文档库 最新最全的文档下载
当前位置:文档库 › 中考数学重难点专题讲座 第四讲 一元二次方程与二次函数(含答案)

中考数学重难点专题讲座 第四讲 一元二次方程与二次函数(含答案)

中考数学重难点专题讲座 第四讲 一元二次方程与二次函数(含答案)
中考数学重难点专题讲座 第四讲 一元二次方程与二次函数(含答案)

中考数学重难点专题讲座

第四讲 一元二次方程与二次函数

【前言】

前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。

第一部分 真题精讲

【例1】2010,西城,一模

已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根;

⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式;

②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立;

⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,

,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数

23=++y ax bx c 的解析式.

【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠0两种情况,然后利用根的判别式去判断。第二问的第一小问考关于Y 轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。事实上这个一次函数2y 恰好是抛物线1y 的一条切线,只有一个公共点(1,0)。根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。于是通过代点,将3y 用只含a 的表达式表示出来,再利用132y y y ≥≥,构建两个不等式,最终分析出a 为何值时不等式取等号,于是可以得出结果.

【解析】

解:(1)分两种情况:

当0m =时,原方程化为033=-x ,解得1x =, (不要遗漏) ∴当0m =,原方程有实数根.

当0≠m 时,原方程为关于x 的一元二次方程,

∵()()()2

22[31]4236930m m m m m m =----=-+=-△≥.

∴原方程有两个实数根. (如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了)

综上所述,m 取任何实数时,方程总有实数根.

(2)①∵关于x 的二次函数32)1(321-+--=m x m mx y 的图象关于y 轴对称, ∴0)1(3=-m .(关于Y 轴对称的二次函数一次项系数一定为0) ∴1=m .

∴抛物线的解析式为121-=x y .

②∵()()2

21212210y y x x x -=---=-≥,(判断大小直接做差) ∴12y y ≥(当且仅当1x =时,等号成立). (3)由②知,当1x =时,120y y ==.

∴1y 、2y 的图象都经过()1,0. (很重要,要对那个等号有敏锐的感觉) ∵对于x 的同一个值,132y y y ≥≥, ∴23y ax bx c =++的图象必经过()1,0. 又∵23y ax bx c =++经过()5,0-,

∴()()231545y a x x ax ax a =-+=+-. (巧妙的将表达式化成两点式,避免繁琐计算)

设)22(542

23---+=-=x a ax ax y y y )52()24(2a x a ax -+-+=.

∵对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥均成立, ∴320y y -≥,

图7

-1

-2-3-3-2-1

-4-5-62

1

1

23

∴2(42)(25)0y ax a x a =+-+-≥. 又根据1y 、2y 的图象可得 0a >, ∴24(25)(42)04a a a y a

---=最小

≥.(a>0时,顶点纵坐标就是函数的最小值)

∴2(42)4(25)0a a a ---≤. ∴2(31)0a -≤. 而2(31)0a -≥.

只有013=-a ,解得1

3

a =. ∴抛物线的解析式为3

5343123-+=x x y .

【例2】2010,门头沟,一模

关于x 的一元二次方程22(1)2(2)10m x m x ---+=. (1)当m 为何值时,方程有两个不相等的实数根;

(2)点()11A --,

是抛物线22(1)2(2)1y m x m x =---+上的点,求抛物线的解析式; (3)在(2)的条件下,若点B 与点A 关于抛物线的对称轴对称,是否存在与抛物线只交于点B 的直线,若存在,请求出直线的解析式;若不存在,请说明理由.

【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。第二问给点求解析式,比较简单。值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b 以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+b 的形式并未包括斜率不存在即垂直于x 轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.

【解析】:

(1)由题意得[]2

2224(1)0m m ?=---->()

解得5

4

m < 210m -≠

解得1m ≠± 当5

4

m <

且1m ≠±时,方程有两个不相等的实数根. (2)由题意得212(2)11m m -+-+=-

解得31m m =-=,

(舍) (始终牢记二次项系数不为0) 28101y x x =++ (3)抛物线的对称轴是5

8

x =

由题意得114B ??

-- ???

, (关于对称轴对称的点的性质要掌握) 1

4

x =-与抛物线有且只有一个交点B (这种情况考试中容易遗漏)

另设过点B 的直线y kx b =+(0k ≠)

把114B ??

-- ???

代入y kx b =+,得14k b -+=-,114b k =-

1

14y k x k =+- 281011

14

y x x y kx k ?=++?

?=+-?? 整理得2

18(10)204

x k x k +--+=

有且只有一个交点,2

1(10)48(2)04

k k ?=--??-+=

解得6k = 162

y x =+

综上,与抛物线有且只有一个交点B 的直线的解析式有14x =-,1

62

y x =+

【例3】

已知P (3,m -)和Q (1,m )是抛物线221y x bx =++上的两点. (1)求b 的值;

(2)判断关于x 的一元二次方程221x bx ++=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;

(3)将抛物线221y x bx =++的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.

【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组, 十分麻烦,计算量大,浪费时间并且可能出错。但是仔细看题,发现P,Q 纵坐标是一样的,说明他们关于抛物线的对称轴对称。而抛物线只有一个未知系数,所以轻松写出对称轴求出b 。 第二问依然是判别式问题,比较简单。第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。

【解析】

(1)因为点P 、Q 在抛物线上且纵坐标相同,所以P 、Q 关于抛物线对称轴对称并且到对称轴距离相等.

