文档库 最新最全的文档下载
当前位置:文档库 › 磁共振图像质量控制pt

磁共振图像质量控制pt

[汇集]放射科图像质量评价记录

[汇集]放射科图像质量评价记录 放射科图像质量评价结果汇总 汇总季度:2011年第四季度 汇总时间:2011年1月2日 汇总人员:孙万龙 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中1份CR照片有异物(纽扣),1份CR照片有遮线器边影,1份CR片颗粒粗糙。 2.1份CR照片忘记填写患者的年龄。 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为91%,无废片。 整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人的资料,务必将这些资料填写完整、准确无误。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.激光打印机、阅读器应有专人定期清洁维护,保持打印机和阅读器所在房间清洁,无关人员禁止入内,减少灰尘带入。 放射科图像质量评价结果汇总汇总季度:2012年第一季度 汇总时间:2012年4月4日 汇总人员:于清山 汇总结果;

本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中2份CR照片有异物(分别为拉链和内衣上的胶字)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CR片有伪影,系IP板污染。 4.CT片未查出问题,本次抽查结果为甲级片率为93%,无废片。整改措施: 1.所有影像科技师应该树立高度责任心和职业感,在检查前详细地核查病人身上有无异物,并耐心地说服病人摘除异物,取得病人的配合。 2.影像技师要加强业务学习,严格掌握技术操作规范,掌握机器的投照条件。 3.IP板暗盒影轻取轻放,竖立直放,避免碰撞、震动、跌落,远离放射源,避免强光照射,IP板应定期用脱脂棉及无水乙醇清洁。 放射科图像质量评价结果汇总汇总季度:2012年第二季度 汇总时间:2012年7月3日 汇总人员:郑和永 汇总结果; 本季度共抽查CR照片45张,CT照片15张。 抽查结果: 1.其中4份CR照片有异物(分别为文胸上的金属、拉链、内衣上的胶字和身上贴的膏药)。 2.1份CR照片灰雾度过大,曝光过度. 3.1份CT片图像良好,但照片呈线状伪影,系激光打印机激光头粘附灰尘。 4.本次抽查结果为甲级片率为90%,无废片。 整改措施:

控制和评价MRI图像质量的主要因素

控制和评价MRI图像质量的主要因素 控制和评价MRI图像质量主要有三种因素:空间分辨力(spatial resolution)、信号噪声比(signal-to-noise ratio,SNR)、图像对比度及对比噪声比(contrast and noise ratio,CNR)。这三种因素既不相同又互相联系,把握好这三种因素之间的关系才能有效的提高图像质量。要把握好这三种因素之间的关系,在实际工作中还涉及到MR成像技术参数,这些扫描参数对图像质量的优劣有着直接的影响。 4.1.2空间分辨力 空间分辨力是控制和评价MRI图像质量的因素之一。 空间分辨力是指影像设备系统对组织细微解剖结构的显示能力,它用可辨的线对(LP)/cm 或最小圆孔直径(mm)数表示,它是控制MR图像质量的主要参数之一。空间分辨力越高,图像质量越好。空间分辨力大小除了与MR系统的磁场强度、梯度磁场等有关以外,人为的因素主要是由所选择的体素大小决定的。MR的每幅图像都是由像素组成的。MR图像的分辨力是通过每个像素表现出来的。像素的物理意义是MR 图像的最小单位平面。在图像平面内像素的大小是由FOV和矩阵的比值确定的。因此,像素的大小与FOV 和矩阵两者密切相关。像素的面积取决于FOV和矩阵的大小,像素面积= FOV / 矩阵。像素是构成矩阵相位和频率方向上数目的最小单位。矩阵是频率编码次数和相位编码步级数的乘积,即矩阵=频率编码次数′相位编码步级数。当FOV一定时,改变矩阵的行数(相位方向)或列数(频率方向),像素大小都会发生变化。体素是像素与层面厚度的乘积,它的物理意义是MR成像的最小体积单位(立方体)。层面厚度实际上就是像素的厚度。所以体素的大小取决于FOV、矩阵和层面厚度三个基本成像参数,其大小等于FOV′层面厚度/ 矩阵。在这三个成像参数中,只要改变其中任何一个参数(另两个不变)都会使体素容积发生变化。体素容积小时,能分辨出组织的细微结构,空间分辨力高。相反,体素容积大时,不能分辨组织细微结构,空间分辨力低。 层面厚度越厚,体素越大,空间分辨力越低。当FOV确定后,矩阵越大,体素越小,空间分辨力越高。当矩阵确定后,FOV越小,空间分辨力越高。因此,体素的大小与层面厚度和FOV成正比,与矩阵成反比。由于信号强度与每个体素内共振质子的数量成正比,所以增大体素会增加信号强度,使信噪比增大。选择FOV主要由成像部位的大小决定。FOV选择过小,会产生卷褶伪影;FOV选择过大,会降低图像的空间分辨力。FOV大小的选择还受到射频线圈的限制。在实际工作中,为了节省扫描时间,经常使用矩形FOV,将图像部位的最小径线放在相位FOV方向,最大径线放在频率FOV方向。因为只有相位方向FOV缩小时才能减少扫描时间,而频率方向FOV缩小,不会减少扫描时间。矩阵选择,在相位编码方向上,每一次编码就需要一个TR时间,所以降低相位编码步级数就要减少扫描时间,同时降低了空间分辨力。在频率编码方向只是依靠梯度磁场,增加频率编码方向次数,所以不会增加扫描时间。 体素大小受所选择的层面厚度的影响。在工作中要根据检查部位的大小及解剖特点选择层厚,既要考虑到改善图像的空间分辨力,也要注意到图像的信噪比。其他参数不变的情况下,空间分辨力的提高将损失信噪比,因此应该权衡两者的利弊。 4.1.3信号噪声比 信号噪声比简称信噪比(SNR),是指感兴趣区内组织信号强度与噪声信号强度的比值。信号是指某一感兴趣区内像素的平均值。噪声是指患者、环境和MR系统电子设备所产生的不需要的信号。信噪比是衡量图像质量的最主要参数之一。在一定范围内,SNR 越高越好。因此,努力提高组织信号强度和最大限度地降低噪声信号强度是提高SNR,改善图像质量的关键。SNR 高的图像表现为图像清晰,轮廓鲜明。提高SNR是图像质量控制的主要内容之一。 信号噪声比受诸多因素的影响,当运动伪影被抑制后,MR系统场强越高,产生的SNR越高。 影响信噪比的因素,除了MR系统设备性能和工作环境外,主要有被检组织的特性,体素大小,扫描参数(TR、TE、翻转角、平均采集次数等)和射频线圈。 4.1.3.1被检组织特性对SNR的影响 感兴趣区内组织的质子密度影响信号强度,质子密度高的组织,如脑灰质和脑白质能产生较高信号,SNR

