡见不鲜的。无穷小量刚出现时,漏洞百出,无法自圆其说,可是行之有效、解决问题.所以达朗贝尔说:“前进,你就能恢复信心!”这可以说是一种实用主义态度。

19世纪,柯西和维尔斯特拉斯用极限概念解决了矛盾,同时也扔掉了无穷小,这里无矛盾性占了上风。1961年,罗滨逊(J.Rohnson)发明非标准分析,又把无穷小量请了回来,仍然没有矛盾。不过它是建立在模型论基础上,要承认非可数无穷基数的存在。

承认无穷集合,承认无穷基数,就好像打开潘朵拉的盒子,一切灾难都出来了。这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以回避,数学的确定性却在一步一步地丧失。最近,莫利斯·克莱因写了一本《数学——确定性的丧失》一书,就是讲的这件事。

现代公理集合论的一大堆公理简直难说孰真孰假,可是又不能把它们一古脑儿消除掉,它们跟整个数学是血肉相连的。所以第三次危机表面上解决了,实质上更深刻地以其他形式延续着。矛盾既然是固有的,它的激烈冲突——危机也会给数学带来许多新内容,新认识,有时也带来革命性的变化。

把20世纪的数学同以前整个数学相比,内容不知丰富了多少,认识也不知深入了多少。在集合论的基础上,诞生了抽象代数学、拓扑学、泛函分析与测度论。数理逻辑也兴旺发达,成为数学有机整体的一部分。古代的代数几何、微分几何、复分析现在已经推广到高维,代数数论的面貌也多次改变,变得越来越优美、完整.一系列经典问题完满地得到解决,同时又产生更多的新问题。特别是二次大战之后,新成果层出不穷,从未间断,教学呈现无比兴旺发达的景象,而这正是人们在同数学中矛盾斗争的产物。

历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050) 在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展. 在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话. 第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0. /悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论. 今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的! 第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机. 第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的: (x+v x)n=x n+n#x n-1#v x+n(n-1) 2 #x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得 v y v x= (x+v x)n-x n v x =n#x n-1+ n(n-1) 2 #x n-2#v x +,+nx#(v x)n-2+(v x)n-1, 最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1. 哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0. 现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱. 十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机. 第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了. 一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波. 十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的

第一次数学危机

(1)公元前500年,古希腊毕达哥拉斯学派的弟子希勃索斯发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。 不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达。芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”同时它导致了第一次数学危机。 我觉得毕达哥拉斯是一个很矛盾的人,他有很多成就,是影响西方乃至世界的人物,是第一个注重“数”的人,发现了毕达哥拉斯定理,证明了正多面体的个数。建设了许多较有影响的社团。同时他允许女人进入课堂讨论,也可以帮助穷人学习,会设定一些奇奇怪怪的要求,娶了自己热心听众中的一个女子为妻……他相信依靠数学可使灵魂升华,与上帝融为一体,万物都包含数,甚至万物都是数,上帝通过数来统治宇宙。我以为他会是一个能够包容的人,海纳百川。但是,他好像不太喜欢被人质疑,尽管他发现了黄金分割、勾股定理等,依然不能抹杀他犯的大错。希勃索斯的死亡不能掩埋学问。 (2)约在公元前370年,柏拉图的学生攸多克萨斯(约公元前408—前355)解决了关于无理数的问题。他纯粹用公理化方法创立了新的比例理论,微妙地处

