文档库 最新最全的文档下载
当前位置:文档库 › (一)细菌基因组DNA的提取

(一)细菌基因组DNA的提取

(一)细菌基因组DNA的提取

1.试剂

1)CTAB/NaCl溶液:4.1g NaCl溶解于80mL H2 O,缓慢加入10g CTAB,加水至100mL。2)其它试剂:氯仿:异戊醇(24:1),酚:氯仿:异戊醇(25:24:1),异丙醇,70% 乙醇,TE,10% SDS,蛋白酶K (20mg/mL或粉剂),5mol/L NaCl。

2.操作步骤:

1)100mL 细菌过夜培养液, 5000rpm离心10分钟, 去上清液。

2)加9.5mL TE悬浮沉淀, 并加0.5 mL 10% SDS, 50 μL 20mg/mL(或1mg干粉)蛋白酶K, 混匀, 37℃保温1小时。

3)加1.5mL 5mol/L NaCl, 混匀。

4)加1.5mL CTAB/NaCl溶液, 混匀, 65℃保温20分钟。

5)用等体积酚:氯仿:异戊醇(25:24:1)抽提, 5000rpm离心10分钟, 将上清液移至干净离心管。6)用等体积氯仿:异戊醇(24:1)抽提, 取上清液移至干净管中。

7)加1倍体积异丙醇, 颠倒混合, 室温下静止10分钟,沉淀DNA。

8)用玻棒捞出DNA沉淀, 70%乙醇漂洗后, 吸干,溶解于1mL TE, -20℃保存。如DNA沉淀无法捞出,可5000rpm离心, 使DNA沉淀。

(二)细胞基因组DNA的提取

Each sample + TNES buffer 500 μL +proteinase K 25 μL → 55 °C, 750 rpm, 2hr →+150 μL 6M NaCl, vortex → spin 5 min, Max, romm temperature (RT) →isolate supernatant + 600 μL cold ethanol (95%), vortex → spin 5 min, Max, RT→ precipitation + 75% ethanol, RT, Vortex → spin 5 min, Max, RT →precipitation+50 μL TE buffer (10× stock solution), keep in 4 °C.

(三)Chelex法抽提DNA

1.用无菌棉签取双侧颊粘膜拭子,室温下自然干燥过夜,在无菌容器中保存。

2.取1.5mL试管,加双蒸去离子水1mL,将对应的颊粘膜棉签拭子插入试管内,浸泡20

分钟,其间用力搅动棉签,再将棉签用眼科镊挤干取出

3.12000rpm离心5分钟,弃上清

4.加5% chelex-100 200μL、蛋白酶K 5μL,置50℃水浴中30分钟,再置沸水浴中10分钟,

灭活蛋白酶K,冰浴3分钟,使DNA复性

5.取出后12000rpm离心5分钟,取上清液移至另一管中,-20℃保存备用

(四)新鲜血DNA提取

1.将约3mL的血块导入匀浆管中,加入8mL的裂解液进行研磨,直至血块磨匀。转入50mL

的离心管中,再加入30mL的裂解液,6000转离心10min,弃上清液。

2.在沉淀中加入20mL的裂解液,充分震荡后6000转离心10min,弃上清。

3.在沉淀中加入了1mL的抽提液和15μL的蛋白酶K,混匀后转入5mL离心管中,37°的

水浴过夜或者50°水浴3小时。

4.过夜的水浴液体中加入1mL的Tris饱和酚(注意的是Tris饱和酚分为液相在上层,油

相在下层,加入液体必须是下层的油相物),混匀后(手摇15min),4000转离心10min,取上清液体。。

5.在上清液体中加入等体积的的氯仿和异戊醇的混合液体(氯仿:异戊醇=24:1),充分

混匀后(手摇15min)4000转离心10min,取上清液(分入两个1.5mL的离心管中,各约600μL—800μL)

6.在上清液体中加入3M的醋酸钠80μL,再加入与上清液体等体积的冰无水乙醇(-40℃

保存),上下轻摇。可以见到白色絮状沉淀物,再以10000转/10min离心。

7.在沉淀中加入冰无水乙醇约1mL,12000转/6.5min离心,弃上清后真空抽干。

8.干燥后产物加入TE缓冲溶液10μL溶解,4℃放置五天,期间可以在摇床上晃动,然后

测量浓度和OD值,然后稀释到0.1ug/μL,分装后放入-20℃保存。

9.使用分光光度仪器测量DNA的OD 值的时候,首先是使用酒精清洗那个放入的内盒内

外,然后使用TE缓冲液冲洗数遍,然后加入TE缓冲液,放入插孔,调零,然后倒掉TE缓冲液调零,加入1μL的DNA母液+49μLTE缓冲液(或2μL的DNA母液+98μLTE 缓冲液),放入后测量OD值和浓度,即为母液的浓度。