影像科图像质量评价

影像科图像与报告质量评价制度根据医院规定与科室具体情况及发展的要求,制定相应的质控、项目评价、改进措施制度。 一、科主任负责全部的质控指标检查CT检查由石应同志负责质控指标,普放检查由袁林同志负责质控指标MR 检查由黄静同志负责质控指标,报告书写由王大江同志负责质控指标。 二、要求各部门认真做好检查及报告质量的督查,对不合格的投照检查CT 扫描MR检查和相关不合格的报告要进行及时的修改更正,提出相应的改进措施及方案,做好相关的记录。 三、普放CR、DR 质控指标,登记时是否与患者的姓名、性别、年龄、检查部位一致,投照时是否与申请单一致,扫描图像后投照部位的左右一定要标记准确,对投照条件使用不佳的图像不要传输,一定要重新投照后再传输,对打印胶片时,外科需要手术的患者和内科有病变的片子一定要打1:1 的胶片,对普放报告要及时检查描述的准确性,左右的描述及意见,及诊断意见的正确与否。 CT 质控量指标,CT 扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 MR质控量指标,MR扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及

时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 六、对修改的检查及报告要做好相关记录。 七、对不按照上述标准执行的按相关文件做相应的处理。

图像及报告质量评价小组成员及职责为加强影像科图像质量管理和质量控制,保证影像科诊断质量与医疗安全,并明确图像质量评价小组。 一、影像科图像及报告质量评价小组成员如: 组长: 成员: 技师组: 诊断组: 二、影像科图像与报告质量评价小组职责: (一)影像科应建立图像及报告质量评价小组,小组成员应包括影像科主任、影像诊断医师、影像科技师。 (二)影像科图像与报告质量评价小组负责图像与报告质量评价的全面实施,组织定期和不定期的核查。 (三)影像科技师负责检查扫描过程的质量控制,发现图像质量问题应及时解决。 (四)影像诊断医师负责诊断操作的质量控制和图像诊断质量控制,发现问题应及时解决并与技师沟通。 (五)每月进行图像质量评价记录。

MRI成像质量

提高MRI成像质量我国自1985年引进MR设备,目前装机已愈千台,已普及到较为发达地区的县、市级医院。MR快速扫描技术和不同类型的脉冲序列设计极大地扩展了MR的应用领域,其主要归因于大功率高切率的梯度场、图像处理高速计算机系统、新的图像处理软件、先进的脉冲序列设计和相控线圈设计等。目前主磁场场强提高,达到3o0T,明显提高了图像的信噪比和质量。梯度场切换率加快,达到40mT/s,爬升速度加快至200mT/s/m,这使扫描速度加快,主要应用turbo FLASH、True-FISP和EPI 脉冲序列,在几次或1次屏息期间完成心脏大血管扫描,时间分辨率提高至20ms,甚至达到实时的程度,同时图像质量与传统GRE、甚至SE脉冲序列相近。影响磁共振成像(magnetic resonance imaging,MRI)图像质量的因素有:信噪比(SNR)、空间分辨率、对比度/噪声比(CNR)及伪影。在MRI检查中只有掌握各种成像参数与MR图像质量的各种指标的相关性,并合理地加以控制,才能获得可靠的、高质量的MR图像。 1、SNR 它是组织信号与随机背景噪声的比值,信噪比与图像质量成正比。影响信噪比的因素有:①FOV:信噪比与FOV的平方成正比;②层间距:层间距越小,层间的交叉干扰越大;③平均次

数:当平均次数增加时,导致扫描时间增加,而信噪比的增加只与平均次数的平方根成正比;④重复时间。当重复时间延长时,导致组织的纵向磁化倾向最大限度增加。与此同时,信号强度也增加,使信噪比增加,但增加是有限的;⑤回波时间:当回波时间延长时,由于T2衰减导致回波信号减弱,引起信噪比相应减低;⑥反转时间;⑦射频线圈:它不但采集人体内的信号,而且它也接受人体内的噪声。控制噪声的方法为选择与扫描部位合适的射频接受线圈。2、CNR 应该看到,在评价图像质量时,SNR是一项比较重要的技术指标,但是不能把它看作是一项绝对的标准。临床应用表明,即使SNR很高也不能保证两个相邻结构能有效地被区分开来,因此有价值的诊断图像必须在特性组织和周围正常组织间表现出足够的对比度。图像的对比度反映了两组织间的相对信号差。它取决于组织本身的特性。当病灶与周围组织的图像对比度较小时,在MRI中使用顺磁性造影剂。SNR则与设备性能有关。对比度和SNR共同决定了图像的质量,为此定义CNR来评价两者对图像的共同作用。其定义是:图像中相邻组织结构间SNR之差,即:CNR=SNR(A)-SNR(B)式中SNR(A)与SNR(B)分别为组织A、B的SNR。上式表明,只有SNR不同的相邻