数学的三次危机——第三次数学危机

三、第三次数学危机 数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。 1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。 罗素,英国人,哲学家、逻辑学家、数学家。1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。他关心社会现象,参加和平运动,开办学校。1968~1969年出版了他的自传。 罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。 罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。 自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。集合论的现代悖论与逻辑的几个古代悖论有关系。例如公元前四世纪的欧伯利得悖论:“我现在正在做的这个陈述是假的”。如果这个陈述是真的,则它是假的;然而,如果这个陈述是假的,则它又是真的了。于是,这个陈述既不能是真的,又不能是假的,怎么也逃避不了矛盾。更早的还有埃皮门尼德(公元前6世纪,克利特人)悖论:“克利特人总是说谎的人”。只要简单分析一下,就能看出这句话也是自相矛盾的。 集合论中悖论的存在,明确地表示某些地方出了毛病。自从发现它们之后,人们发表了大量关于这个课题的文章,并且为解决它们作过大量的尝试。就数学而论,看来有一条容易的出路:人们只要把集合论建立在公理化的基础上,加以充分限制以排除所知道的矛盾。 第一次这样的尝试是策梅罗于1908年做出的,以后还有多人进行了加工。但是,此程序曾受到批评,因为它只是避开了某些悖论,而未能说明这些悖论;此外,它不能保证将来不出现别种悖论。

数学史选择题集锦知识分享

数学史选择题集锦

1、首先获得四次方程一般解法的数学家是( D )。 A. 塔塔利亚 B. 卡尔丹 C. 费罗 D.费拉里 2、最先建立“非欧几何”理论的数学家是( B )。 A. 高斯 B. 罗巴契夫斯基 C. 波约 D. 黎曼 3、提出“集合论悖论”的数学家是( B )。 A.康托尔 B.罗素 C.庞加莱 D.希尔伯特 4、( 泰勒斯 )在数学方面的贡献是开始了命题的证明,被称为人类历史上第一 位数学家 A. 阿基米德 B. 欧几里得 C. 泰勒斯 D. 庞加莱 5、数学史上最后一个数学通才是( B ) A、熊庆来 B、庞加莱 C、牛顿 D、欧拉 7、当今数学包括了约 A 多个二级学科。 A、400 B、500 C、600 D、700。 1、秦九韶是“宋元四大家”之一,其代表作是()。 (A)九章算术(B)九章算术注(C)数书九章(D)四元玉鉴 2、下面哪位数学家最早得到了正确的球的体积公式()。 (A)欧几里得(B)祖冲之(C)刘徽 (D)阿基米德 3、古代几何知识来源于实践,在不同的地区,不同的几何学的实践来源不尽相同,古代埃及的几何学产生于

(A)测地(B)宗教(C)天文 (D)航海 4、“零号”的发明是对世界文明的杰出贡献,它是由下列国家发明的()。 (A)中国(B)阿拉伯(C)巴比伦(D)印度 5、最早发现圆锥曲线的是下列哪位数学家()。 (A)欧几里得(B)阿波罗尼奥斯(C)毕达哥拉斯 (D)梅内赫莫斯 6、下列哪位数学家提出猜想:每个偶数是两个素数之和;每个奇数是三个素数之和()。 (A)费马(B)欧拉(C)哥德巴赫(D)华林 7、下列哪位数学家首先证明了五次和五次以上的代数方程的根式不可解性()。 (A)拉格朗日(B)阿贝尔(C)伽罗瓦(D)哈密顿 8、在非欧几何的先行者中中,最先对“第五公设能由其他公设证明”表示怀疑的数学家()。 (A)克吕格尔(B)普罗克鲁斯(C)兰伯特(D)萨凯里 9、下列数学家中哪位数学家被称作“现代分析学之父”()。

数学发展史教案

数学发展史教案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

数学发展史和三大数学危机 (2个课时) 数学的发展包括数学的萌芽期、常量数学时期、变量数学时期、 近代数学时期。 一、数学的萌芽期(小学数学)主要以记数为主,还未形成独立的学科。这一时期贡献最大的国家有:中国,古巴比伦,埃及,印度。 主要贡献:十进制记数法,记数符号,三角形、梯形和圆的面积的计算,立方体和柱体的体积,截棱锥体的体积公式等。 二、常量数学时期(中学数学)这一时期又称为初等数学时期, 主要发展了算术、初等代数、初等几何(平面几何和立体几何)等。 主要代表人物:毕达哥拉斯、祖冲之、杨辉、笛卡儿、韦达等。 三、变量数学时期(大学数学)这一时期又称为高等数学时期。 主要创立了解析几何和微积分,这是数学史上最伟大的贡献。主要代表人物:牛顿、莱布尼茨、欧拉、拉格朗日、高斯、傅里叶。

