文档库 最新最全的文档下载
当前位置:文档库 › 第四章突变基因的分子细胞生物学效应

第四章突变基因的分子细胞生物学效应

第四章突变基因的分子细胞生物学效应
第四章突变基因的分子细胞生物学效应

第四章突变基因的分子细胞生物学效应

一、教学大纲要求

1.掌握遗传性酶病和分子病等基本概念;

2.掌握基因突变导致蛋白质功能改变的机制;

3.掌握基因突变引起性状改变的分子机制;

4.熟悉常见先天性代谢病发病的分子机制和主要临床表现。

二、习题

(一)A型选择题

1.下列有关基因突变与染色体畸变所引起的分子细胞生物学效应不正确的是

A.基因突变改变了该基因所编码的多肽链的数量和质量

B.染色体畸变改变了相应基因所编码的多肽链的数量和质量

C.基因突变和染色体畸变所引发的分子细胞生物学效应是完全相同的

D.基因突变所引发的分子细胞生物学效应涉及面小

E.染色体畸变所引发的分子细胞生物学效应涉及面大

2.基因突变对蛋白质所产生的影响不包括

A.影响活性蛋白质的生物合成B.影响蛋白质的一级结构

C.改变蛋白质的空间结构D.改变蛋白质的活性中心

E.影响蛋白质分子中肽键的形成

3.原发性损害指

A.突变改变了protein的一级结构,使其失去正常功能

B.突变改变了糖元的结构,使糖元利用障碍

B.突变改变了脂肪的分子结构,使脂肪动员受阻

D.突变改变了核酸的分子结构,使其不能传给下一代

E.突变主要使蛋白质的亚基不能聚合

4.在结构基因的突变中不正确的是

A.错位突变B.点突变C.无义突变D.终止密码突变E.插入突变5.由于基因突变导致酶缺陷使代谢底物堆积所引起的疾病是

A.白化病B.半乳糖血症C.血友病A D.DMD E.Wilson病6.白化病Ⅰ型患者体内缺乏

A.葡萄糖-6-磷酸脱氢酶B.苯丙氨酸羟化酶C.半乳糖激酶

D.酪氨酸酶E.PRPP

7.苯丙酮尿症患者体内异常增高的物质是

A.黑色素B.酪氨酸C.苯丙酮酸D.精氨酸E.肾上腺素

8.下列有关苯丙酮尿症的描述不符合的是

A.患者智力低下B.患者毛发和肤色较浅C.患者尿液有特殊臭味

D.患者尿液含大量的苯丙氨酸E.患者汗液也有特殊臭味

9.苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺乏导致

A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积

D.代谢终产物缺乏E.代谢终产物堆积

10.半乳糖血症Ⅰ型的发病机理是由于基因突变导致酶遗传性缺乏使

A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积

D.代谢终产物缺乏E.代谢终产物堆积

11.色氨酸加氧酶缺乏症的发病机理是由于基因突变导致

A.5-羟色胺增多B.色氨酸不能被吸收C.色氨酸吸收过多

D.烟酰胺生成过多E.代谢终产物堆积

(二)X型选择题

1.下列有关基因突变与染色体畸变所引起的分子细胞生物学效应正确的是

A.基因突变改变了该基因所编码的多肽链的数量和质量

B.染色体畸变改变了相应基因所编码的多肽链的数量和质量

C.染色体畸变所引发的分子细胞生物学效应涉及面大

D.基因突变和染色体畸变所引发的分子细胞生物学效应是完全相同的

E.基因突变所引发的分子细胞生物学效应涉及面小

2.下列能通过各种途径影响细胞内的成分从而导致细胞病变的是

A.病毒感染B.紫外线照射C.电离辐射D.诱变剂作用E.基因突变3.继发性损害指

A.编码蛋白质合成起始因子2的基因突变,从而干扰多肽链的合成过程

B.基因突变直接影响某一蛋白质的功能活性

C.各种参与蛋白质成熟过程的修饰因子突变

D.编码某种特定蛋白质的结构基因突变

E.干扰蛋白质翻译后修饰

4.基因突变可从下列哪些环节影响蛋白质功能改变

A.影响mRNA和蛋白质的合成速率

B.影响多肽链中的氨基酸序列

C.影响蛋白质的构象

D.影响蛋白质在细胞中的定位

E.影响多肽链与辅基的连接

5.基因突变导致酶分子失活,主要表现在

A.酶失去活性中心B.酶的稳定性降低C.酶与底物的亲和力升高D.酶与底物的亲和力降低E.复合酶与辅助因子的亲和力下降

6.有关白化病的叙述正确的是

A.患者体内遗传性缺乏酪氨酸B.皮肤浅红色或白色C.毛发银白或淡黄D.眼睛畏光E.为常染色体隐性遗传

7.苯丙酮尿症患者常表现为

A.智力低下B.毛发和肤色为纯白色C.尿液有特殊臭味D.尿液含大量的苯丙氨酸E.走路不稳

8.有关半乳糖血症Ⅰ型的发病机理及临床特征正确的是

A.所有类型的半乳糖血症患者都是由于半乳糖-1-磷酸尿苷酰转移酶遗传性缺乏

B.半乳糖-1-磷酸堆积

C.哺乳后呕吐

D.智力障碍

E.肝肿大

9.基因突变导致酶缺陷引起代谢缺陷致先天性代谢病发生的方式为

A.代谢底物堆积B.代谢旁路产物堆积C.代谢中间产物堆积

D.代谢终产物缺乏E.代谢终产物反馈抑制减弱

10.先天性肾上腺皮质增生症

A.是由于21-羟化酶缺陷引起的疾病

B.为常染色体隐性遗传病

C.出现假性早熟或假性畸形现象

D.只有男婴发病

E.其发病机理是由于反馈抑制减弱引起肾上腺皮质增生

(三)名词解释

1.inborn errors of metabolism

2.molecular disease

(四)问答题

1.基因突变如何导致蛋白质功能改变?