细菌的基因预测以及注释

Whole-genome Annotation of an A.baumannii strain A.baumannii ACICU

摘要 随着新一代测序技术的发展,微生物全基因组测序的成本大大减少,DNA序列的生成速度已远远超过其基因的注释速度。功能基因组学的研究已经成为当今研究的主流。然而如此多的数据对现有的基因注释工具提出了巨大的挑战。本研究通过对A.baumanii ACICU染色体序列使用GeneMarks进行基因预测,预测到了3718个基因,然后使用RAST进行基因注释,共注释到了3683个功能基因,将得到的结果与原文献中所注释到的基因进行对比。最后得到结论,基因的预测与注释都需要综合不同软件的结果进行分析,才能得到较为准确的结果。本研究为原核生物全基因组的注释提方法供了参考。 关键字:基因注释全基因组鲍曼不动杆菌GeneMarksRAST

目录 1.引言(Introduction) (2) 1.1.背景介绍 (2) 1.2.全基因组注释软件 (3) 1.3. A.baumannii ACICU相关 (4) 2.材料与方法(Methods and Materials) (5) 2.1.使用GeneMarks进行ORF预测 (5) 2.2.使用RAST进行功能基因注释 (6) 3.结果与讨论(Results and Discussion) (8) 3.1.使用GeneMarks预测ORF的结果以及分析 (8) 3.2.使用RAST进行功能基因注释结果以及分析 (9) 3.3.综合分析 (10) 参考文献 (10) 1.引言(Introduction) 1.1.背景介绍

Ion torrent微生物(细菌)全基因组重测序文库构建实验方案

微生物(细菌)全基因组重测序文库构建实验方案 一、重测序原理 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。 二、技术路线 ↓基因组DNA提取 细菌DNA(纯化) ↓超声波打断 DNA片段化 ↓ 文库构建 ↓Ion OneTouch 乳液PCR、ES ↓Ion PGM、Ion Proton 上机测序 ↓ 生物信息学分析 三、实验方案 1.细菌总DNA的提取 液氮速冻、干冰保存的细菌菌液:若本实验室可以提供该细菌生长的条件,则对菌液进行活化,培养至对数期时,对该细菌进行DNA提取;若本实验室不能提供该细菌的生长条件,则应要求客户提供尽可能多的样本,以保证需要的DNA量。 细菌DNA采用试剂盒提取法(如TianGen细菌基因组提取试剂盒)。 取对数生长期的菌液,按照细菌DNA提取试剂盒操作步骤进行操作。提取完成后,对基因组DNA进行纯度和浓度的检测。通过测定OD260/280,范围在1.8-2.0之间则DNA较纯,使用Qubit对提取的DNA进行定量,确定提取的DNA 浓度达到文库构建的量。

2.DNA片段化 采用Covaris System超声波打断仪(Covaris M220),将待测DNA打断 步骤: 1)对待打断的DNA进行定量,将含量控制在100ng或者1μg 2)打开Covaris M220安全盖,将Covaris AFA-grade Water充入水浴容器内,至液面到最高刻度线(约15mL),软件界面显示为绿色 3)将待打断DNA装入Ep LoBind管中,其中DNA为100ng或1μg,加入Low TE 至总体积为50mL 4)将稀释的DNA转移至旋钮盖的Covaris管中(200bp规格),转移过程中不能将气泡带入,完成后旋紧盖子 5)选择Ion_Torrent_200bp_50μL_ScrewCap_microTube,将对应的小管放入卡口,关上安全盖,点击软件界面“RUN” 6)打断结束后,将混合液转移至一支新的1.5mL离心管中 3.末端修复及接头连接 3.1 末端修复 使用Ion Plus Fragment Kit进行,以100ng DNA量为例,各组分使用前瞬时离心2s 步骤: 1)加入核酸酶free水至装有DNA片段的1.5mL离心管中,至总体积为79μL 2)向体系中加入20μL 5×末端修复buffer,1μL末端修复酶,总体积为100μL 3)室温放置20min 3.2 片段纯化 片段纯化使用Agencourt AMpure XP Kit进行 步骤: 1)加入180μL Agencourt AMpure XP Reagent beads于经过末端修复的1.5mL离心管中,充分混匀,室温放置5min