四、近代数学时期(数学研究)20世纪40-50年代,电子计算机的出现和非欧几何的建立,使整个数学王国蓬勃发展。主要贡献: 1.纯数学方面:拓扑学(也称位置几何学、橡皮几何学。画在橡皮上的几何图形,图中的某些性质不变,如封闭性等)、泛函分析、抽象代数等。 2.应用数学方面:非标准分析、模糊数学、突变理论、计算机理论、运筹学、优选法、对策论(博奕论)、排队论等。主要代表人物:黎曼、冯.诺依曼、华罗庚、陈省身。 刚才给大家简单介绍了整个数学的发展史,实际上,数学发展到今天,并不是一帆风顺的,其中至少面临了3次大的危机。第一次是公元前5世纪(距今约2500年),古希腊毕达哥拉斯学派的理论被推翻;第二次危机是17世纪,微积分理论的基础受到质疑;第三次是19世纪,数学家罗素提出了集合理论的悖论。 首先,我们来看一下第一次数学危机——毕达哥拉斯学派的理论被推翻。 生平轶事:毕达哥拉斯是公元前五世纪古希腊的着名数学家与哲学家。他出生在爱琴海中的萨摩斯岛(现在希腊东部小岛)的贵族家庭,自幼聪明好学。相传他小时候有一次背着木柴从街上走过,一位长者看见他捆柴的方法与别人不同,便说:“这孩子有数学奇才,将来会成为一个大学者。”毕达哥拉斯特别向往东方的智慧,经过万水千山,游历了当时世界上两个文化水准极高的文明古国——古巴比伦和古印度,吸收了阿拉伯文明和印度文明的文化。

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

数学文化试题及答案

、在东方,最早把rational number翻译成有理数的是: (2.00分) A.俄罗斯人 B.日本人 C.中国人 D.印度人 2、“万物皆数”是谁提出 (2.00分) A.笛卡尔 B.欧几里得 C.阿基米德 D.毕达哥拉斯 3、平面运动不包括 (2.00分) A.反射 B.平移 C.旋转 D.折射 4、罗巴切夫斯基几何改变了欧式几何的第()公设。 (2.00分) A.三 B.一 C.五 D.二 5、四色猜想的提出者是哪国人: (2.00分) A.法国 B.英国 C.美国 D.中国 6、两个量的比相等是哪位数学家定义的: (2.00分) A.欧多克索斯 B.阿契塔 C.A和B D.以上都不是 7、()指出函数不连续时也可能进行定积分。 (2.00分) A.柯西 B.费曼 C.黎曼 D.牛顿 8、数学发展史上爆发过几次数学危机 (2.00分) A.一 B.二 C.三 D.四 9、毕达哥拉斯“万物皆数”中数是指: (2.00分)

A.法则 B.实数 C.有理数 D.自然数 10、下面哪一项不是黄金分割点 (2.00分) A.印堂 B.肚脐 C.膝盖 D.肘关节 11、南开大学每年出的杂志,收录数学文化课的学生优秀读书报告,叫做:() (2.00分) A.数学之美 B.数学与文化 C.数学文化课文集 D.数学 12、()关于化归提出了“烧水”的例子。 (2.00分) A.波利亚 B.笛卡尔 C.高斯 D.庞加莱 13、可以完全铺满地面的正多边形不包括 (2.00分) A.正方形 B.正三角形 C.正五边形 D.正六边形 14、“物不知数”的问题出自哪部著作 (2.00分) A.《九章算术》 B.《海岛算经》 C.《孙子算经》 D.《五经算术》 15、在()中,过直线外一点找不到平行线。 (2.00分) A.黎曼几何 B.双曲几何 C.欧氏几何 D.以上都不对 16、根号2不能表示成整数比引发()数学危机 (2.00分) A.第一次 B.第二次 C.第三次 D.第四次 17、首先提出公理化方法的局限性的人是 (2.00分) A.伽罗瓦