所以,抛物线对称轴3142

b x -+=-

=,所以,4b =. (2)由(1)可知,关于x 的一元二次方程为2241x x ++=0. 因为,24b ac =- =16-8=8>0. 所以,方程有两个不同的实数根,分别是 12122b x a -+=

=-+ ,22

122

b x a --==--

. (3)由(1)可知,抛物线2241y x x =++的图象向上平移k (k 是正整数)个单位后的解析式为2241y x x k =+++.

若使抛物线2241y x x k =+++的图象与x 轴无交点,只需22410x x k +++= 无实数解即可.

由24b ac =- =168(1)k -+=88k -<0,得1k > 又k 是正整数,所以k 得最小值为2.

【例4】2010,昌平,一模

已知抛物线2442y ax ax a =-+-,其中a 是常数. (1)求抛物线的顶点坐标; (2)若2

5

a >

,且抛物线与x 轴交于整数点(坐标为整数的点),求此抛物线的解析式.

【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a 提出来,里面就是一个关于X 的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X 轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给2

5

a >

,合理变换以后代入判别式,求得整点的可能取值. (1)依题意,得0a ≠,

∴2442y ax ax a =-+- ()()22

4422 2.

a x x a x =-+-=--

∴抛物线的顶点坐标为(2,2)-

(2)∵抛物线与x 轴交于整数点, ∴24420ax ax a -+-=的根是整数.

∴24164(42)222a a a a a x a a

±--==±

是整数. ∵0a >, ∴2

2x a

=±是整数. ∴

2

a

是整数的完全平方数. ∵2

5

a >, ∴2

5a

<. (很多考生想不到这种变化而导致后面无从下手) ∴2

a

取1,4, 当

21a =时,2a =; 当24a =时,1

2

a = . ∴a 的值为2或

1

2

. ∴抛物线的解析式为2286y x x =-+或2

122

y x x =-.

【例5】2010,平谷,一模

已知:关于x 的一元二次方程()()2

1210m x m x -+--=(m 为实数)

(1)若方程有两个不相等的实数根,求m 的取值范围;

(2)在(1)的条件下,求证:无论m 取何值,抛物线()()2

121y m x m x =-+--总过x

轴上的一个固定点;

(3)若m 是整数,且关于x 的一元二次方程()()2

1210m x m x -+--=有两个不相等的

整数根,把抛物线()()2

121y m x m x =-+--向右平移3个单位长度,求平移后的解析式.

【思路分析】本题第一问比较简单,直接判别式≥0就可以了,依然不能遗漏的是m -1≠0。第二问则是比较常见的题型.一般来说求固定点既是求一个和未知系数无关的X,Y 的取值.对于本题来说,直接将抛物线中的m 提出,对其进行因式分解得到y=(mx -x -1)(x+1)就可以看出当x=-1时,Y=0,而这一点恰是抛物线横过的X 轴上固定点.如果想不到因式分解,

由于本题固定点的特殊性(在X 轴上),也可以直接用求根公式求出两个根,标准答案既是如此,但是有些麻烦,不如直接因式分解来得快.至于第三问,又是整数根问题+平移问题,因为第二问中已求出另一根,所以直接令其为整数即可,比较简单.

解:(1)()()2

2241m m m ?=-+-= ∵方程有两个不相等的实数根, ∴0m ≠ ∵10m -≠,

∴m 的取值范围是0m ≠且1m ≠.

(2)证明:令0y =得()()2

1210m x m x -+--=.

∴()()

()()

2

222121m m m m x m m --±--±==

--.

∴()()12221

121211

m m m m x x m m m -+--++=

=-==---, (这样做是因为已经知道判别式是2m ,计

算量比较小,如果根号内不是完全平方就需要注意了)

∴抛物线与x 轴的交点坐标为()11001m ??

-

?-??

,,,, ∴无论m 取何值,抛物线()()2

121y m x m x =-+--总过定点()10-,

(3)∵1x =-是整数 ∴只需1

1

m -是整数. ∵m 是整数,且01m m ≠≠,

, ∴2m =

当2m =时,抛物线为21y x =-.

把它的图象向右平移3个单位长度,得到的抛物线解析式为 ()2

23168y x x x =--=-+

【总结】 中考中一元二次方程与二次函数几乎也是必考内容,但是考点无非也就是因式分解,判别式,对称轴,两根范围,平移以及直线与抛物线的交点问题。总体来说这类题目不难,但是需要计算认真,尤其是求根公式的应用一定要注意计算的准确性。这种题目大多包涵多个小问。第一问往往是考验判别式大于0,不要忘记二次项系数为0或者不为0的

情况。第2,3问基于函数或者方程对其他知识点进行考察,考生需要熟记对称轴,顶点坐标等多个公式的直接应用。至于根与系数的关系(韦达定理)近年来中考已经尽量避免提及,虽不提倡但是应用了也不会扣分,考生还是尽量掌握为好,在实际应用中能节省大量的时间。

第二部分 发散思考

【思考1】. 2010,北京中考

已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;

(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;

(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线

()1

2

y x b b k =

+<与此图象有两个公共点时,b 的取值范围.

【思路分析】去年中考原题,相信有些同学已经做过了.第一问自不必说,判别式大于0加上k 为正整数的条件求k 很简单.第二问要分情况讨论当k 取何值时方程有整数根,一个个代进去看就是了,平移倒是不难,向下平移就是整个表达式减去8.但是注意第三问,函数关于对称轴的翻折,旋转问题也是比较容易在中考中出现的问题,一定要熟练掌握关于对称轴翻折之后函数哪些地方发生了变化,哪些地方没有变.然后利用画图解决问题.