重测序-全基因组选择(GS)

首页 科技服务 测序指南 基因课堂 市场活动与进展 文章成果 关于我们 全基因组选择1. Meuwissen T H, Hayes B J, Goddard M E.Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819 1829. 阅读原文>> 2. Haberland A M, Pimentel E C G, Ytournel F, et al. Interplay between heritability, genetic correlation and economic weighting in a selection index with and without genomic information[J]. Journal of Animal Breeding and Genetics, 2013, 130(6): 456-467. 阅读原文>> 3. Wu X, Lund M S, Sun D, et al. Impact of relationships between test and training animals and among training animals on reliability of genomic prediction[J]. Journal of Animal Breeding and Genetics, 2015, 132(5): 366-375. 阅读原文>> 4. Goddard M E ,Hayes BJ. Genomic selection [J]. Journal of Animal Breeding and Genetics,2007,124:323:330. 阅读原文>> 5. Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement [J]. Crop Science, 2009, 49(1): 1-12. 阅读原文>> 参考文献 全基因组选择简介 Meuwissen等[1]在2001年首次提出了基因组选择理论(Genomic selection , GS),即利用具有表型和基因型的个体来预测只具有基因型不具有表型值动植物的基因组育种值(GEBV)。 例如,提高奶牛的产奶量一直是奶牛研究者的研究重点,传统育种的方法需要牛生长至成年后,才能进行产奶量的测定,再进行后续的育种进程。如果在犊牛刚出生时就可以通过某种技术预测出其产奶量,就可以大大的减少育种时间,节省大量的育种成本。 全基因组选择(GS)利用覆盖全基因组的高密度分子遗传标记进行标记辅助选择,可以在奶牛的幼年时期就预测出其生产性状和营养性状,快速筛选出具有优良性状的奶牛或者种公牛,加速育种的进程。 全基因组选择技术参数 提供领先的基因组学解决方案 Leading Edge Genomic Services & Solutions 动植物重测序变异检测BSA性状定位遗传图谱群体进化全基因组关联分析Hi-C测序 人类基因组测序全基因组测序外显子测序目标区域测序单细胞基因组测序 动植物基因组测序全基因组survey 全基因组 de novo 测序泛基因组测序组装变异检测 微生物基因组测序16S/18S/ITS等扩增子测序细菌基因组 de novo 测序真菌基因组 de novo 测序微生物重测序宏基因组测序 建库测序建库测序 诺禾致源微信文章精彩阅读 >> 版权所有:北京诺禾致源科技股份有限公司 转录调控测序 真核有参转录组测序医学转录组测序真核无参转录组测序比较转录组与泛转录组测序原核转录组测序宏转录组测序单细胞转录组测序LncRNA测序circRNA测序small RNA测序ChiP-seq RIP-seq 全基因组甲基化测序 GS 重测序新产品发布 群体大小 参考群体的选择十分重要,表型信息及固定效应信息记录需要准确完整。此外,选择出 的参考群体要满足内部亲缘关系比较远,数量达到1000个以上[2]。候选群体最好与参考群体的亲缘关系较近,这样可以保证育种值预测的准确性[3]。 测序策略 测序深度:平均每个样本≥10×;测序平台:Illumina HiSeq PE150测序; 全基因组选择技术优势 全基因组选择与传统的分子标记辅助选择相比,具有很多优势[5]: 能够在得到物种个体DNA的时候即对其进行育种值评估,可以缩短世代间隔,加快遗传进展并且降低经济投入。 全基因组范围内的标记能够解释尽可能多的遗传变异,可以对遗传效应进行较为准确的检测和估计。 能够较准确的评估遗传力较低、难测定的性状或测定费用较高的性状。 通过基因组选择的方式,即使单个标记的效应很微小,导致遗传变异的所有遗传效应也都能够被SNP标记捕获, 所以比传统的基于系谱和表型数据的最佳线性无偏模型得到更高的可靠性。 a b c d