数学专业考研三大方向

数学专业考研三大方向 数学专业考研有三大方向:基础数学、概率与统计精算、数学工程的科学与工程计算系。这三大方向的开设院校及研究生方向大家都了解吗。正值择校定专业的关键时期,下面详细为大家解析。 数学专业考研三大方向 1.基础数学(应用数学) 专业概况:数学系一般开设基础数学、应用数学两专业,而这两个专业方向基本是相通的,都是为培养数学和其他高科技复合型人才打下基础。基础数学学科较多地涉及:代数、拓扑、几何、微分方程、动力系统、函数论等,它的专业方向和课程设置覆盖面比较宽,理论知识所占的比重相对较大。应用数学则与其他学科综合交叉。 设有本专业的科研院校: 北京师范大学、北京邮电大学、清华大学、北京大学、中国人民大学、南京大学、吉林大学、复旦大学、武汉大学、西北大学、中国石油大学、浙江大学、中山大学、北京科技大学、上海交通大学、西安交通大学、北京理工大学、长安大学、北京科技大学、山东大学、大连理工大学。 专业背景:要求考生具备基础数学、概率论、微积极分分析、计算机理论、统计分析等学科知识。 研究方向:微分动力系统、非线性分析、复分析与几何、拓扑学、代数数论与代数几何、图论、组合数学、常微分方程、微分几何、数学物理、信息科学、计算数学、泛函分析、偏微分方程、几何分析与变分学 就业前景:硕士毕业后,因占有数学基础强的优势,利于跨专业考经济、金融、会计等热门专业的博士研究生;也可以在相关企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门成为从事研究和教学工作的高级专门人才。 2.概率论与数理统计(概率与统计精算) 专业概况:概率论与数理统计是20世纪迅速发展的学科,主要研究各种随机现象的本质与内在规律,以及自然、社会等学科中不同类型数据的科学的综处理和统计推断方法。随着人类社会各个体系的日益庞大、复杂、精密以及计算机的广泛使用,概率统计在信息时代

简述数学史上的三大危机

简述数学史上的三大危机 世界曾经发生过金融危机,比如美国的金融危机席卷全球,造成了史无前例的影响。实际上,在数学界也发生过翻天覆地的变革,那就是数学史上的三次数学危机。 在古希腊,哲学家都是格外重视数学。像无论是最早的唯物主义哲学家泰勒斯,还是最早的唯心主义哲学家毕达哥拉斯,都特别推崇数学。在那些伟大的数学家中,在数学上成就最大的,当推毕达哥拉斯。 毕达哥拉斯建立了一个带有神秘色彩的团体,被称为毕达哥拉斯学派。这个学派传授知识,研究数学,还很重视音乐。“数”与“和谐”是他们的主要哲学思想。他们认为数是万物的本源,数产生万物,数的规律统治万物,也就是“万物皆数”的观点。“万物皆数”就是万物皆可用自然数或分数表示。然而,这一观点在后来确被毕达哥拉斯自己给推翻了。这还得从一个有趣的故事说起。有一次毕达哥拉斯去朋友家做客,他发现朋友家的地板上的方形图案很有意思,凭借着他数学家头脑的直觉,得出了我们今天所学的勾股定理以及证明。然而根据勾股定理,边长为1的正方形,其对角线的长度应当是根号2,毕达哥拉斯发现根号2既不是自然数,也不是分数。这个事实的发现,是毕达哥拉斯学派的一大成就,它标志着人类思维有了更高的抽象能力。 但这一发现引起了毕达哥拉斯学派的惶恐不安。因为他们心目中的数只有自然数与自然数之比---分数。如今发现边长为1的正方形的