影像科图像质量评价

影像科图像质量评价文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

影像科图像与报告质量评价制度根据医院规定与科室具体情况及发展的要求,制定相应的质控、项目评价、改进措施制度。 一、科主任负责全部的质控指标检查CT检查由石应同志负责质控指标,普放检查由袁林同志负责质控指标MR 检查由黄静同志负责质控指标,报告书写由王大江同志负责质控指标。 二、要求各部门认真做好检查及报告质量的督查,对不合格的投照检查 CT 扫描 MR 检查和相关不合格的报告要进行及时的修改更正,提出相应的改进措施及方案,做好相关的记录。 三、普放 CR、DR 质控指标,登记时是否与患者的姓名、性别、年龄、检查部位一致,投照时是否与申请单一致,扫描图像后投照部位的左右一定要标记准确,对投照条件使用不佳的图像不要传输,一定要重新投照后再传输,对打印胶片时,外科需要手术的患者和内科有病变的片子一定要打 1:1 的胶片,对普放报告要及时检查描述的准确性,左右的描述及意见,及诊断意见的正确与否。 CT 质控量指标,CT 扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。MR质控量指标,MR扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 六、对修改的检查及报告要做好相关记录。

MRI质量控制

MRI质量控制 MRI原理比较复杂,所涉及的技术颇多,很多因素都会影响MRI的质量,因此MRI的质控对于提高MRI的临床作用价值非常重要。 与其他成像方法相比,磁共振成像的质量在很大程度上受操作者的影响,因而每个使用者应掌握MR图像的质量指标及影响因素,以便在使用中选择适当的参数,达到最佳的效果。 对MRI图像质量的评价,有许多客观指标,但有些指标并非反映图像本身的质量,而是通过图像质量的变化反映机器性能及状态。对于已经存在的MR仪,其质量和状态基本上处于稳定状态,其对图像的质量的影响当然存在,但这是操作者无法改变的。因而,可变参数对MR 图像特征指标的影响是MR工作者必须懂得的知识。 MR图像质量指标包括: 噪声、信噪比、对比噪声比、图像对比度、分辨力、图像均匀度、图像伪影。 临床上比较关注: 信噪比、图像对比度、分辨力、图像均匀度及图像伪影。 噪声: 指图像视野的随机信号,是图像信号强度的统计学变异。其主要来源为样体分子的热运动及系统的电子电路的电阻,是MR成像中应尽量避免的信号。 信噪比: MRI最基本的质量参数。是平均信号强度与背景噪声强度的比。 目前常用计算方式为SNR=SI/SD(SI是组织某感兴趣区信号强度的平均值;SD是背景噪声的标准差)。 对比噪声比: 是指两种组织信号强度差值与背景噪声的标准差之比。 对比度: 是指不同兴趣区域的相对信号强度差,是用影像学区别两种具有不同属性样体的基础。在不影响图像整体质量条件下,应尽量追求对比度。受三个方面影响:组织间固有差别、成像技术、人工对比等。 分辨力: 是图像对细节的分辨能力。包括空间分辨力、密度(强度)分辨力及时间分辨力。 空间分辨力: 是指MR图像对解剖细节的显示能力,实际上是成像体素的实际大小。理论上受FOV和矩阵的影响。FOV不变,矩阵越大则体素越小,空间分辨力越高;矩阵不变,FOV越大则体素越大,空间分辨力越低。实际中还受SNR影响,两者呈反比关系。 均匀度: 指图像上均匀物质信号强度的偏差。偏差越大均匀度越差。包括信号强度均匀度、信噪比均匀度等。 伪影: 图像中与实际解剖结构不相符的信号,是指除噪声外的非样体结构影像及样体结构的影像异位(鬼影)都属伪影。表现为几大类: (一)设备伪影:化学位移伪影、卷褶伪影、截断伪影、容积效应、层间干扰等 (二)运动伪影:随机自主运动伪影、呼吸运动伪影、心脏搏动伪影、血管搏动伪影等(三)磁化率伪影及金属伪影 其表现多种多样,是MR成像中应尽量避免的影像。

放射科图像质量评价标准(精编文档).doc

【最新整理,下载后即可编辑】 放射科图像质量评价标准 (2016年修订) 一、一般要求 1、X线照片满足影像诊断要求。 2、X线照片标识,左右标志正确,检查号、检查日期、检查医院、被检者姓名、性别、年龄、图像放大比例或比例尺等信息完整。 3、图像放大比例一致:正位片与侧位片或斜位片放大比例一致。同一部位不同时间摄片放大比例一致。 4、整体画面布局美观,影像无失真变形。 二、优质图像标准 1、密度合适 2、层次分明 3、摄影体位标准: 4、照射野大小合适: 被检部位影像全部在照片上显示,但不应过多包含非检查部位,尤其是内分泌腺;重点组织界限清楚;脊柱应含相邻椎体;四肢长骨应至少包括1个邻近关节;肋骨应包括第1或第12肋骨。 5、无体外伪影。 6、无运动伪影。 7、特殊检查体位应标注。 8、胶片无污片、划片、粘片、指纹。