基因组测序术语解释

DNA关键词: WG-BSA (全基因组重测序BSA) 对已有参考基因组序列的物种的所有作图群体(F1、F2、RIL、DH 和BC1等),对亲本进行个体重测序,对某个极端性状材料混池测序,检测SNP,获得与性状紧密关联的分子标记和精细定位区域,是目前最高效的基因定位方法。通过选取某个极端性状,利用高效率低成本的混池测序技术,勿需开发分子标记进行遗传图的构建,快速定位与性状相关的候选QTL。 MP-Reseq (多混池全基因组重测序) 针对特有的优良地方品种中的不同品种/品系,通过群体内pooling 建库的方法,进行全基因组重测序,采用生物信息学方法全基因组范围内扫描变异位点,能快速的定位不同混池样品基因组中明显经过人工或自然选择的区域,检测与性状相关的基因区域及其功能基因。 全基因组个体重测序 基于全基因组重测序的变异图谱通过测序手段结合生物信息分析研究同一物种不同个体之间的变异情况,获得大量的变异信息,如SNP、Indel、SV 等。主要可以快速地获得大量的分子标记以及不同个体在基因组水平上的差异。 全基因组关联分析-GWAS 通过重测序对动植物重要种质资源进行全基因组基因型鉴定,与关注的表型数据进行全基因组关联分析,找出与关注表型相关的SNP位点,定位数量性状基因,与数量性状相关的基因紧密连锁的SNP标记,后续可用于分子标记辅助育种,助力育种进程。 全基因组重测序-遗传进化 通过对来自全国各地、具有代表性的XX 份XX 材料进行全基因组重测序,检测SNP、Indel、SV,并利用获得的SNP 与SV 数据进行群体多样性分析,包括连锁不平衡分析、群体进化分析、群体结构分析、群体主成分分析等。 全基因组重测序-遗传图谱 基于全基因组重测序技术对已有参考基因组序列的物种进行个体或群体的全基因组测序,利用高性能计算平台和生物信息学方法,检测单核苷酸多态性位点(SNP),并计算多态性标记间的遗传连锁距离,绘制高密度的遗传图谱。通过与表型性状进行关联分析,利用获得的强关联性标记进行下游基因的精细定位。遗传图可用于分子标记辅助育种,重要性状候选基因克隆,辅助基因组组装,比较基因组学等研究。 细菌基因组de novo 测序 细菌是生物的主要类群之一,是所有生物中数量最多的一类。细菌广泛分布于土壤和水中,或者与其他生物共生,也有部分种类分布在极端环境中,例如温泉,甚至是放射性废弃物中。由于细菌自身的营

三代单分子实时测序与细菌全基因组修饰分析

三代单分子实时测序与细菌全基因组修饰分析三代测序,除了具有读长更长之外,还有一个很重要的优势,就是能够同时测得基因组甲基化修饰的信息。这带来了一个新的视角,让我们在获得细菌完成图的同时,还可以了解基因组在表观层面的变化,从更多角度来解析细菌基因组的基因密码。 甲基化修饰是什么? 我们都知道,常见的生命遗传编码是由DNA承载的,DNA 的双链结构,编码核心就是带有ATGC四种不同碱基的脱氧核糖核酸。而实际上在生物体内很多时候DNA的碱基形式不是单纯的ATGC碱基,其中A和C两种碱基经常会存在一些甲基化修饰的现象,如下图所示:

图1 DNA甲基化转移酶的三种常见甲基化修饰方式[1] 为什么要研究甲基化修饰? DNA的甲基化修饰会影响到其与配对碱基之间结合的化学动力学过程,进而使基因的转录及表达受到影响。反应到表观层面,

细胞不同生长周期下,不同位置的甲基化修饰起到了重要的辅助功能[2,3]。 图2 细菌细胞不同周期的甲基化改变[3] 同时DNA的甲基化修饰对于部分细菌的毒力表现也起着相当重要的作用。某些基因的改变,甚至会影响到全基因组的甲基化水平,进而影响到整个菌株的毒力性状表现[4]。

图 3 6个不同菌株的基因差异(A)和不同菌株毒力基因甲基化水平的改变(B)[4] 三代测序如何测得甲基化信息? 三代PacBio平台的测序方法为单分子实时测序(Single Molecule Real Time, SMRT),是基于单分子底物边合成边测序的方法。由于甲基化修饰过的碱基,其同配对碱基结合的化学动力学会有所差异,在底物碱基被甲基化修饰时,检测到的测序信号就会发生改变,如下图所示:

相关文档
相关文档 最新文档