对角线这个明明白白地摆在那里的东西竟不能用“数”表示。这难道不是自己否定自己信仰的真理吗?于是毕达哥拉斯学派千方百计封锁消息,但是纸包不住火终于还是传开了。当时研究数学的希腊学者们便对数的重要性有了怀疑。哲学家们认为世界上的量都可以用数表示,任何两个分数,无论多么近,他们之间还有无穷对个分数,这么多的数居然还不能表示出线段上某些点的长度,数的万能的力量因为根号2的出现被否定了,这就是所谓的第一次数学危机。 第二次数学危机 我们生活着的这个世界,在一刻不停地变化着。古希腊哲学家赫拉克利特说:人不能两次踏入同一条河流,因为河水在流动,当人第二次踏进同一条河流时,已经不是第一次踏进时的河水了。赫拉克利特用这个生动的比喻说明万物皆在不断变化之中,但严格说起来他的话在概念上存在疑问。当时他的对立者巴门尼德宣扬相反的观点,他主张存在是静止的,不变的,永恒的。他的得意门生芝诺还提出“飞矢不动”的诡论。然而数学是讲究概念严密的,他们的说法都在概念上存在漏洞。像什么叫“动”与“不动”,古代哲学家对于如何从逻辑上严格把握事物的运动与变化和相对静止与稳定的统一是不清楚的,直到17世纪,数学上出现了变量与函数的概念才找到了精确描述运动与变化的工具。 对于事物的运动与变化,哲学家常有这一种说法:“运动就是矛盾”,“矛盾”是一个定义的术语,它揭示出事物的共性,但没指出运动的特殊性,而数学中用映射或函数描述运动却能勾画出运动的特殊

中国经济危机的风险数学模型的建立与分析

桂林电子科技大学第八届大学生数学建模竞赛 承诺书 我们仔细阅读了桂林电子科技大学第八届大学生数学建模竞赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

参赛队员信息: 中国经济危机的风险数学模型的建立与分析 0.摘要 近年来,我国经济飞速发展,GDP、国民生产总值稳步上升。我国安全度过了2009的经济危机以及2011年的欧债危机并且继续保持了经济平稳较快发展,这是另世界刮目相看的。即便如此我们也不能放松警惕。有专家认为:我国未来十年经济危机风险大增,理由是:“1.美元进入持续升值周期;2.美联储进入加息周期;3.当前储备多,更愿大胆开大门,并认为可摆平所有冲击;4.国内进入金融解除管制时期;5.认为财政实力雄厚,所有事情可积极财政搞定;6.我国自1990年以来摆平两次大危机达成20年高速增长,自信满满。”为了定性以及定量的分析我国的经济风险,本文对我国主要的经济指标与影响经济发展的因素进行分析,并建立模型解决了几个较典型的问题。 问题一:认为选取的经济指标具有代表性,数据真实可信。我们根据近十年经济的各项指标做了相关的图表,给出了几个重要经济指标的分布以及变化趋势,继而分析出了几个经济指标的特征。

(整理)数学史上的三次危机.

数学史上的三次危机 张清利 第一次数学危机 在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。这是数学史上的一个里程碑。毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。后来,又发现数轴上还存在许多点也不对应于任何有理数。因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。 例如, ,22,8,6,2等都是无理数。无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。 第一次数学危机表明,当时希腊的数学已经发展到这样的阶段: 1. 数学已由经验科学变为演绎科学; 2. 把证明引入了数学; 3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有 更加重要的地位。这种状态一直保持到笛卡儿解析几何的诞生。 中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。即算术阶段。希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。 在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。 总之,第一次数学危机是人类文明史上的重大事件。 无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。而毕达哥拉斯学派的比例和相似形的全部理论都是建立在这一假设之上的。突然之间基础坍塌了,已经建立的几何学的大部分内容必须抛弃,因为它们的证明失效了。数学基础的严重危机爆发了。这个“逻辑上的丑陋”是如此可怕,以致毕达哥拉斯学派对此严守秘密。据说,米太旁登的帕苏斯把这个秘密泄漏了出去,结果他被抛进了大海。还有一种说法是,将他逐出学派,并为他立了一个墓,说他