【思考2】2009,东城,一模

已知:关于x 的一元二次方程222(23)41480x m x m m --+-+= (1)若0,m >求证:方程有两个不相等的实数根;

(2)若12<m <40的整数,且方程有两个整数根,求m 的值.

【思路分析】本题也是整根问题,但是不像上题,就三个值一个个试就可以试出来结果。本题给定一个比较大的区间,所以就需要直接用求根公式来计算.利用已知区间去求根的判别式的区间,也对解不等式做出了考察.

【思考3】2009,海淀,一模

已知: 关于x 的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2-bx+kc (c ≠0)的图象与x 轴一个交点的横坐标为1. (1)若方程①的根为正整数,求整数k 的值;

(2)求代数式akc

ab

b k

c +-22)(的值;

(3)求证: 关于x 的一元二次方程ax2-bx+c=0 ②必有两个不相等的实数根.

【思路分析】本题有一定难度,属于拉分题目。第一问还好,分类讨论K 的取值即可。第二问则需要将k 用a,b 表示出来,然后代入代数式进行转化.第三问则比较繁琐,需要利用题中一次方程的根为正实数这一条件所带来的不等式,去证明二次方程根的判别式大于0.但是实际的考试过程中,考生在化简判别式的过程中想不到利用已知条件去套未知条件,从而无从下手导致失分.

【思考4】2009,顺义,一模

. 已知:关于x 的一元二次方程22(21)20x m x m m -+++-=. (1)求证:不论m 取何值,方程总有两个不相等的实数根; (2)若方程的两个实数根12x x ,满足122

11

m x x m +-=+-,求m 的值.

【思路分析】这一题第二问有些同学想到直接平方来去绝对值,然后用韦达定理进行求解,但是这样的话计算量就会非常大,所以此题绕过韦达定理,直接用根的判别式写出12x x ,,

发现12x x ,都是关于m 的一次表达式, 做差之后会得到一个定值.于是问题轻松求解. 这个题目告诉我们高级方法不一定简单,有的时候最笨的办法也是最好的办法.

第三部分 思考题解析

【思考1解析】

解:(1)由题意得,168(1)0k ?=--≥. ∴3k ≤. ∵k 为正整数,

∴123k =,

,. (2)当1k =时,方程22410x x k ++-=有一个根为零; 当2k =时,方程22410x x k ++-=无整数根;

当3k =时,方程22410x x k ++-=有两个非零的整数根. 综上所述,1k =和2k =不合题意,舍去;3k =符合题意.

当3k =时,二次函数为2242y x x =++,把它的图象向下平移8个单位得到的图象的解析式为2246y x x =+-.

(3)设二次函数2246y x x =+-的图象与x 轴交于

A B 、两点,则(30)A -,

,(10)B ,. 依题意翻折后的图象如图所示.

当直线12y x b =

+经过A 点时,可得3

2b =; 当直线12y x b =+经过B 点时,可得1

2

b =-.

由图象可知,符合题意的(3)b b <的取值范围为13

22

b -<<.

【思考2解析】

证明: []2

2

=2(23)-4414884m m m m ---++ ()=

0,m > 840.m ∴+>

∴方程有两个不相等的实数根。 (2)2(23)84

=

(23)212

m m x m m -±+-±+=

A O x

y

8 6 4

2

2

4

2- 4- 2-

4-

6- 8-

B

∵方程有两个整数根,必须使21m +为整数且m 为整数. 又∵12<m <40, 252181.m ∴<+< ∴ 5<21m +<9.

35216,.2

217,24.63218,.2

m m m m m m +=∴=+=∴=+=∴=

令令令 ∴m=24

【思考3解析】

解:由 kx=x+2,得(k -1) x=2. 依题意 k -1≠0. ∴ 1

2

-=

k x . ∵ 方程的根为正整数,k 为整数, ∴ k -1=1或k -1=2. ∴ k1= 2, k2=3.

(2)解:依题意,二次函数y=ax2-bx+kc 的图象经过点(1,0), ∴ 0 =a -b+kc, kc = b -a .

2

22222222a ab ab

b a ab b a b a ab b a b ak

c ab b kc -+-+-=-+--=+-)()()( =

.12

2-=--a ab ab

a (3)证明:方程②的判别式为 Δ=(-b)2-4ac= b2-4ac. 由a ≠0, c ≠0, 得ac ≠0.

( i ) 若ac<0, 则-4ac>0. 故Δ=b2-4ac>0. 此时方程②有两个不相等的实数 根.

( ii ) 证法一: 若ac>0, 由(2)知a -b+kc =0, 故 b=a+kc.

Δ=b2-4ac= (a+kc)2-4ac=a2+2kac+(kc)2-4ac = a2-2kac+(kc)2+4kac -4ac

=(a -kc)2+4ac(k -1). ∵ 方程kx=x+2的根为正实数, ∴ 方程(k -1) x=2的根为正实数. 由 x>0, 2>0, 得 k -1>0. ∴ 4ac(k -1)>0. ∵ (a -kc)2≥0,

∴Δ=(a -kc)2+4ac(k -1)>0. 此时方程②有两个不相等的实数根. 证法二: 若ac>0,

∵ 抛物线y=ax2-bx+kc 与x 轴有交点, ∴ Δ1=(-b)2-4akc =b2-4akc ≥0. (b2-4ac)-( b2-4akc)=4ac(k -1). 由证法一知 k -1>0, ∴ b2-4ac> b2-4akc ≥0.