2.酶缺陷如何引起各种代谢紊乱并导致疾病?

3.简述苯丙酮尿症(PKU)发病的分子机理及主要临床表现。

三、参考答案

(一)A型选择题

1.C

2.E

3.A

4.A

5.B

6.D

7.C

8.D

9.B 10.C 11.B

(二)X型选择题

1.ABCE

2.ABCDE

3.ACE

4.ABCDE

5.ABDE

6.BCDE

7.AC

8.BCDE

9.ABCDE 10.ABCE

(三)名词解释

略。

(四)问答题

1.无论基因突变还是染色体畸变,它们对蛋白质产生的影响主要通过①影响mRNA和蛋白质的合成;②影响蛋白质的结构;③影响蛋白质在细胞中的定位;④影响蛋白质亚基的聚合;⑤影响辅基或辅助因子与蛋白质的结合;⑥影响蛋白质的稳定性。

2.人体内的代谢反应过程中,几乎每一步都需要在酶的催化下,才能正常进行。如果编码酶的基因突变会导致酶缺陷或酶活性异常,进而影响相应的生化反应,造成代谢紊乱而引起各种先天性代谢病。酶缺陷具体导致下列代谢异常:①膜转运酶缺陷;②中间产物堆积;

③代谢底物堆积;④代谢旁路产物堆积;⑤代谢终产物缺乏或减少;⑥反馈抑制减弱等等。

3.由于编码苯丙氨酸羟化酶的基因突变导致苯丙氨酸羟化酶遗传性缺乏,使得苯丙氨酸的主要代谢途径受阻,不能转变生成酪氨酸而在血中累积。过量的苯丙氨酸于是进入旁路代谢,经转氨酶催化生成苯丙酮酸,再经氧化、脱羧产生苯乳酸和苯乙酸等旁路副产物,从而引起一系列的表型反应:①旁路副产物可抑制酪氨酸酶,使酪氨酸生成黑色素的代谢途径受影响,故患者皮肤、毛发及视网膜颜色较浅;②旁路副产物通过抑制5-羟色胺脱羟酶和L-谷氨酸脱羟酶的活性使5-羟色胺和γ-氨基丁酸的生成减少,从而使脑发育障碍;③旁路副产物有特殊的臭味,并可随尿和汗液排出,使尿和汗液呈腐臭味。

(黄健)

第五章 基因突变及其他变异 (3)

惠来慈云实验中学生物选科第五章基因突变及其他变异 第一部分:选择题(47分) 一、选择题。(2分×16=32分) 1.某原核生物因一个碱基对突变而导致所编码蛋白质的一个脯氨酸(密码子有CCU、CCC、CCA、CCG)转变为组氨酸(密码子有CAU、CAC)。基因中发生改变的是() A.G≡C变为T = A B.A = T变为C≡G C.鸟嘌呤变为胸腺嘧啶D.胸腺嘧啶变为腺嘌呤 2.杂交水稻之父袁隆平在稻田中找到一株“野败”(雄性不育),培育出高产的杂交水稻。这株“野败”的产生是由于() A.基因重组B.基因突变C.环境改变D.杂交 3. 一只正常的雌蝌蚪在外界条件的影响下,变成了一只能生育的雄蛙,用这只雄蛙与正常的雌蛙 交配,其子代中() A. 雌∶雄=1∶1 B. 雌∶雄=2∶1 C. 雌∶雄=3∶1 D. 雌∶雄=1∶0 4..有一种遗传病是由于DNA模板链上的碱基CCT变为CAT而致。而某基因芯片用来检测由基因 转录出的信使RNA,在芯片相应位置上哪个核苷酸片断(分子探针)与信使RNA配对,就可以判断这人带有致病基因() A、CTT B、CAT C、GTA D、GAA 5、发生基因突变以后的基因应该是() A.显性基因 B.隐性基因 C.原有基因的等位基因 D.有害基因 6. 萝卜与甘蓝的染色体组数不同,萝卜和甘蓝杂交得到的种子一般是不育的,但偶尔会发现个别 种子种下去能产生可育的后代,最可能的原因是() A、基因的自由组合 B、染色体加倍 C、染色体结构变异 D、基因突变 7.水稻的某3对相对性状,分别由位于非同源染色体上的3对等位基因控制。利用它的花药进行 离体培养,再用浓度适当的秋水仙素处理素。经此种方法培育出的水稻植株,其表现型最多可有() A、1 种 B、4 种 C、8 种 D、16种 8.下列四个细胞图中,属于二倍体生物精细胞的是() 9. 下图是甲、乙两种生物的体细胞内染色体情况示意图,则染色体数与图示相同的甲、乙两种生物体细胞的基因型可依次表示为() A. 甲:AaBb 乙:AAaBbb B.甲:AaaaBBbb 乙:AaBB C. 甲:AAaaBbbb 乙:AaaBBb D. 甲:AaaBbb 乙:AaaaBbbb 10. 韭菜体细胞的32条染色体具有8种各不相同的形态,韭菜是() A. 单倍体 B. 二倍体 C. 四倍体 D. 八倍体

蛋白质的生理功能

蛋白质的生理功能 1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。 2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。 3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。 4、白蛋白:维持机体内的渗透压的平衡及体液平衡。 5、维持体液的酸碱平衡。 6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。 7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。 8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。 9、提供热能。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质。 蛋白质能供给能量。这不是蛋白质的主要功能,我们不能拿“肉”当“柴”烧。但在能量缺乏时,蛋白质也必须用于产生能量。另外,从食物中摄取的蛋白质,有些不符合人体需要,或者摄取数量过多,也会被氧化分解,释放能量。