放射科图像质量评价内容及方法 项目评价内容和方法扣分 图像对比看电脑图片或胶片图像,对比欠佳5 图像层次看电脑图片或胶片,层次欠分明 5 投照野控制投照野过大或包括不全 5 伪影不影响诊断的伪影,如内衣扣、金属线5 有可能误认为病变的伪影 50 伪影范围较大,掩盖诊断区。50 呼吸伪影或运动伪影5~10 抽查胶片,有污片、划片、粘片 5 图像标识不完整 5 图像重要标识如左右、姓名、性别错误 50 摄影体位不标准15~20 特殊体位无标注,如腹部立位位,水平侧位10 摄影部位错误对照申请单和摄影部位是否一致50 图像放大比例抽查胶片,图像放大比例是否一致5 用片统一,尺寸合理抽查胶片 5 质量等级评价方法:结合DR影像质量要求,每份图像为100分,扣完为止。 优:≥90分良:80~89分合格:70~79分不合格:<70分

影响磁共振成像质量因素

影响磁共振成像(magnetic resonance imaging ,MRI) 图像质量的因素有:信噪比(SNR)、空间分辨率、对比度/噪声比(CNR) 及伪影。在MRI 检查中只有掌握各种成像参数与MR 图像质量的各种指标的相关性,并合理地加以控制,才能获得可靠的、高质量的MR 图像。 1、SNR 它是组织信号与随机背景噪声的比值,信噪比与图像质量成正比。影响信噪比的因素有:①FOV信噪比与FOV勺平方成正比;②层间距:层间距越小,层间的交叉干扰越大;③平均次数:当平均次数增加时,导致扫描时间增加,而信噪比的增加只与平均次数的平方根成正比; ④重复时间。当重复时间延长时,导致组织的纵向磁化倾向最大限度增加。与此同时,信号强度也增加,使信噪比增加,但增加是有限的; ⑤回波时间:当回波时间延长时,由于T2衰减导致回波信号减弱,引起信噪比相应减低;⑥反转时间;⑦射频线圈:它不但采集人体内的信号,而且它也接受人体内的噪声。控制噪声的方法为选择与扫描部位合适的射频接受线圈。 2、CNR 应该看到,在评价图像质量时,SNF是一项比较重要的技术指标,但是不能

把它看作是一项绝对的标准。临床应用表明,即使SNR B高也不能保证两个相邻结构能有效地被区分开来,因此有价值的诊断图像必须在特性组织和周围正常组织间表现出足够的对比度。图像的对比度反映了两组织间的相对信号差。它取决于组织本身的特性。当病灶与周围组织的图像对比度较小时,在MRI中使用顺磁性造影剂。SNR 则与设备性能有关。对比度和SNF共同决定了图像的质量,为此定义CNR来评价两者对图像的共同作用。其定义是:图像中相邻组织结构间SNR之差,即: CNR二SNR(A)-SNR(式中SNR(A)与SNR(B)分别为组织A B的SNR上式表明,只有SNR不同的相邻组织,才能够表现出良好的对比度。在实际的信号检测中,如果组织间对比度较大,但噪声也很大,则较大的对比度会被较高的噪声所淹没。如果组织间对比度虽然不大,但是SNR高,所以较小的对比度在图像噪声较小的情况下仍然可以被分辨。显然,为了将相邻的组织区别开来,要求较高的SNR是重要的,但这并不是充分条件,而取得最佳CNR才是最基本和最重要的。 欲获得良好的CNR除了相邻的组织及病变MR信号特征上必须存在差异,即 T1、T2、质子密度p存在差异外,还必须适当选择脉冲序列和决定图像信号加权的成像参数:TE、TR、TI 和翻转角度,才能将上述差异显示在图像上。因此,脉冲序列和决定图像信号加权的成像参数,TE、TR TI和翻转角均对CNR有直接影响。此外,CNR也受NEX体素容积、接收带宽以及线圈类型的影响,这些因素对CNR的 影响与对SNR的影响相同。 3 、空间分辨率 决定MR图像质量的另一个重要因素是空间分辨率。它是指图像中可辨

影像科图像质量评价标准

影像科图像质量评价标准 This model paper was revised by the Standardization Office on December 10, 2020

影像科图像质量评价标准 一、图像质量保证组织和人员职责分工 影像科建立图像质量保证工作小组,小组成员包括高年资影像诊断医师、影像科技师、影像设备维修人员相关专业工程技术人员。 影像质量保证工作小组成员中,影像设备维修人员或相关专业技术人员负责影像设备正常运行,保证影像设备运行稳定,参数准确,发生设备故障及时检修。技师负责检查扫描过程的质量控制。影像诊断医师负责诊断操作的质量控制和影像诊断质量报告的控制。 二、图像质量评价制度 影像技术质控每周一次。根据影像质量评价标准,评价影像质量,分析不合格片和差级片原因,提出改进办法。 在日常诊断读片的同时,从诊断角度,对影像质量进行评价,发现图像质量不能满足影像诊断,技师与技术人员沟通,提出改进建议。 定期进行影像诊断与手术、病理或出院诊断随访对比,统计影像诊断与临床诊断的符合率,分析误诊漏诊原因,不断总结经验,提高诊断正确性。 三、图像质量评价标准 (一)一般要求 1、被检查器官和结构在检查范围内可观察到。主要结构、解剖结构、解剖细节清晰辨认,影像能满足影像诊断要求。

2、照片中的诠释齐全、无误、左右标志、检查号、检查日期、检查医院、被检查者姓名、性别、年龄、图像放大比例或比例尺等信息完整。正确放置铅号码,以分辨前后位或前位。 3、用片统一,用片寸合理,分隔规范,照射野大小控制适当。成人胸片不小于11x14英寸,成人四肢不小于10x12英寸。 4、图像放大比例一致:正位片、侧位片或斜位片放大比例不小于65%。 5、整体画面布局美观,影像无失真变形。 6、对辐射敏感的组织和器官应尽可能的屏蔽。 7、对不同检查部位的影像质量标准参照《影像科管理与技术规范》X片影像标准。 (二)优质片标准 1、密度合适(照片中诊断密度范围控制在—之间); 2、层次分明(不同部位要求不同); 3、摄影体位正确:被检组织影像全部在照片上显示;重点组织界限清楚;脊柱应含相邻椎体;四肢应包括临近关节;肋骨应包括第1或第12肋骨;组织影像应符合正常的解剖投影,无失真; 4、无技术操作缺陷:无体外阴影,无污片、划片、粘片、水迹、指纹、漏光、静电等阴影 (三)良级片标准