∴ Δ= b2-4ac>0. 此时方程②有两个不相等的实数根. 综上, 方程②有两个不相等的实数根.

【思考4解析】

(1)[]2

2

(21)4(2)m m m ?=-+-+-

22441448m m m m =++--+ 90=>

∴不论m 取何值,方程总有两个不相等实数根

(2)由原方程可得12(21)9(21)3

22

m m x +±+±=

=

∴ 1221x m x m =+=-, -- ∴ 123x x -=

又∵ 12211m x x m +-=+- ∴ 2

311

m m +=+

- ∴ 4m = -

m 符合题意.经检验:4

∴m的值为4.

https://www.wendangku.net/doc/6d17036482.html,

二次函数图像与性质重难点题型(答案)

专题:二次函数图像与性质重难点题型 考点一 二次函数的图像及性质 1.对于抛物线y =-1 2 (x +1)2+3,下列结论: ①抛物线的开口向下; ②对称轴为直线x =1; ③顶点坐标为(-1,3); ④x >1时,y 随x 的增大而减小. 其中正确结论的个数为( C ) A .1个 B .2个 C .3个 D .4个 2.在函数y =ax 2-2ax -7上有A (-4,y 1),B (2,y 2),C (3,y 3)三点,若抛物线有最大值,则y 1,y 2和y 3的大小关系为( A ) A .y 1<y 3<y 2 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 1<y 2<y 3 3.若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( A ) A .b <1且b ≠0 B .b >1 C .0<b <1 D .b <1 4.二次函数y =kx 2 -6x +3的图象与x 轴有两个交点,则k 的取值范围是 k <3且k ≠0 . 5.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,求实数m 的值. 解:当m >1时,∴当x =1时,y 取得最大值, 即-(1-m )2+m 2+1=4,解得m =2; 当-2≤m ≤1时,∵-2≤x ≤1,∴当x =m 时,y 取得最大值,即m 2+1=4,解得m =-3或3(不合题意,舍去); 当m <-2时,∵-2≤x ≤1, ∴当x =-2时,y 取得最大值,即-(-2-m )2+m 2+1=4, 解得m =-7 4 (不合题意,舍去).综上,实数m 的值为2或-3. 考点二 二次函数的表达式的确定 1.已知一个二次函数,当x =1时,y 有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( D ) A .y =-2x 2-x +3 B .y =-2x 2+4 C .y =-2x 2+4x +8 D .y =-2x 2+4x +6 2.已知矩形ABCD 的两条对称轴为坐标轴和点A (2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( A ) A .y =x 2+8x +14 B .y =x 2-8x +14 C .y =x 2+4x +3 D .y =x 2-4x +3 3.将抛物线y =x 2-2x -1向上平移,使它经过点A (0,3),那么所得新抛物线对应的函数表达式是 y =x 2-2x +3 . 4.已知点P (-1,5)在抛物线y =-x 2+bx +c 的对称轴上,且与该抛物线的顶点的距离是4,则该抛物线的表达式为 y =-x 2-2x 或y =-x 2-2x +8 . 5.已知抛物线l :y =ax 2+bx +c (abc ≠0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线. (1)抛物线y =x 2-2x -3的衍生抛物线是 y =-x 2 -3 ,衍生直线是 y =-x -3 ; (2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的表达式. 解:由题可知,衍生抛物线和衍生直线的两交点分别为原抛物线与衍生抛物线的顶点, 将y =-2x 2+1和y =-2x +1联立,得??? y =-2x 2+1,y =-2x +1, 解得???x =0,y =1或???x =1,y =-1. ∵衍生抛物线y =-2x 2+1的顶点为(0,1), ∴原抛物线的顶点为(1,-1). 设原抛物线的表达式为y =t (x -1)2-1, ∵抛物线过(0,1),∴1=t (0-1)2-1,解得t =2, ∴原抛物线的表达式为y =2(x -1)2-1=2x 2-4x +1. 考点三 二次函数的图像应用 1.已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( D ) A .有最大值0,有最小值-2 B .有最大值0,有最小值-1 C .有最大值7,有最小值-1 D .有最大值7,有最小值-2 2.在同一平面直角坐标系中,函数y =mx +m 和y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( D ) 3.已知a ,b 是非零实数,|a |>|b |,在同一坐标系中,函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( D ) 4.如图1,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交 于P ,Q 两点,则函数y =ax 2 +(b -1)x +c 的图象可能( A ) 图1 图2 5.如图2,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y =a (x -m )2+n 的顶点在线段AB 上运动,与x 轴交于C ,D 两点(点C 在点D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为 8 . 考点四 二次函数与方程、不等式的关系 1.抛物线y=ax 2+bx+c 的图象如图3,下列结论正确是( C ) A .abc>0 B .2a+b>0 C .3a+c<0 D .ax 2+bx+c -3=0有两个不相等的实数根 2.二次函数y =ax 2+bx +c (a ≠0)的图象如图4,下列结论: ①b 2>4ac , ②abc <0, ③2a +b -c >0, ④a +b +c <0. 其中正确的是( A ) A .①④ B .②④ C .②③ D .①②③④ 图3 图4 图5 3.二次函数y =ax 2 +bx +c (a ≠0)的图象如图5,下列四个结论: ①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b ≤a , 其中正确结论的个数是( B )