基因突变及其他变异测试题 - 答案

基因突变、染色体变异、基因重组专项训练 一、选择题 1.生物在紫外线、电离辐射等影响下将可能发生突变。这种突变易发生在() A.细胞减数分裂的第一次分裂时 B.细胞减数分裂的第二次分裂时 C.细胞有丝分裂的间期 D.细胞有丝分裂的分裂期 [答案]C [解析]DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变叫基因突变,发生于DNA 复制过程中,在细胞周期的间期完成DNA复制。 2.将普通小麦的子房壁细胞进行离体培养,得到的植株是() A.单倍体B.二倍体C.三倍体D.六倍体 [答案]D [解析]子房壁是体细胞,进行离体培养,得到的植株细胞中的染色体组与普通小麦的子房壁细胞相同,即该植株是六倍体。 3.三体综合征、并指、苯丙酮尿症依次属() ①单基因病中的显性遗传病②单基因病中的隐性遗传病③常染色体病④性染色体病 A.②①③ B.④①②C.③①② D.③②① [答案]C 4.DNA分子经过诱变,某位点上的一个正常碱基(设为P)变成了尿嘧啶。该DNA连续复制两次,得到的4个子代DNA分子相应位点上的碱基对分别为U—A、A—T、G—C、C—G,推测“P”可能是() A.胸腺嘧淀B.腺嘌呤C.胸腺嘧啶或腺嘌呤D.胞嘧啶 [答案]D [解析]据半保留复制的特点,DNA分子经过两次复制后,突变锭形成的两个DNA分子中含有U—A,A—T 碱基对,而另一条正常,正常链形成的两个DNA分子中含有G—C、C—G碱基对,因此被替换的可能是G,也可能是C。 5.已知某小麦的基因型是AaBbCc,三对基因分别位于三对同源染色体上,利用其花药进行离体培养,获得N株小麦,其中基因型为aabbcc的个体约占() A.N/4 B.N/8 C.N/6 D.0 [答案]D [解析]基因型是AaBbCc的小麦,三对基因分别位于三对同源染色体上,通过减数分裂产生23种配子,利用其花药进行离体培养,获得N株单倍体小麦,基因型不可能为aabbcc。 6.当牛的卵原细胞进行DNA复制时,细胞中不可能发生() A.DNA的解旋B.蛋白质的合成C.基因突变D.基因重组 [答案]D [解析]卵原细胞进行DNA复制时属于细胞分裂间期,若DNA复制发生差错,会产生基因突变,细胞中同时要合成有关蛋白质;基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因重新组合,发生在减数分裂期。 7.将一粒花药培育成幼苗,对它的茎尖用秋水仙素处理,长大后该植株能正常开花结果。该植株下列细胞中哪一细胞与其他三种细胞染色体数目不相同() A.根细胞B.种皮细胞C.子房壁细胞D.果实细胞 [答案]A [解析]将一粒花粉培育成单倍体幼苗,对它的茎尖用秋水仙素处理,长大后该植株地上部分细胞中染色体加倍了,但根细胞染色体数未改变。 8.基因型为AaBb(位于非同源染色体上)的小麦,将其花粉培养成幼苗,用秋仙素处理后的成体自交后代的表现型及其比例为() A.1种,全部B.2种,3∶1 C.4种,1∶1∶1∶1 D.4种,9∶3∶3∶1 [答案]C [解析]基因型为AaBb(位于非同源染色体上)的小麦,将其花粉培养成幼苗,用秋水仙素处理后的成体为纯合体,共四种:AABB、AAbb、aaBB、aabb,纯合体自交后代不发生性状分离,仍为纯合体,表现型及其比例为1∶1∶1∶1。 9.下列基因组合中,不可能是由二倍体产生的配子是() A.Dd B.YR C.Ab D.BCd [答案]A 10.在减数分裂过程中,由于偶然因素,果蝇的一对性染色体没有分开,由此产生的不正常的卵细胞中的染

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

第五章、基因突变及其他变异

江阴市山观中学必修2总复习 第五章基因突变及其他变异 第六章从杂交育种到基因工程 一、单选题 1.某原核生物因一个碱基对突变而导致所编码蛋白质的一个脯氨酸(密码子有CCU、CCC、CCA、CCG)转变为组氨酸(密码子有CAU、CAC)。基因中发生改变的是() A.G≡C变为T = A B.A = T变为C≡G C.鸟嘌呤变为胸腺嘧啶D.胸腺嘧啶变为腺嘌呤 2.杂交水稻之父袁隆平在稻田中找到一株“野败”(雄性不育),培育出高产的杂交水稻。这株“野败”的产生是由于() A.基因重组B.基因突变C.环境改变D.杂交 3.用杂合子(DdEe)种子获得纯合子(ddee),最简捷的方法是() A.种植→F2→选不分离者→纯合体 B.种植→秋水仙素处理→纯合体 C.种植→花药离体培养→单倍体幼苗→秋水仙素处理→纯合体 D.种植→秋水仙素处理→花药离体培养→纯合体 4.属于分子水平上的育种工作的是() A.基因工程育种B.杂交育种C.单倍体育种D.多倍体育种 5、发生基因突变以后的基因应该是() A.显性基因 B.隐性基因 C.原有基因的等位基因 D.有害基因 6.作为基因工程中的受体,至今用得最多的是E.coli、Bacillussubtilis和Saccharomycescerevisiae三种常见微生物,其原因不包括() A.培养容易B.性状稳定,变异少 C.繁殖速度快D.能高效表达供体性状 7.水稻的某3对相对性状,分别由位于非同源染色体上的3对等位基因控制。利用它的花药进行 离体培养,再用浓度适当的秋水仙素处理素。经此种方法培育出的水稻植株,其表现型最多可有() A、1 种 B、4 种 C、8 种 D、16种 8.下列四个细胞图中,属于二倍体生物精细胞的是() 9. 下图是甲、乙两种生物的体细胞内染色体情况示意图,则染色体数与图示相同的甲、乙两种生物体细胞的基因型可依次表示为() A. 甲:AaBb 乙:AAaBbb B.甲:AaaaBBbb 乙:AaBB C. 甲:AAaaBbbb 乙:AaaBBb D. 甲:AaaBbb 乙:AaaaBbbb 10. 韭菜体细胞的32条染色体具有8种各不相同的形态,韭菜是() A. 单倍体 B. 二倍体 C. 四倍体 D. 八倍体 11. 在自然界中,多倍体形成的过程顺序是()