浅谈MRI的图像质量控制

浅谈MRI的图像质量控制 由于MRI的成像原理及操作过程十分复杂,其中涉及的技术手段和跨领域知识甚多,任何一个环节和参数,都会影响MRI影像质量,因此,为了利用现有的技术水平达到最有效的成像手段,发挥MR的最大诊断价值,我们有必要从各个方面对MRI成像实现质量控制。但是,作为影像科医师和普通技师,我们没有必要也不太有能力对整个MR系统的质量控制盒质量保证都能很全面的掌握,本文仅对临床检查中影响最明显、最常见也是在临床上最受关注的、最重要的可控质量指标进行介绍。 有关MRI质控指标有很多,临床上比较关注的指标有:信噪比、图像对比、空间分辨力、图像均匀度等。 1.信噪比 信噪比(SNR)是MRI最基本质量参数,如果一副MRI影像信噪比过低,那么其他的质量标准都无从谈起,SNR是指图像的信号强度和背景随机噪声强度的比。信号强度,是图像中某代表组织的一感兴趣区内的所有像素信号强度的平均值;北京随机噪声,指同一感兴趣区等量像素信号强度的标准差。噪声重叠在图像上,使像素的信号强度以平均值为中心而震荡,噪声越大,这种震荡就越明显,而SNR值越低。 信噪比值在临床使用中有两种测量和计算方法。 第一种方法,SNR=SI/SD,SI是感兴趣区中像素信号强度的平均值,SD是同一感兴趣区中信号强度的标准差,即噪声。这种计算方法是根据SNR的定义直接引申过来的,直观易理解,但在实际操作中却不常用,因为这种计算方法要求感兴趣区中包含的是均匀成分,否则,感兴趣区内各个像素信号强度的标准差并不能代表随机噪声,即在感兴趣区中成分不均匀对的情况下SD无法确定。此方法一般是医学工程人员在进行设备维护保养和检修过程中,利用体模时使用较多。 第二种方法,SNR=SI 组织/SD 背景 ,这一方法是在符合磁共振原 理的基础上,根据临床实际应用而总结出的方法,首先我们要将 图像内容视为两个部分,一个是整个显示人体组织成像内容的部分,称为组织部分,另一个是在整个FOV以内除去组织部分的部分,及相当于FOV内空气的部分。SI仅仅计算在组织部分内选择某感兴趣区内像素的平均强度,即SI 组织 ;而SD仅仅是计算在空 气的部分内信号强度的标准差,即SD 背景 。二者的比值即SNR。这

影像科影像质量控制方案

影像科影像质量控制方案为加强放射科影像质量管理和质量控制,保证放射科诊断质量和医疗安全,落实“医疗质量持续改进计划”,参照湖南省卫生厅下发的《放射影像质量保证方案》,特制定本院放射科影像质量保证方案。 一、放射科影像质量保证组织和人员职责 分工 1、各级医院放射科应建立影像质量保证 工作小组,小组成员应包括高年资影像诊断医 师、放射科技师、影像设备维修人员相关专业 工程技术人员,一般由5—7人组成。 2、放射科常规X射线统一管理,放射科 主任负责影像质量保证方案的全面实施,组织 定期和不定期的核查。影像质量保证工作小组 成员中,影像设备维修人员或相关专业技术人 员负责影像设备正常运行,保证影像设备运行 稳定,参数准确,发生设备故障及时检修。技 师负责X射线检查和扫描过程中的质量控制。 影像诊断医师负责诊断操作的质量控制和影 像诊断质量报告的控制。 3、各种设备日常保养责任落实到人

二、放射科工作人员准入要求: 1、从事X射线医师和技师人员应经上岗 培训,取得执业医师证和放射工作人员证方可上岗。 2、从事放射诊断应有执业医师资格。技 术人员应有中专及以上学历,或已取得技师资格。 3、从事放射诊断和技术人员应经放射防 护知识培训合格,取得放射工作人员证。 三、影像质量评价制度 1、科内放射技术质控每周一次。核查X 射线摄片体位是否符合标准:胶片尺寸统一,影像放大比例统一,不同时期检查,图像放大比例前后一致。评价影像质量,分析不合格片和差级片原因,提出改进办法。 2、在日常诊断读片的同时,从诊断角度, 对影像质量进行评价,发现图像质量不能满足影像诊断,技师与技术人员沟通,提出改进建议。 3、根据诊断报告书写要求,每月一次抽 查诊断报告质量。 4、技师或医师日常工作中发现质量问题

磁共振成像(MRI)质量控制手册(ACR)