第一次数学危机-数学史话

第一次数学危机-数学史话 >给大家出个题:边长为1的正方形的对角线是多长?你可能疑惑我为什么要问这么低级的问题呢,答案很简单--√2啊。没错!但是如果在古希腊,如果这么回答,你可能这时候已经被干掉了。这是为何呢?听科普君为你道来。 在古希腊,人们认为只有1、2、3、4......这些用来计数的整数才是数字,数最崇高、最神秘,他们所讲的数是指整数。“数即万物“,也就是说宇宙间各种关系都可以用整数或整数之比来表达。但是到了公元前5世纪,毕达哥拉斯的一位门徒希帕索斯发现了一个令人震惊的现象:等腰直角三角形的三条边长不可能都是整数。这跟人们之前坚信的理念完全是背道而驰的,人们的信仰开始发生了动摇。 泰勒斯古希腊数学、哲学的开山鼻祖 在这里我们要简单说一下这个毕达哥拉斯,在西方人眼中,毕达哥拉斯是古希腊伟大的数学家、哲学家。他除了钻研出了直角三角形的边长关系外,还在数论上贡献巨大。他将自然数分为奇数、偶数、素数、完全数、平方数、三角数等等。甚至还抛弃了地心说、指出了当时希腊人口中的“墨丘利“和“阿波罗“其实是同一颗行星,即水星。毕达哥拉斯可谓是贡献巨大,但是很多人都不知道,实际上他还是个学派头目。他所创立的毕达哥拉斯学派信仰颇高,他们认为数是真实物质对象的终极组成部分。 毕达哥拉斯 他们甚至相信依靠数学可使灵魂升华,与上帝融为一体。万物都包含数,甚至万物都是数,上帝通过数来统治宇宙。毕达哥拉斯研究出,以直角三角形的两短边为边长作方形,其面积之和正好等于以斜边为边长的方形面积。简单来说就是小学课本上的直角三角形两直角边的平方和等于第三边的平方。实际上这个定理也并不是毕达哥拉斯首创的,古巴比伦人早就有所记载,而中国人则把它称为勾股定理或者“商高定理“。 有一次,希帕索斯打算用自己的行动证明老师的观点“任何数都可以用整数或整数的比来表示“。于是他从老师最引以为傲的毕达哥拉斯定理入手。假设有一个边长为1的正方形,那其对角线的长度通过定理应该可以很轻易地算出。可是希帕索斯怎么也没办法找到一个能用整数比表示出来,且平方后恰好等于2的数。根据老师毕达哥拉斯的观点,这样的数字是不可能存在的。可是边长为1的正方形的对角线又的的确确客观存在。希帕索斯不敢对外宣称自己发现了一种奇怪的数,只好告知了毕达哥拉斯,由他定夺。毕达哥拉斯第一时间下令封锁了消息,并警告希帕索斯不要再研究这个问题。可是经过一段时间的挣扎,希帕索斯还是无法就这样视而不见,他最后还是将这个消息传了出去。 结果当然是引得毕达哥拉斯勃然大怒,称希帕索斯是叛徒,有意破坏学派的和谐。于是派出其他的门徒去将其捉拿,并处以极刑——活埋。希帕索斯听到了一些风声,打算连夜乘船流亡他乡。可没想到还是被毕达哥拉斯的门徒追上,他们将希帕索斯五花大绑,溺入了冰冷的地中海之中。 人虽然杀死了,但是√2的问题还是没有解决啊。这个√2在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,引起了数学思想的大革命。科学史上把这件事称为“第一次数学危机“。而解决方法则是引进了“无理数“的概念。 这次事件让数学向前大大发展了一步。希帕索斯为√2殉难留下的教训是:科学是没有止境的,谁为科学划定禁区,谁就变成科学的敌人,最终被科学所埋葬。