基因突变的蛋白质效应

母源性3-甲基巴豆酰辅酶A羧化酶缺乏症临床及基因突变分析 【摘要】目的报告5例母源性3-甲基巴豆酰辅酶A羧化酶缺乏症(maternal 3-methylcrotonyl-coenzyme A carboxylase deficiency,MCCD),通过基因突变分析证实其临床诊断。方法将串联质谱新生儿筛查发现3-羟基异戊酰肉碱(C5-OH)增高的5例新生儿及其母亲纳入研究。用尿气相色谱质谱分析进行MCCD临床诊断;基因突变检测及功能分析明确诊断。结果(1)发现5例无症状母亲血C5-OH浓度明显增高,尿3-羟基异戊酸、3-甲基巴豆酰甘氨酸增高,诊断为良性MCCD。其新生儿血C5-OH浓度增高,3例随访后浓度逐步下降或达正常。(2)发现4种MCCC1基因新变异:c.ins1680A(25%)、c.203C>T/p.A68V、c.572T>C/p.L191P、c.639+5G>T和2种MCCC2基因突变c.1406G>T/p.R469L(新变异)及 c.592C>T/p.Q198X。新变异可能影响蛋白结构和功能。结论对筛查血C5-OH增高的新生儿母亲应常规检测以诊断母源性MCCD。MCCC1基因突变多见。 【关键词】3-甲基巴豆酰辅酶A羧化酶缺乏症;3-甲基巴豆酰辅酶A羧化酶;基因突变;质谱分析 3-甲基巴豆酰辅酶A羧化酶缺乏症(3-Methylcrotonyl-coenzyme A carboxylase deficiency,MCCD)(OMIM 210200/210210)是一种亮氨酸代谢障碍所致的常染色体隐性遗传的有机酸代谢缺陷病,1970年由Eldjarn等首次报道[1]。因基因MCCC1(MIM*609010)或MCCC2(MIM*609010)突变导致亮氨酸代谢途径中3-甲基巴豆酰辅酶A羧化酶(3-Methylcrotonyl-coenzyme A carboxylase,MCC)缺乏,3-甲基巴豆酰辅酶A不能转化成3-甲基戊烯二酰辅酶A而堆积,导致血3-羟基异戊酰肉碱(3-hydroxy-isovalerylcarnitine,C5-OH)增高、尿3-甲基巴豆酰甘氨酸(3-methylcrotonyl-glycine,3-MCG)和/或3-羟基异戊酸(3-hydroxy isovalerate,3-HIVA)代谢产物增多。患者的临床表型变异较大,多数无症状,少数可表现为严重的神经系统受损[2]。 部分发达国家于20世纪90年代初应用串联质谱(tandem mass spectrometry,

高中生物第5章基因突变及其他变异单元测试新人教版必修

第五章基因突变及其他变异 一、选择题。 1.有一种遗传病是由于DNA模板链上的碱基CCT变为CAT而致。而某基因芯片用来检测由基因转录出的信使RNA,在芯片相应位置上那个核苷酸片断(分子探针)与信使RNA配对,就可以判断这人带有致病基因() A、CTT B、CAT C、 GTA D、GAA 2.产前诊断能有效预防遗传病产生和发展。下列不属于产前诊断的是() A、胎儿羊水检查 B、孕妇血细胞的检查 C、婴儿体检 D、孕妇B超检查 3.我国婚姻法规定禁止近亲婚配的医学依据是() A、近亲婚配其后代必患遗传病 B、近亲婚配其后代患隐性遗传病的机会增多 C、人类 的疾病都是由隐性基因控制的 D、近亲婚配其后代必然有伴性遗传病 4.水稻的某3对相对性状,分别由位于非同源染色体上的3队等位基因控制。利用它的花药进行 离体培养,再用浓度适当的秋水仙素处理素。经此种方法培育出的水稻植株,其表现型最多可有() A、1 种 B、 4 种 C、 8 种 D、16种 5.萝卜与甘蓝的染色体组数不同,萝卜和甘蓝杂交得到的种子一般是不育的,但偶尔会发现个别 种子种下去能产生可育的后代,最可能的原因是() A、基因的自由组合 B、染色体加倍 C、染色体结构变异 D、基因突变 6.基因突变是生物变异的主要来源,其原因是() A、基因突变能产新基因 B、基因突变发生的频率高 C、基因突变能产生大量有利变异 D、能改变生物的表现型 7、人类发生镰刀型细胞贫血症的根本原因在于基因突变,其突变的方式是基因内 A.碱基发生改变(替换) B.增添或缺失某个碱基对() C.增添一小段DNA D.缺失一小段DNA 8、下列属于单倍体的是() A.二倍体种子长成的幼苗 B.四倍体的植株枝条扦插成的植株 C.六倍体小麦的花粉离体培养的幼苗 D.用鸡蛋孵化出的小鸡 9、发生基因突变以后的基因应该是() A.显性基因 B.隐性基因 C.原有基因的等位基因 D.有害基因 10、在下列生殖细胞中,哪两种生殖细胞的结合会产生先天愚型的男性患儿(A表示常染色体) () ①23A+X②22A+X③21A+Y④22A+Y