一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数de 最高次数是2de 整式方程叫做一元二次 方程。 2、一元二次方程de 一般形式:)0(02≠=++a c bx ax ,它de 特征是:等式左边十一个 关于未知数xde 二次多项式,等式右边是零,其中2 ax 叫做 二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项 系数;c 叫做常数项。 3.一元二次方程de 解法 (1)直接开平方法:利用平方根de 定义直接开平方求一元二次方程de 解de 方法叫做直接开 平方法。直接开平方法适用于解形如b a x =+2)(de 一元二次方程。根 据平方根de 定义可知,a x +是bde 平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法de 理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中dea 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法de 步骤:先把常数项移到方程de 右边,再把二次项de 系数化为1,再同时加上1 次项de 系数de 一半de 平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程de 解de 方法,它是解一元二次方程de 一般 方法。一元二次方程)0(02≠=++a c bx ax de 求根公式: )04(2422≥--±-=ac b a ac b b x 公式法de 步骤:就把一元二次方程de 各系数分别代入,这里二次项de 系数为a ,一次项 de 系数为b ,常数项de 系数为c (4)因式分解法:因式分解法就是利用因式分解de 手段,求出方程de 解de 方法,这种方法 简单易行,是解一元二次方程最常用de 方法。 分解因式法de 步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指 de 是分解因式中de 公式法)或十字相乘,如果可以,就可以化为乘积 de 形式 4.一元二次方程根de 判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一 元二次方程)0(02≠=++a c bx ax de 根de 判别式,通常用 “?”来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等de 实数根;

一元二次方程学习中的重难点

一元二次方程学习中的重难点 第一部分:搞明白要做什么 1.首先,我们的教学目标如下: (1)会用公式法解一元二次方程; (2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;(3)渗透化归思想,领悟配方法,感受数学的内在美. 2.其次,我们的教学重难点如下 (1)教学重点 知识层面:公式的推导和用公式法解一元二次方程; 能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法. (2)教学难点:求根公式的推导. 3.而后,总体设计思路: 以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维. 第二部分:弄清楚要怎么做 1.我们的教学过程设计如下: 整体教学流程:形成表象,提出问题分析问题,探究本质得出结论,解决问题拓展应用,升华提高归纳小结,布置作业. 2.形成表象,提出问题 在上一节已学的用配方法解一元二次方程的基础上创设情景. 解下列一元二次方程:(学生选两题做) (1)x2+4x+2=0 ; (2)3x2-6x+1=0; (3)4x2-16x+17=0 ; (4)3x2+4x+7=0. 然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处? 接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程) (1)3x2+4x+2=0; (2)3x2-2x+1=0; (3)4x2-16x-3=0 ; (4)3x2+x+7=0. 思考:新的四题与原题的解题过程会发生什么变化? 设计意图:1.复习巩固旧知识,为本节课的学习打下更好的基础; 2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望 3.分析问题,探究本质 由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.

二次函数易错题、重点题型汇总

二次函数易错题、重点题型汇总 一、选择题 1、若二次函数52 ++=bx x y 配方后为k x y +-=2 )2(则b 、k 的值分别为( ) A 0.5 B 0.1 C —4.5 D —4.1 2、在平面直角坐标系中,抛物线y =x 2+2x 与坐标轴的交点的个数是( ) A.3 B.2 C.1 D.0 3、根据下列表格的对应值: x 3.23 3.24 3.25 3.26 y=ax 2+bx+c -0.6 -0. 2 0. 3 0.9 判断方程ax 2+bx+c-0.4=0(a ≠0,a 、b 、c 为常数)一个解的范围是( ) A.3<x <3.23 B.3.23<x <3.24 C.3.24<x <3.25 D.3.25<x <3.26 4、已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 2 5、把抛物线y=2x 2 -4x -5绕顶点旋转180o,得到的新抛物线的解析式是( ) A .y= -2x 2 -4x -5 B .y=-2x 2+4x+5 C .y=-2x 2+4x -9 D .以上都不对 6、已知二次函数y=ax 2+bx+c 的图象如图所示,下列结论:①a+b+c>0;②a -b+c>0;③abc<0; ④2a+b=0.其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 7、函数y=x 2 -2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( ) A .31≤≤-x B .31<<-x C .31>-0)的两实根分别为α,β,且α<β,则α,β满足 A. 1<α<β<2 B. 1<α<2 <β C. α<1<β<2 D.α<1且β>2

一元二次方程重难点

一.一元二次方程的定义 二.有关一元二次方程根的考查(根与系数的关系及两方程公共根问题) 三.一元二次方程的解法(直接开平方法、配方法、公式法、因式分解法) 四.含绝对值的一元二次方程 五.根的判别式及韦达定理 ①根与系数的关系——对方程根的个数的判别 ②利用判别式解参数取值范围——含参变量的一元二次方程 ③通过判别式,证明方程根的个数问题 ④利用韦达定理求代数式的值(2 21212121212 11,,,,x x x x x x x x x x +-±±等) ⑤利用韦达定理求参数的值 五.一元二次方程整数根问题 六.一元二次方程的应用 一.一元二次方程的定义 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 关于一元二次方程的定义考查点有三个:①二次项系数不为0;②最高次数为2;③整式方程 一般形式:20(0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项. 二.有关一元二次方程根的考查(根与系数的关系及两方程公共根问题) 关于一元二次方程根的考查就是需要将根代入方程得到一个等式,然后再考察恒等变换。(将根代入方程,这是很多同学都容易忽略的一个条件) 1.与根有关的代数式化简求值 【例】已知x 是一元二次方程x 2 +3x-1=0的实数根,求代数式:2 35 (2)362 x x x x x -÷+---的值. 知识导航 一元二次方程重难点 基础学习