浅谈数学发展史中的三次危机

浅谈数学发展史中的三次危机 摘要:在数学发展的历史长河中,危机与发展是并存的。在数学发展史中出现了三次危机,人们通过对危机的探索,最终消除了它,并促进了数学的不断发展和进步。第一次数学危机是人们对万物皆数的误解,随着无理数的发现进而度过了把第一次数学危机。第二次数学危机是人们对无穷小的误解,而微积分的出现产生了一种新的方法——分析法,分析法是算和证的结合,是通过无穷趋近而确定某一结果。罗素悖论的发现,导致了数学史上的第三次危机。为了探求其根源和解决难题的途径,数学界、逻辑界进行了不懈的探讨,提出了一系列解决方案,并在不知不觉中大大推动了数学和逻辑学的发展。归根结底,导致三次危机的原因,是由于人的认识。 关键词:危机;万物皆数;无穷小;分析方法;集合 一、前言 历史上,数学的发展又顺利也有曲折。打的挫折也可以叫做危机。危机也意味着挑战,危机的解决就意味着进步。所以,危机往往是数学发展的先导。数学发展史上有三次数学危机。每一次危机,都是数学的基本部分受到质疑。实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。 二、无理数的发现---第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 三、无穷小是零吗?---第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教

我的数学选讲

数学史上的三次危机 经济上有危机,历史上数学也有三次危机。在数学发展的过程中, 人的认识是不断深化的. 在各个历史阶段,人的认识又有一定的局限性和相对性. 当一种“反常”现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机. 许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展.在历史上,数学曾发生过三次危机. 这三次危机,从产生到消除, 经历的时间各不相同, 都极大地推动了数学的发展,成为数学史上的佳话. 第一次数学危机——无理数的产生 第一次数学危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为l的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的《几何原本》中。第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。 第一次数学危机持续了两千多年. 十九世纪,数学家哈密顿(Hamilton) 、梅雷(Melay) 、代德金(Dedekind) 、海涅(Heine) 、波雷尔(Borel) 、康托尔(Cantor) 和维尔斯特拉斯(Weietstrass) 等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类———实数,并建立了完整的实数理论. 这样,就完全消除了第一次数学危机. 第二次数学危机——对无限的理解 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分 的理论基础问题,数学界出现混乱局面,即第二次数学危机。微积分的形成给数 学界带来革命性变化,在各个科学领域得到广泛应用,但微积分在理论上存在矛 盾的地方。无穷小量是微积分的基础概念之一。微积分的主要创始人牛顿在一些 典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为

数学史上的三次危机数学研究性学习

数学史上的三次危机 一:探究缘由 数学是一门日常当中应用最为广泛的学科,无论哪里都存在着数学的美,然而,当我们小组从网上查找数学问题时,意外地发现了数学研究史上竟然存在着三次危机,严重动摇了当时的数学观念。我们被这三次危机所吸引,决定要探究一下数学史上的三次危机。 二:分工 姜鑫鹏:写调查报告 季浩楠崔子睿:查找资料 王金鹏康怡平:总结资料,写感受 三:研究过程 首先上网查找资料,了解数学史上的三次危机发生的时间、地点、背景、影响,从数学的角度看待数学史上的三次危机,然后大家交流自己查到的资料,发表自己的看法,进行记录,然后写感受,整理成为调查报告。 四:查找到的资料 毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数的诞生。小小的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击,对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!

可是为我们的经验所确信的,完全符合常识的论断居然被小小的的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。 第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹共同发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如反掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“……借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。这是第三次数学危机 五:感想 数学史上的三次危机都在当时的社会和数学领域造成了极大的冲击,在当时简直和世界在做对,所以,在当时都遭到了反对派的猛烈攻击。但每一次的数学危机,都是数学学科的一次巨大进步,因为,只有发现了不能解决的问题,才能激发人们的动力,使人们奋力将问

相关文档
相关文档 最新文档