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

基因突变及其他变异练习题及答案

变异综合题2012-06-10 1. 下列关于变异的叙述中不正确的是() A. 基因突变不一定能够改变生物的表现型 B. 基因重组是生物变异的重要来源,一般发生在有性生殖的过程中 C. 细胞中含有两个染色体组的个体不一定是二倍体 D. 用花药离体培养得到的单倍体植物一定是纯合体 2. 基因突变、基因重组和染色体变异的相同点是 A. 产生 了遗传物质的改变B C、用光学显微镜都无法看到D 3?下列关于基因突变的描述,不.正确的是 A. 表现出亲代所没有的表现型叫基因突变 C.基因突变能人为地诱发产生 D 4.某研 究性学习小组在调查人群中的遗传病时,所选择遗传病和调查方法最合理的是 A. 研究猫叫综合征的遗传方式,在农村中随机抽样调查 B. 研究"甲流”的遗传方式,在市中心抽样调查 C. 研究青少年型糖尿病,在城市中抽样调查 D. 研究白化病的发病率,在人群中随机抽样调查 5.下图表示某生物细胞中两条染色体及其上部分基因,下列选项中,不属于染色体变异引起的是 A .植物多倍体不能产生可育的配子 B .八倍体小黑麦是用基因工程技术创造的新物种 C.二倍体植株加倍为四倍体后,营养成分必然增加 7.下列关于育种的叙述中,正确的是 A.用物理化学因素诱变处理可提高突变率 C .三倍体植物一定不能由受精卵发育而来 &对下列有关育种实例形成原理的解释,正确的是 A.培育无籽西瓜是利用单倍体育种的原理 B .杂交育种是利用了染色体数目的变异的原理 C.抗虫棉是利用了基因突变的原理 D .诱变育种所依据的遗传学原理是基因突变 9 .在一块栽种红果番茄的田地里,农民发现有一株番茄的一枝条上结出黄色番茄,这是因为该枝条发 生了() A.细胞质遗传 B .基因突变 C.基因重组 D .染色体变异 10. 生产上培育无籽番茄、青霉素高产菌株、杂交培育矮秆抗锈病小麦、抗虫棉的培育的原理依次是: ①生长素促进果实发育②染色体变异③基因重组④基因突变⑤基因工程 A.①②③④ B .①④③② C. ①④③⑤ D .①②④② 11. 在大田的边缘和水沟两侧,同一品种的小麦植株总体上比中间的长得高大健壮。产生这种现象的主 要原因是: A.基因重组引起性状分离 B .环境引起性状变异 C.隐性基因突变为显性基因 D .染色体结构和数目发生了变化 12. 基因型为AABBC(豌豆与aabbcc豌豆杂交,产生的F2用秋水仙素处理幼苗后得到的植株是 A.二倍体 B. 三倍体 C. 四倍体 D. 六倍体 13. 与无性生殖相比,有性生殖的优越性表现在通过有性生殖() A.可增加遗传物质重组的机会 B .可保持亲、子代遗传性状的一致 C.产生的子代都是二倍体 D .可在短时间内迅速增加子代数量 14. 下列与遗传变异有关的叙述,正确的是() A .《婚姻法》规定禁止近亲结婚,是因为该项措施能降低某些遗传病的发病率 B .基因重组可以通过产生新的基因,表现出性状的重新组合 C.三倍体无子西瓜的培育过程,主要运用了生长素促进果实发育的原理 D .若DNA中某碱基对改变,则其控制合成的蛋白质分子结构肯定会发生改变 15. 用纯合的高秆抗锈病水稻(DDTT)和矮秆不抗锈病水稻(ddtt)进行育种获得纯合矮杆抗病水稻时,一种方法是杂交得到F1, F1再自交得到F2,然后再选育;另一种方法是用F1的花药进行离体培养,再用秋水仙素处理幼苗得到相应植株。下列叙述正确的是() A .前一种方法所得的F2中,重组类型占5/8 B .后一种方法所得到的植株中可用于生产的类型占2/3 、产生的变异均对生物有害 、都能产生新基因 B .基因突变有显性突变和隐性突变之分 .在光镜下看不到基因突变 D .多倍体在植物中比动物中更常见 B.诱变育种和杂交育种均可形成新的基因 D .诱变获得的突变体多数表现出优良性状

必修第五章基因突变及其他变异知识点

必修第五章基因突变及其他变异知识点 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第5章基因突变及其他变异 ★第一节基因突变和基因重组 一、生物变异的类型 ●不可遗传的变异(仅由环境变化引起)基因突变 ●可遗传的变异(由遗传物质的变化引起)基因重组 染色体变异 二、可遗传的变异 (一)基因突变 1、镰刀型细胞贫血症的原因 DNA的碱基对发生变化——mRNA的碱基发生变化——氨基酸改变——蛋白质改变——性状改变 2、概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫 做基因突变。 3、原因:物理因素:X射线、紫外线、r射线等; 化学因素:亚硝酸盐,碱基类似物等; 生物因素:病毒、细菌等。 4、特点:a、普遍性 b、随机性(基因突变可以发生在生物个体发育的任何时期;基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上);c、低频性 d、多数有害性 e、不定向性 注:体细胞的突变不能直接传给后代,生殖细胞的则可能 5、意义:它是新基因产生的途径;是生物变异的根本来源;是生物进化的原始材料。 6、实例:镰刀型细胞贫血 (二)基因重组 1、概念:是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。 2、时间:减数第一次分裂前期或后期 3、类型:a、非同源染色体上的非等位基因自由组合 b、四分体时期非姐妹染色单体的交叉互换 4、意义:①产生新的基因型②生物变异的来源之一③对进化有意义 第二节染色体变异 一、染色体变异类型: 缺失 1917年猫叫综合症、果蝇的缺刻翅结构的变异重复 1919年果蝇的棒状眼 易位 1923年慢性粒细胞白血病 倒位