【巩固】先化简,再求值:222412()4422 a a a a a --÷-+--,其中a 是方程x 2 +3x+1=0的根. 2.公共解问题 【思考】已知两个二次方程x 2 +ax+b=0与x 2 +cx+d=0有一个公共根为1,求证:二次方程 2022 a c b d x x +++ +=也有一个根为1. 【例1】一元二次方程x 2 ?2x ?54=0的某个根,也是一元二次方程x 2 ?(k +2)x +94 =0的根,求k 的值. 【巩固】当k 为何值时,方程x 2-(k+2)x+12=0和方程2x 2 -(3k+1)x+30=0有一公共根? 求出此公共根. 【变式1】若两个不同的关于x 的方程x 2 +x+a=0与x 2 +ax+1=0有一个共同的实数根,求a 的值及这两个方程的公共实数根.

二次函数重难点突破超级讲义

二次函数考点分析培优 核心知识点: ★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ★★二次函数y=ax 2 +bx+c (a ,b ,c 是常数,a ≠0) 一般式:y=ax 2 +bx+c ,三点:顶点坐标(-2b a ,244ac b a -),对称轴x=-2b a ,最值 顶点式:y=a (x -h )2 +k ,顶点坐标对称轴:顶点坐标(h ,k ),对称轴x=h 交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2 ,对称轴为2 2 1x x h += ★★★a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2b a <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=- 2b a >0,即对称轴在y c?的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出. 中考分考点分析 1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2 -+=x y 则原二次函数的解析式为 2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2 相同,这个函数解析式为________。 3.如果函数1)3(2 32 ++-=+-kx x k y k k 是二次函数,则k 的值是______ 4.(08绍兴)已知点11()x y ,,22()x y ,均在抛物线2 1y x =-上,下列说法中正确的是( ) A .若12y y =,则12x x = B .若12x x =-,则12y y =- C .若120x x <<,则12y y > D .若120x x <<,则12y y > 5.(兰州10) 抛物线c bx x y ++=2 图像向右平移2个单位再向下平移3个单位,所得图像的解析式为 322 --=x x y ,则b 、c 的值为( ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 ★6.抛物线5)43()1(2 2 +--++=x m m x m y 以Y 轴为对称轴则。M = 7.二次函数52 -+=a ax y 的图象顶点在Y 轴负半轴上。且函数值有最小值,则m 的取值范围是 8.函数 245 (5)21a a y a x x ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数.

人教版21章一元二次方程知识点总结

21章 一元二次方程知识点 一、一元二次方程 1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未 知数的最高次数是2的方程叫做一元二次方程。 注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于0 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。 (2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。 (3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。 二、 一元二次方程的解 使方程左、右两边相等的未知数的值叫做方程的解,如:当2 =x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有两个根(相等或不等) 三、一元二次方程的解法 1、直接开平方法: 直接开平方法理论依据:平方根的定义。 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。 根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

三种类型:(1)()02≥=a a x 的解是a x ±=; (2)()()02≥=+n n m x 的解是m n x -±=; (3)()()0,02≥≠=+c m c n mx 且的解是m n c x -±= 。 2、配方法: 配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 (一)用配方法解二次项系数为1的一元二次方程 用配方法解二次项系数为1的一元二次方程的步骤: (1) 把一元二次方程化成一般形式 (2) 在方程的左边加上一次项系数绝对值的一半的平方,再减去这 个数; (3) 把原方程变为()n m x =+2的形式。 (4) 若0≥n ,用直接开平方法求出x 的值,若n ﹤0,原方程无解。 (二)用配方法解二次项系数不是1的一元二次方程 当一元二次方程的形式为()1,002≠≠=++a a c bx ax 时,用配方法解一元二次方程的步骤: (1)把一元二次方程化成一般形式 (2) 先把常数项移到等号右边,再把二次项的系数化为1:方程的左、右两边同时除以二项的系数; (3)在方程的左、右两边加上一次项系数绝对值的一半的平方把原方程化为()n m x =+2的形式; (4)若0≥n ,用直接开平方法或因式分解法解变形后的方程。 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

新人教版初三数学一元二次方程应用题难题

全方位教学辅导教案

若存在,求出运动的时间,若不存在,说明理由。 练习3 1.等腰△ABC 的直角边AB=BC=10cm ,点P 、Q 分别从A 、C 两点同时出发,均以1cm/秒的相同速度作直线运动,已知P 沿射线AB 运动,Q 沿边BC 的延长线运动,PQ 与直线AC 相交于点D .设P 点运动时间为t ,△PCQ 的面积为S . (1)求出S 关于t 的函数关系式; (2)当点P 运动几秒时,S △PCQ =S △ABC ? (3)作PE ⊥AC 于点E ,当点P 、Q 运动时,线段DE 的长度是否改变?证明你的结论. 2、已知:如图,在△ABC 中,∠B=90°,AB=5cm ,BC=7cm .点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动. (1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于6cm 2? (2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ? (3)在(1)中,△PQB 的面积能否等于8cm 2?说明理由. 3、如图,A 、B 、C 、D 为矩形的四个顶点,AB=16cm ,AD=6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2cm/s 的速度向D 移动. (1)P 、Q 两点从出发开始到几秒?四边形PBCQ 的面积为33cm 2; (2)P 、Q 两点从出发开始到几秒时?点P 和点Q 的距离是10cm . 4、(2011,广东)如图,抛物线14 17452++-=x x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0). (1)求直线AB 的函数关系式; (2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N .设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围; (3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由. 5、如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 课堂 检测 1、阅读下列材料:求函数的最大值. 解:将原函数转化成x 的一元二次方程,得. ∵x 为实数,∴△= =﹣y+4≥0,∴y≤4.因此,y 的最大值为 4. 根据材料给你的启示,求函数的最小值. 2、铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x 月的利润的月平均值w (万元)满足w=10x+90. (1)设使用回收净化设备后的1至x 月的利润和为y ,请写出y 与x 的函数关系式. (2)请问前多少个月的利润和等于1620万元? 3、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如 O x A M N B P C