磁共振成像(MRI)质量控制手册――英文版前 言 美国放射学院(ACR)磁共振成像成像(MRI)质量保证委员会成立的目的,就是为了保证各指定医院磁共振成像性能质量。委员会的任命是为了保证患者、相关的医生和其它研究的完成。而这些研究是在指定医院,由训练有素、高技能的人员正确使用MRI设备下进行的。 美国放射学院指定的MRI机构已同意持续进行MRI设备质量控制计划。美国放射学院MRI质量保证委员会已收到很多提问,如“组成一个恰当的MRI设备质量控制计划的内容是什么?”、“各科室不同的医疗卫生专业人员的恰当角色应当是怎样的?”等等。 本手册旨在帮助医院检测和维护自己的MRI设备,这和美国放射学院制定的《MRI设备医学、诊断、物理、性能标准》[Res.19—1999]中的公开原则是一致的。委员会已把这些原则用于阐述哪些人应对哪项具体工作负有责任的具体内容,并提供了使用美国放射学院MRI体模检测和评价设备性能的许多方法。 美国放射学院MRI质量保证委员会成员,无偿地贡献出自己的时间和经验来完成《美国放射学院MRI质量控制手册》,特别是Geoffrey Clarke 博士编写了本手册的重要部分,并花费了大量时间检测本手册所写的程序。委员会之外的人员也参与其中,提供了非常有价值的

内容和建议,在这里向他们表示衷心的感谢!他们是:William G..Bradley,Fr.,M.D.,Edward F.Jackson,Ph.D.,Joel P.Felmlee,Ph.D.,and Wlad Sobol,Ph.D.,and Jonathan Tucker,Ph.D., 后四位专家专门编写了“MRI物理师/技术专家篇”。我们也向美国放射学院秘书长Jeff Hayden,R.T.(R)(MR)表示感谢!向Pamela Wilcox Buchalla, Marie Zinninger,美国放射学院两位副执行官,以及几年来一直关注这项计划和美国放射学院其它计划认定的同仁,一并表示感谢! 我们使用本手册进行实验性检测来判断它的兼容性,美国放射学院向以下在实验性检测中主动提供宝贵的反馈意见的人员致谢!他们是:Tom Callahan,MPS,R.T.(R)(MR),Glyn Johnson,Ph.D.,Viswanathan Venkataraman,M.S.,Edmond Knopp,M.D., Laura Foster B.S. R.T.(R)(QM)(M). Jeffrey C.Weinreb,M.D. 美国放射学院MRI质量保证委员会主席 2001年1月 磁共振成像(MRI)质量控制手册――中文版序言1978年第一台头部磁共振成像(MRI)设备、 1980年第一台全身

静息态功能磁共振数据分析工具包使用手册

静息态功能磁共振数据分析工具包 使用手册 宋晓伟(Dawnwei.song@https://www.wendangku.net/doc/6016310513.html,) 文档版本: 1.3 文档修订日期: 2008-2-25 北京师范大学 认知神经科学与学习国家重点实验室

目录 一、开发背景介绍 (1) 二、软件用途和技术特点 (4) 三、设计与实现 (4) 四、测试 (5) 五、使用要求 (5) 六、使用方法演示 (6) (一)计算功能连接 (7) (二)计算局部一致性 (9) (三)计算低频振幅 (11) 七、详细使用说明 (13) (一)安装REST (13) (二)卸载REST (13) (三)启动REST (13) (四)在REST中设置待处理的数据目录 (16) (五)Mask 的设定 (16) (六)在REST中设定输出参数 (17) (七)可选项:去线性漂移 (18)

(八)可选项:滤波 (19) (九)局部一致性计算参数的设定 (20) (十)低频振幅计算参数的设定 (21) (十一)功能连接参数的设定 (21) (十二)点击“Do all”开始计算 (23) (十三)耗时估计 (24) (十四)其它工具 (24) 八、附注说明 (26) 九、参考文献 (28)

一、开发背景介绍 大脑是人体中最迷人也是人们了解最少的部分,科学家哲学家们一直在寻找大脑与行为、情感、记忆、思想、意识等的关系,却缺少一个非侵入性的高分辨率的技术方法来直接观察并确立这种联系,直到上世纪末功能磁共振成像(functional magnetic resonance imaging, fMRI)的出现(Ogawa et al., 1990),既能让人们观察到大脑结构又能让人们观察大脑结构的某一部分所具有的特定功能(Clare, 1997)。fMRI机制是血氧水平依赖性(Blood oxygen level dependent, BOLD)信号的变化。 目前认识到的大多数的脑功能都是通过对任务或刺激的控制,并同时记录与任务或刺激相应的行为学上的变化和神经活动的变化来得到的。从Hubel和Wiesel电生理学上的实验,到现在神经影像学上的认知激活实验范式,都说明这种方法是很成功的。如图1被试睁眼或闭眼交替进行,这种简单的任务刺激范式所带来的BOLD信号的变化可以清楚地在大脑的特定区域看到(图1是在视觉区),从而把大脑的功能和解剖结构联系了起来(Fox et al., 2007)。这种基于任务刺激的实验范式一般都使用广义线性模型(General linear model, GLM)计算刺激或控制变量的效应,检测相应于刺激的大脑激活区,从而认识大脑的功能。 图1、传统fMRI任务激活范式的分析:睁眼闭眼任务范式和初级视觉皮层的某个体素的BOLD信号。 (引自Fox et al., 2007) 对任务状态fMRI数据的分析和处理,研究者现在一般都使用软件SPM(Friston, 1995)或AFNI(Cox, 1996),这两个软件都可以使研究者很方便地基于GLM模型来分析和处理任务状态的fMRI数据。如图2是包括2个控制变量的GLM模型,研究者需要提供给软件的是设计矩阵,即研究者的控制变量,然后使用软件SPM(Friston, 1995)或AFNI(Cox, 1996)就可以很方便地估计出控制变量的效应大小,进而找到受控制变量影响的脑区,即和任务刺激相对应而激活的脑区。