高中生物 必修二 基因突变及其他变异测试题及答案

第5章基因突变及其他变异 一、选择题 1.人类发生镰刀型贫血症情况的根本原因在于基因突变,突变的方式是基因内()A.碱基发生替换B.增添或缺失某个碱基对 C.增添一小段DNA D.缺少一小段DNA 2.若一对夫妇所生的子女中,性状上差异甚多,这种差异主要来自于() A.基因突变B.基因重组 C.环境影响D.染色体变异 3.现有三种玉米籽粒,第一种是红的,第二种是白的,第三种也是白的,但如果在成熟时期暴露于阳光下籽粒变成红的。第三种玉米的颜色是由哪种因素决定的()A.基因B.环境 C.基因和环境D.既不是基因也不是环境 4.下列不属于多倍体特点的是() A.茎秆、叶、果实、种子都较大B.发育迟缓 C.营养物质含量增多D.高度不育 5.人工诱导多倍体最常用的有效方法是() A.杂交实验B.射线或激光照射萌发的种子或幼苗C.秋水仙素处理萌发的种子或幼苗D.花药离体培养 6.遗传病是指() A.具有家族史的疾病 B.生下来就呈现的疾病 C.由于遗传物质发生了变化而引起的疾病 D.由于环境因素影响而引起的疾病 7.21三体综合征属于() A.基因病中的显性遗传病B.单基因病中的隐性遗传病 C.常染色体遗传病D.性染色体遗传病 8.无子西瓜之所以无子,是因为三倍体植株在减数分裂过程中染色体的() A.数目增加,因而不能形成正常的卵细胞 B.数目减少,因而不能形成正常的卵细胞 C.联会紊乱,因而不能形成正常的卵细胞

D.结构改变,因而不能形成正常的卵细胞 9.人类基因组是指人类DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。其主要内容包括绘制人类基因的遗传图、物理图、序列图和转录图。科学家应对多少条染色体进行分析() A.46条B.23条C.24条D.22条 10.下列关于基因突变的叙述中,正确的是() ①基因突变包括自发突变和诱发突变 ②基因突变发生在DNA复制时,碱基排列发生差错,从而改变了遗传信息,产生基因突变 ③生物所发生的基因突变,一般都是有害的,但也有有利的 A.①②B.②③C.①③D.①②③ 11.下列变异属于基因突变的是() A.外祖父色盲,母亲正常,儿子色盲B.杂种红果番茄的后代出现黄果番茄 C.纯种红眼果蝇的后代出现白眼性状D.用花粉直接培育的玉米植株变得弱小12.减数分裂和受精作用会导致生物发生遗传物质的重组,在下列叙述中与遗传物质重组无关的是() A.联会的同源染色体发生局部的互换 B.卵原细胞形成初级卵母细胞时DNA复制 C.形成配子时,非同源染色体在配子中自由组合 D.受精作用时,雌雄配子的遗传物质相互融合 13.如果将一个镰刀型细胞贫血病的患者血液,输给一个血型相同的正常人,将使正常人() A.基因产生突变,使此人患病B.无基因突变,性状不遗传给此人 C.基因重组,将病遗传给此人D.无基因重组,此人无病,其后代患病14.下列属于染色体结构变异的是() A.染色体中DNA的一个碱基发生了改变 B.染色体增加了某一段 C.染色体中DNA增加了碱基对 D.染色体中DNA缺少了一个碱基 15.用基因型DdTt的个体产生的花粉粒,分别进行离体培育成幼苗,再用一定浓度的

蛋白质的生理作用.

《食品化学与健康》电子教材 蛋白质的生理作用 一、是人体最重要的组成成分 人体中所有重要组织都有蛋白质参与如神经、肌肉、内脏、血液等都含有蛋白质。蛋白质是构成细胞和组织的“建筑材料”,在人体细胞中的含量仅次于水,占细胞干重的50%以上。一切生物膜,如细胞膜、细胞内各种细胞器的膜,几乎都是由蛋白质和脂类等物质组成。蛋白质是生命活动的重要物质基础。在体内多种重要生理活性物质的成分是蛋白质,蛋白质参与调节生理功能,如构成细胞核的核蛋白能影响细胞功能;促进食物消化、吸收和利用作用的是酶蛋白;维持机体免疫功能作用的是免疫蛋白;具有调节肌肉收缩的功能的是肌球蛋白;具有运送营养素的作用的是血液中的脂蛋白、运铁蛋白、视黄醇结合蛋白质;具有携带、运送氧气功能的是血红蛋白;具有调节渗透压、维持体液平衡的作用(肝癌) 是白蛋白;由蛋白质或蛋白质衍生物构成的某些激素,如垂体激素、甲状腺激素、胰岛素及肾上腺素等等都是机体的重要调节物质。蛋白质能向机体提供能量,大约占总热能的14%,每克蛋白质在体内代谢,能产生4千卡左右的能量。 二、蛋白质的生理作用表现为 1.参与生理活动和劳动做功 心脏跳动、呼吸运动、胃肠蠕动以及日常各种劳动做功等,都离不开肌肉的收缩,而骨肉的收缩又离不开具有骨肉收缩功能的蛋白质。 2.参与氧和二氧化碳的运输 在生命活动中,将氧气供给全身组织,同时将新陈代谢所产生的二氧化碳排出体外的运输工具就是血红蛋白。血红蛋白是红细胞的主要成分,也是红细胞行使其功能的物质基础。 3.参与维持人体的渗透压

血浆中有多种蛋白质,对维持血液的渗透压、维持细胞内外的压力平衡起着重要作用。 4.具有防御功能 血浆中含有的抗体,主要是丙种球蛋白,这是一种具有防御功能的蛋白质。 5.参与调节人体内物质的代谢 在物质代谢中,都需要酶系统的催化或调节,而酶的本质就是蛋白质。在调节代谢过程中,蛋白质以酶和激素的形式出现,发挥了生命活动中“指挥员”的作用。