2021年温州市中考数学重难点复习:二次函数

2021年温州市中考数学 重难点复习:二次函数 目录 一、历年真题 二、知识点讲解 三、各地真题及模拟题精讲

一、历年真题 一.选择题(共8小题) 1.将抛物线y =x 2﹣2向上平移1个单位后所得新抛物线的表达式为( ) A .y =x 2﹣1 B .y =x 2﹣3 C .y =(x +1)2﹣2 D .y =(x ﹣1)2﹣2 【解答】解:将抛物线y =x 2﹣2向上平移1个单位后所得新抛物线的表达式为y =x 2﹣2+1,即y =x 2﹣1. 故选:A . 2.如图,抛物线y =﹣(x +m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( ) A .5 2 B . 114 C .3 D . 134 【解答】解:将抛物线y =﹣(x +m )2+5向右平移3个单位后得到y =﹣(x +m ﹣3)2 +5, 根据题意得:{y =?(x +m)2+5y =?(x +m ?3)2+5, 解得:{x =3 2?m y =114, ∴交点C 的坐标为(3 2?m , 114 ), 故选:B . 3.已知点A (﹣3,a ),B (﹣2,b ),C (1,c )均在抛物线y =3(x +2)2+k 上,则a ,b ,c 的大小关系是( ) A .c <a <b B .a <c <b C .b <a <c D .b <c <a 【解答】解:函数的对称轴为:x =﹣2, a =3>0,故开口向上, x =1比x =﹣3离对称轴远,故c 最大,b 为函数最小值, 故选:C .

4.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是() A.abc>0B.2a﹣b<0C.b2﹣4ac<0D.a﹣b+c>﹣1【解答】解:A、如图所示,抛物线经过原点,则c=0,所以abc=0,故不符合题意; B、如图所示,对称轴在直线x=﹣1的左边,则?b 2a<?1,又a>0,所以2a﹣b<0, 故符合题意; C、如图所示,图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故不符合题意; D、如图所示,当x=﹣1时y<0,即a﹣b+c<0,但无法判定a﹣b+c与﹣1的大小,故 不符合题意. 故选:B. 5.抛物线y=x2+6x+9与x轴交点的个数是() A.0B.1C.2D.3 【解答】解:∵b2﹣4ac=36﹣4×1×9=0 ∴二次函数y=x2+6x+9的图象与x轴有一个交点. 故选:B. 6.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()

二次函数提高难题练习及答案二

5. ( 2014?珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH. (1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标; (3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E 两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.

12.(2014?舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED 的面积为S. (1)当m=时,求S的值. (2)求S关于m(m≠2)的函数解析式. (3)①若S=时,求的值; ②当m>2时,设=k,猜想k与m的数量关系并证明.

13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为 A、D(A在D的右侧),与y轴的交点为C. (1)直接写出A、D、C三点的坐标; (2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标; (3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由. 16.(2014?武汉,第25题12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点. (1)直线AB总经过一个定点C,请直接出点C坐标; (2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5; (3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.

一元二次方程重难点

一.一元二次方程的定义 二.有关一元二次方程根的考查(根与系数的关系及两方程公共根问题) 三.一元二次方程的解法(直接开平方法、配方法、公式法、因式分解法) 四.含绝对值的一元二次方程 五.根的判别式及韦达定理 ①根与系数的关系——对方程根的个数的判别 ②利用判别式解参数取值围——含参变量的一元二次方程 ③通过判别式,证明方程根的个数问题 ④利用韦达定理求代数式的值(221212121212 11,,, ,x x x x x x x x x x +-±±等) ⑤利用韦达定理求参数的值 五.一元二次方程整数根问题 六.一元二次方程的应用 一.一元二次方程的定义 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 关于一元二次方程的定义考查点有三个:①二次项系数不为0;②最高次数为2;③整式方程 一般形式:20(0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项. 二.有关一元二次方程根的考查(根与系数的关系及两方程公共根问题) 关于一元二次方程根的考查就是需要将根代入方程得到一个等式,然后再考察恒等变换。(将根代入方程,这是很多同学都容易忽略的一个条件) 1.与根有关的代数式化简求值 【例】已知x 是一元二次方程x 2+3x-1=0的实数根,求代数式: 235(2)362 x x x x x -÷+---的值. 知识导航 一元二次方程重难点 基础学习

【巩固】先化简,再求值:222412()4422a a a a a --÷-+--,其中a 是方程x 2+3x+1=0的根. 2.公共解问题 【思考】已知两个二次方程x 2+ax+b=0与x 2+cx+d=0有一个公共根为1,求证:二次方程2 022 a c b d x x ++++=也有一个根为1. 【例1】一元二次方程x 2?2x ? 54=0的某个根,也是一元二次方程x 2?(k +2)x +94 =0的根,求k 的值. 【巩固】当k 为何值时,方程x 2-(k+2)x+12=0和方程2x 2-(3k+1)x+30=0有一公共根?求出此公共根. 【变式1】若两个不同的关于x 的方程x 2+x+a=0与x 2+ax+1=0有一个共同的实数根,求a 的值及这两个方程的公共实数根.