放射科图像胶片质量评价制度

红星医院放射科 图像(胶片)质量评价制度 一、目的:规范化放射科普放、CT、MRI等检查,持续改进放射科图像质量,为影像医师及临床医师提供可靠的诊断依据,解除患者病痛。组织机构:科主任、质控小组、诊断组、技术组。 质控小组成员:XX XX XX 二、措施: (一)月评价 时间:每月最后一个工作日抽查汇总。 人员:质量控制小组抽查,科主任负责核对、监督。 方法:抽查技术组每人10份,其中平片、CT、MRI各3份,全景口腔1份,如部分检查当月未参与可替换成其他检查。 标准:《放射科检查规范》 整改:发现个人问题及时通知相关人员改正。对多发问题形成规范,组织讲课学习。 奖惩:月评价结果是绩效考核重要标准。 记录:技术组图像质量评价表。质控小组负责记录。 (二)月讲课 时间:每月第二个整周的周三中午,教学室进行。 人员:所有技术组及质控小组值班人员。 方法:讲课内容包括设备的维护、操作保养,新技术展望,放射科新

技术应用,后处理技术,检查规范,常见检查错误。 质控小组或诊断组医师在讲课结尾进行解剖教学。 标准:提前2周上交课件,进行审核、修改。讲课评分参照《放射科讲课评分制度》。 考核:进行课间提问,如需要可进行考试。 记录:技术组讲课记录本。讲课人负责记录。 (三)早交班 时间:工作日周二、周四,读片室。 人员:下夜班技师进行交班。所有技术组及质控小组值班人员参加。方法:抽查前一日检查图像平片、CT、MRI全景口腔各3份。 标准:《放射科检查规范》 整改:现场提问问题及时整改。 记录:技术组早交班记录本,详细记录问题及整改意见。交班人负责记录。 (四)日常工作 当班技师自查:当班技师严格按照相关规范操作设备、进行相关检查。图像不合格应重新投照。投照结束后上传合格图像。 打片技师复查:打片技师对上传图像进行复查。不合格图像应指导当班技师投照。将合格图像打片。 诊断医师检查:从诊断角度,对影像质量进行评价,发现图像质量不能满足影像诊断,医师与技术人员沟通,提出改进建议。

影像科图像质量评价标准

影像科图像质量评价标准 一、图像质量保证组织和人员职责分工 影像科建立图像质量保证工作小组,小组成员包括高年资影像诊断医师、影像科技师、影像设备维修人员相关专业工程技术人员。 影像质量保证工作小组成员中,影像设备维修人员或相关专业技术人员负责影像设备正常运行,保证影像设备运行稳定,参数准确,发生设备故障及时检修。技师负责检查扫描过程的质量控制。影像诊断医师负责诊断操作的质量控制和影像诊断质量报告的控制。 二、图像质量评价制度 影像技术质控每周一次。根据影像质量评价标准,评价影像质量,分析不合格片和差级片原因,提出改进办法。 在日常诊断读片的同时,从诊断角度,对影像质量进行评价,发现图像质量不能满足影像诊断,技师与技术人员沟通,提出改进建议。 定期进行影像诊断与手术、病理或出院诊断随访对比,统计影像诊断与临床诊断的符合率,分析误诊漏诊原因,不断总结经验,提高诊断正确性。 三、图像质量评价标准 (一)一般要求 1、被检查器官和结构在检查范围内可观察到。主要结构、解剖结构、解剖细节清晰辨认,影像能满足影像诊断要求。 2、照片中的诠释齐全、无误、左右标志、检查号、检查日期、检查医院、被检查者姓名、性别、年龄、图像放大比例或比例尺等信息完整。正确放置铅号码,以分辨前后位或前位。

3、用片统一,用片寸合理,分隔规范,照射野大小控制适当。成人胸片不小于11x14英寸,成人四肢不小于10x12英寸。 4、图像放大比例一致:正位片、侧位片或斜位片放大比例不小于65%。 5、整体画面布局美观,影像无失真变形。 6、对辐射敏感的组织和器官应尽可能的屏蔽。 7、对不同检查部位的影像质量标准参照《影像科管理与技术规范》X片影像标准。 (二)优质片标准 1、密度合适(照片中诊断密度范围控制在—之间); 2、层次分明(不同部位要求不同); 3、摄影体位正确:被检组织影像全部在照片上显示;重点组织界限清楚;脊柱应含相邻椎体;四肢应包括临近关节;肋骨应包括第1或第12肋骨;组织影像应符合正常的解剖投影,无失真; 4、无技术操作缺陷:无体外阴影,无污片、划片、粘片、水迹、指纹、漏光、静电等阴影 (三)良级片标准 优级片中有1项不足,但对影像诊断影响不大。 (四)差级片标准 优级片中有2项以上不足,尚能用于诊断。 (五)废片标准 不能用于诊断

功能磁共振成像

功能磁共振成像(fMRI) 功能磁共振成像技术简述 功能性磁共振成像(fMRI)是一种新兴的神经影像学方式,其原理是利用磁振造影来测量神经元活动所引发之血液动力的改变。由于fMRI的非侵入性、没有辐射暴露问题与其较为广泛的应用,从1990年代开始就在脑部功能定位领域占有一席之地。目前主要是运用在研究人及动物的脑或脊髓。 相关技术发展 自从1890年代开始,人们就知道血流与血氧的改变(两者合称为血液动力学)与神经元的活化有着密不可分的关系。神经细胞活化时会消耗氧气,而氧气要借由神经细胞附近的微血管以红血球中的血红素运送过来。因此,当脑神经活化时,其附近的血流会增加来补充消耗掉的氧气。从神经活化到引发血液动力学的改变,通常会有1-5秒的延迟,然后在4-5秒达到的高峰,再回到基线(通常伴随着些微的下冲)。这使得不仅神经活化区域的脑血流会改变,局部血液中的去氧与带氧血红素的浓度,以及脑血容积都会随之改变。 血氧浓度相依对比(Blood oxygen-level dependent, BOLD)首先由贝尔实验室小川诚二等人于1990年所提出[2],小川博士与其同事很早就了解BOLD对于应用MRI于脑部功能性造影的重要性,但是第一个成功的fMRI研究则是由John W. Belliveau 与其同事于1991年透过静脉内造影剂(Gd)所提出。接着由邝健民等人于1992年发表在人身上的应用。同年,小川博士于4月底提出了他的结果且于7月发表于PNAS。在接下来的几年,小川博士发表了BOLD的生物物理学模型于生物物理学期刊。Bandettini博士也于1993年发表论文示范功能性活化地图的 量化测量。由于神经元本身并没有储存所需的葡萄糖与氧气,