SNP单核苷酸多态性检测技术

1定义: 单核苷酸多态性(single nucleotide polymorphism,SNP),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。它是人类可遗传的变异中最常见的一种。占所有已知多态性的90%以上。SNP在人类基因组中广泛存在,平均每500~1000个碱基对中就有1个,估计其总数可达300万个甚至更多。SNP所表现的多态性只涉及到单个碱基的变异,这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致。但通常所说的SNP并不包括后两种情况。单核苷酸多态性(SNP)是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入。所谓转换是指同型碱基之间的转换,如嘌呤与嘌呤( G2A) 、嘧啶与嘧啶( T2C) 间的替换;所谓颠换是指发生在嘌呤与嘧啶(A2T、A2C、C2G、G2T) 之间的替换。从理论上来看每一个SNP 位点都可以有4 种不同的变异形式,但实际上发生的只有两种,即转换和颠换,二者之比为2:1。SNP 在CG序列上出现最为频繁,而且多是C转换为T ,原因是CG中的C 常为甲基化的,自发地脱氨后即成为胸腺嘧啶。一般而言,SNP 是指变异频率大于1 %的单核苷酸变异。在人类基因组中大概每1000 个碱基就有一个SNP ,人类基因组上的SNP 总量大概是3 ×106个。依据排列组合原理,SNP 一共可以有6种替换情况,即A/ G、A/ T、A/ C、C/ G、C/ T 和G/ T ,但事实上,转换的发生频率占多数,而且是C2T 转换为主,其原因是Cp G的C 是甲基化的,容易自发脱氨基形成胸腺嘧啶T , Cp G 也因此变为突变热点。理论

蛋白质的营养生理作用

“蛋白质”一词,源于希腊字“Proteios”,其意是“最初的”、“第一重要的”;蛋白质是细胞的重要组成成份,在生命过程中起着重要的作用, 涉及动物代谢的大部分与生命攸关的化学反应。不同种类动物都有自己特定的、多种不同的蛋白质。在器官、体液和其它组织中,没有两种蛋白质的生理功能是完全一样的。这些差异是由于组成蛋白质的氨基酸种类、数量和结合方式不同的必然结果。 动物在组织器官的生长和更新过程中,必须从食物中不断获取蛋白质等含氮物质。因此,把食物中的含氮化合物转变为机体蛋白质是一个重要的营养过程。 蛋白质在动物的生命活动中的重要营养作用: (一)蛋白质是构建机体组织细胞的主要原料 动物的肌肉、神经、结缔组织、腺体、精液、皮肤、血液、毛发、角、喙等都以蛋白质为主要成份,起着传导、运输、支持、保护、连接、运动等多种功能。肌肉、肝、脾等组织器官的干物质含蛋白质80%以上。蛋白质也是乳、蛋、毛的主要组成成份。除反刍动物外,食物蛋白质几乎是唯一可用以形成动物体蛋白质的氮来源。 (二)蛋白质是机体内功能物质的主要成份 在动物的生命和代谢活动中起催化作用的酶、某些起调节作用的激素、具有免疫和防御机能的抗体(免疫球蛋白)都是以蛋白质为主要成分。另外,蛋白质对维持体内的渗透压和水分的正常分布,也起着重要的作用。 (三) 蛋白质是组织更新、修补的主要原料 在动物的新陈代谢过程中,组织和器官的蛋白质的更新、损伤组织的修补都需要蛋白质。据同位素测定,全身蛋白质6-7个月可更新一半。 (四)蛋白质可供能和转化为糖、脂肪 在机体能量供应不足时,蛋白质也可分解供能,维持机体的代谢活动。当摄入蛋白质过多或氨基酸不平衡时,多余的部分也可能转化成糖、脂肪或分解产热。正常条件下,鱼等水生动物体内亦有相当数量的蛋白质参与供能作用。 “蛋白质”一词,源于希腊字“Proteios”,其意是“最初的”、“第一重要的”;蛋白质是细胞的重要组成成份,在生命过程中起着重要的作用, 涉及动物代谢的大部分与生命攸关的化学反应。不同种类动物都有自己特定的、多种不同的蛋白质。在器官、体液和其它组织中,没有两种蛋白质的生理功能是完全一样的。这些差异是由于组成蛋白质的氨基酸种类、数量和结合方式不同的必然结果。 动物在组织器官的生长和更新过程中,必须从食物中不断获取蛋白质等含氮物质。因此,把食物中的含氮化合物转变为机体蛋白质是一个重要的营养过程。 蛋白质在动物的生命活动中的重要营养作用: (一)蛋白质是构建机体组织细胞的主要原料 动物的肌肉、神经、结缔组织、腺体、精液、皮肤、血液、毛发、角、喙等都以蛋白质为主要成份,起着传导、运输、支持、保护、连接、运动等多种功能。肌肉、肝、脾等组织器官的干物质含蛋白质80%以上。蛋白质也是乳、蛋、毛的主要组成成份。除反刍动物外,食物蛋白质几乎是唯一可用以形成动物体蛋白质的氮来源。 (二)蛋白质是机体内功能物质的主要成份 在动物的生命和代谢活动中起催化作用的酶、某些起调节作用的激素、具有免疫和防御机能的抗体(免疫球蛋白)都是以蛋白质为主要成分。另外,蛋白质对维持体内的渗透压和水分的正常分布,也起着重要的作用。 (三) 蛋白质是组织更新、修补的主要原料 在动物的新陈代谢过程中,组织和器官的蛋白质的更新、损伤组织的修补都需要蛋白质。据同位素测定,全身蛋白质6-7个月可更新一半。

高中生物基因突变及其他变异(知识点-习题)

第五章基因突变及其他变异 第一节基因突变和基因重组 一、基因突变的实例 1、镰刀型细胞贫血症 ⑴症状 ⑵病因基因中的碱基替换 直接原因:血红蛋白分子结构的改变 根本原因:控制血红蛋白分子合成的基因结构的改变 2、基因突变 概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变 二、基因突变的原因和特点 1、基因突变的原因有内因和外因 物理因素:如紫外线、X射线 ⑴诱发突变(外因)化学因素:如亚硝酸、碱基类似物 生物因素:如某些病毒 ⑵自然突变(内因) 2、基因突变的特点 ⑴普遍性 ⑵随机性 ⑶不定向性 ⑷低频性 ⑸多害少利性 3、基因突变的时间 有丝分裂或减数第一次分裂间期 4.基因突变的意义:是新基因产生的途径;生物变异的根本来源;是进化的原始材料 三、基因重组 1、基因重组的概念 随机重组(减数第一次分裂后期) 2、基因重组的类型 交换重组(四分体时期) 3.时间:减数第一次分裂过程中(减数第一次分裂后期和四分体时期) 4.基因重组的意义 四、基因突变与基因重组的区别

第二节染色体变异 一、染色体结构的变异(猫叫综合征) 1、概念 缺失 2、变异类型重复 倒位 易位 二、染色体数目的变异 1.染色体组的概念及特点 2.常见的一些关于单倍体与多倍体的问题 ⑴一倍体一定是单倍体吗?单倍体一定是一倍体吗? (一倍体一定是单倍体;单倍体不一定是一倍体。) ⑵二倍体物种所形成的单倍体中,其体细胞中只含有一个染 色体组,这种说法对吗?为什么? (答:对,因为在体细胞进行减数分裂形成配子时,同源染色体分开,导致染色体数目减半。) ⑶如果是四倍体、六倍体物种形成的单倍体,其体细胞中就

人教版生物必修二第五章基因突变及其他变异知识点填空

第五章基因突变及其他变异 第1节基因突变和基因重组 一、生物变异的类型 不可遗传的变异(仅由变化引起,不能进一步遗传给后代); 可遗传的变异(由的变化引起其后代可遗传这种改变),包括、、。 变异是否遗传的本质区别在于:遗传物质是否改变。 二、可遗传的变异 (一)基因突变 1、实例分析:镰刀型细胞贫血症 患者贫血的直接原因是______异常,血红蛋白分子中的一个谷氨酸呗替换成了缬氨酸。 根本原因是发生了______,碱基对由T=A突变成A=T。 概念:是指DNA分子中碱基对的、或,而引起基因结构的改变。 注意:基因突变≠DNA分子中碱基对的增添、缺失、替换。 ①基因突变是分子水平上,一个基因内部发生的碱基对的种类和数目的改变,一条染色体上基因的数量和位置并未改变。光学显微镜下不能直接观察到。 ②RNA病毒中,基因突变指RNA分子中碱基的增添、缺失、替换,其突变率远大于DNA的突变率。 ③基因突变后基因中的遗传信息一定发生改变。 2、原因: 外因(诱发突变)有:因素:X射线、激光等; ______因素:亚硝酸盐,碱基类似物等; ______因素:病毒、细菌等。 内因(自发突变)DNA复制时偶尔发生错误,DNA的碱基组成发生了改变。 3、特点: ①发生频率:②方向③发生 ④存在;基因突变可以发生在生物个体发育的时期;基因突变可以发生在细胞内的 上或同一DNA分子的上。 ⑤基因突变具有多害少利性。 4、结果:产生新基因。新基因与原基因是基因。如A→a,为隐性突变(一般在第一代突变体中突变性状不能表现),a→A是显性突变(一旦发生即可表现出新性状)。 5、时间:一般发生在细胞分裂的(即DNA复制时期) a、有丝分裂间期(发生于体细胞中,一般不能传给后代。但有些植物等通过营养生殖也可传给后代。) b、减数第一次分裂间期(发生于生殖细胞中,可遵循遗传规律通过受精作用传给后代) 6、对性状的影响 基因突变是否一定会导致个体的性状发生改变?为什么? 如:基因突变生物性状不改变:①突变后转录形成的密码子决定的是同一种氨基酸②不表达的基因发生突变(基因的选择性表达)③突变被显性性状掩盖(AA→Aa或Aa→AA)④环境的影响7、意义:①是生物变异的来源;②为生物的进化提供了材料; ③是形成生物多样性的重要原因之一。 8、应用——诱变育种 ①方法:用射线、激光、化学药品等处理生物。 ②原理: ③实例:高产青霉菌株的获得 ④优缺点:育种进程,地改良某些性状,但有利变异个体。 (二)基因重组 1、概念:是指生物体在进行有性生殖的过程中,控制不同性状的基因的过程。 2、种类: ①自由组合型:时期,染色体上的自由组合。 ②交叉互换型,时期,同源染色体上(染色单体)之间等位基因的交换。 ③技术(及S型菌的转化。注:转基因生物和转基因食品的安全性:用一分为二的观点看问题,用其利,避其害。我国规定对于转基因产品必须标明。) 3、结果:产生新的和新性状组合。 4、应用(育种): 5、意义:①为生物的变异提供了的来源;②为生物的进化提供材料; ③是形成生物体多样性的重要原因之一 注意:①受精过程中卵细胞和精子的结合不是基因重组。②在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合.产生新的基因型(新的性状组合)。而基因突变是基因结构的改变,产生新的基因、新的性状。 (三)染色体的变异 1、染色体结构变异: 实例:猫叫综合征(病因5号染色体部分缺失) 类型:、、、(看书并理解 .....) 2、染色体数目的变异 类型①个别染色体增加或减少:实例:21三体综合征(多1条21号染色体) ②以染色体组的形式成倍增加或减少:实例:三倍体无子西瓜 3、染色体组: (1)概念:细胞中的一组,在上各不相同,但又相互协调,共同控制生物生长、发育、遗传、变异。这样的一组染色体叫一个染色体组。 (2)特点:①一个染色体组中无同源染色体,形态和功能各不相同; ②一个染色体组携带着控制生物生长的全部遗传信息。 (3)染色体组数的判断方法 ①染色体组数= 细胞中形态相同的染色体数(染色体数/染色体形态数); 例1:以下各图中,各有几个染色体组?

相关文档
相关文档 最新文档