影像科图像质量评价

影像科图像质量评价Newly compiled on November 23, 2020

影像科图像与报告质量评价制度 根据医院规定与科室具体情况及发展的要求,制定相应的质控、项目评价、改进措施制度。 一、科主任负责全部的质控指标检查CT检查由石应同志负责质控指标,普放检查由袁林同志负责质控指标MR 检查由黄静同志负责质控指标,报告书写由王大江同志负责质控指标。 二、要求各部门认真做好检查及报告质量的督查,对不合格的投照检查CT 扫描MR检查和相关不合格的报告要进行及时的修改更正,提出相应的改进措施及方案,做好相关的记录。 三、普放CR、DR 质控指标,登记时是否与患者的姓名、性别、年龄、检查部位一致,投照时是否与申请单一致,扫描图像后投照部位的左右一定要标记准确,对投照条件使用不佳的图像不要传输,一定要重新投照后再传输,对打印胶片时,外科需要手术的患者和内科有病变的片子一定要打1:1 的胶片,对普放报告要及时检查描述的准确性,左右的描述及意见,及诊断意见的正确与否。 CT 质控量指标,CT 扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 MR质控量指标,MR扫描检查的患者的姓名、性别、年龄、扫描部位是否与申请单一致,扫描所用的参数是否符合扫描部位的要求,对不符合要求

的要及时纠正,对诊断报告的描述是否符合影像表现,诊断是否恰如其分,对错误的要及时修改。 六、对修改的检查及报告要做好相关记录。 七、对不按照上述标准执行的按相关文件做相应的处理。 图像及报告质量评价小组成员及职责 为加强影像科图像质量管理和质量控制,保证影像科诊断质量与医疗安全,并明确图像质量评价小组。 一、影像科图像及报告质量评价小组成员如: 组长: 成员: 技师组: 诊断组: 二、影像科图像与报告质量评价小组职责: (一)影像科应建立图像及报告质量评价小组,小组成员应包括影像科主任、影像诊断医师、影像科技师。 (二)影像科图像与报告质量评价小组负责图像与报告质量评价的全面实施,组织定期和不定期的核查。 (三)影像科技师负责检查扫描过程的质量控制,发现图像质量问题应及时解决。 (四)影像诊断医师负责诊断操作的质量控制和图像诊断质量控制,发现问题应及时解决并与技师沟通。

静息态功能核磁共振发展及其应用

静息态功能核磁共振技术发展及其应用 一、什么是静息态功能核磁共振技术 (一)、功能磁共振技术及其原理 人脑是自然界进化最为复杂的产物,揭示脑的奥秘是当代自然科学面临的最重大的挑战之一。近年来随着脑成像技术及神经科学的发展,人们对脑的研究已不仅局限于解剖定位,更多的是对脑功能活动基本过程的深入研究。功能磁共振成像是90年代以后发展起来的一项新技术,它结合了功能、影像和解剖三方面的因素,是一种在活体人脑中定位各功能区的有效方法,它具有诸多优势,如无创伤性、无放射性、具有较高的时间和空间分辨率、可多次重复操作等,因此,功能磁共振成像(functional magnetic resonance imaging,fMRI )作为脑功能成像的首选方法已被较广泛应用。功能磁共振成像主要是基于血流的敏感性和血氧水平依赖性(blood oxygenation level dependent,BOLD )对比度增强原理进行成像。所谓血氧水平依赖性是指大脑皮层的微血管中的血氧浓度发生变化时,会引起局部磁场发生变化,从而引起核磁共振信号强度的变化。采用基于 BOLD的功能磁共振成像技术进行脑活动研究在近十年中得到了迅速的发展,BOLD f MRI以空间和时间分辨率均较高的优势,逐渐成为对活体脑功能生理、病理活动研究的重要手段之一。其无创性和可重复性使之在临床得以迅速而广泛的应用和认同功能磁共振检查方法对人体无福射损伤,并且其时间及空间分辨率较高,一次成像可同时获得解剖影像及功能影像。功能磁共振成像原理是通过磁共振信号检测顿脑内血氧饱和度及血流量,从而间接反映神经元的活动情况,达到功能成像的目的。BOLD 技术是功能磁共振成像的基础;神经元活动增强时,脑功能区皮层的血流量和氧交换増加,但与代谢耗氧量增加不成比例,超过细胞代谢所需的氧供应量,其结果可导致功能活动区血管活动氧合血红蛋白増高,脱氧血红蛋白相对减少。脱氧血红蛋白是顺磁性物质,其铁离子有4个不成对电子,磁矩较大,有明显的T2缩短效应。因此,脱氧血红蛋白减少,导致T2*和T2弛豫时间延长,信号増高,使脑功能成像时功能活动去抑制的皮层表现为高信号。功能磁共振成像应用于人脑功能的研究,最常用的方法是利用各种刺激诱导局部脑组织血氧水平依赖信号发生变化,间接反映神经元的活动,这种方法被称为“事件相关功能性磁共振( event-related f MRI)”。

相关文档
相关文档 最新文档