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号? 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对Array值越大, 抛物线的 开口越 小。 2. 2 y ax c =+ 的性质: 上加下 减。 )2h-

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

一元二次方程知识点大全

一元二次方程知识点小结 1. 一元二次方程的定义及一般形式: (1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数 式2(二次)的方程,叫做一元二次方程。 (2) 一元二次方程的一般形式: 20(0)ax bx c a ++=≠。其中a 为二次项系数, b 为一次项系数, c 为常数项。 注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整 式方程。 2. 一元二次方程的解法 (1)直接开平方法: 形如2()(0)x a b b +=≥的方程可以用直接开平方法解,两边直接开平方得 x a +=x a +=∴x a =- 注意:若b<0,方程无解 (2)因式分解法: 一般步骤如下: ①将方程右边得各项移到方程左边,使方程右边为0; ②将方程左边分解为两个一次因式相乘的形式; ③令每个因式分别为零,得到两个一元一次方程; ④解这两个一元一次方程,他们的解就是原方程的解。 (3) 配方法: 用配方法解一元二次方程20(0)ax bx c a ++=≠的一般步骤 ①二次项系数化为1:方程两边都除以二次项系数; ②移项:使方程左边为二次项与一次项,右边为常数项; ③配方:方程两边都加上一次项系数一般的平方,把方程化为 2()(0)x m n n +=≥的形式; ④用直接开平方法解变形后的方程。 注意:当0n <时,方程无解 (4) 公式法: 一元二次方程20(0)ax bx c a ++=≠ 根的判别式:24b ac ?=- 0?>?方程有两个不相等的实根:x =(240b ac -≥)0?=?方程有两个相等的实根 0?

一元二次方程难点归类精编版

第六课时一元二次方程难点专项 专训一:巧用一元二次方程的定义及相关概念求值名师点金:巧用一元二次方程的定义及相关概念求值主要体现在:利用定义或项的概念求字母的值,利用根的概念求字母或代数式的值,利用根的概念解决探究性问题等. 利用一元二次方程的定义确定字母的取值 1.已知(m-3)x2+m+2x=1是关于x的一元二次方程,则m的取值范围是() A.m≠3 B.m≥3 C.m≥-2 D.m≥-2且m≠3 2.已知关于x的方程(m+1)xm2+1+(m-2)x-1=0. (1)m取何值时,它是一元二次方程并写出这个方程. (2)m取何值时,它是一元一次方程? 利用一元二次方程的项的概念求字母的取值 3.若关于x的一元二次方程(3a-6)x2+(a2-4)x+a+9=0没有一次项,则a=________. 4.已知关于x的一元二次方程(m-1)x2+5x+m2-1=0的常数项为0,求m的值. 利用一元二次方程的根的概念求字母或代数式的值 5.已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b的值为()

A.-1 B.0 C.1 D.2 6.已知关于x的一元二次方程(k+4)x2+3x+k2-16=0的一个根为0,求k 的值. 7.已知实数a是一元二次方程x2-2 016x+1=0的一个根,求代数式a2-2 015a-a2+1 2 016的值. 利用一元二次方程根的概念解决探究性问题 8.已知m,n是方程x2-2x-1=0的两个根,是否存在实数a使(7m2-14m +a)(3n2-6n-7)的值等于8?若存在,求出a的值;若不存在,请说明理由. 专训二:一元二次方程的解法归类 名师点金:解一元二次方程时,主要考虑降次,其解法有直接开平方法、因式分解法、配方法和公式法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果. 限定方法解一元二次方程 方法1形如(x+m)2=n(n≥0)的一元二次方程用直接开平方法求解 1.方程4x2-25=0的解为()

二次函数重点难点总结

初中二次函数知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这 里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

一元二次方程导入课重点和难点突破教学设计

一元二次方程导入课重点难点突破教学设计 一元二次方程的两个根不一定都是实际问题的解,本节的重难点是根据具体问题的实际意义,检验方程的解是否合理. 突破设计 一.列方程解应用题的步骤是:审题,设未知数,列方程,解方程,检验,答题.实际问题的解,不仅要满足所列方程,还应符合实际问题的具体题意.因此,求出方程的解后一定要进行检验,以确定实际问题的答案.在以前学习一元一次方程、二元一次方程组的应用题时,因为一般只有一个(组)解,往往符合实际意义,所以很少检验是否符合题意.而列一元二次方程解应用题时,方程的解一般有两个,这时就需要判断两个解是否都符合题意. 二.要注意培养学生良好的解题习惯,包括借助直观方法分析题意、检验所得方程及其根的实际意义,找出合乎实际的结果等.方程的解是不是实际问题的解,要根据实际意义来判断,不能想当然地主观判断.1.方程有负数解,不符合实际意义需舍掉;2.虽然方程的两个解都是正数,但实际问题要求的解有范围限制,有的方程的解不在要求的范围内,所以它们并不都是实际问题的解;有时实际问题要求是整数解时,方程有分数解,不符合实际意义需舍掉.例题解读 1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要盈利1200元,每件衬衫应降价多少元? 【解析】设每件衬衫应降价x元, 由题意,得(40-x)(20+2x)=1200, 解方程得,x1=10,x2=20. 因为要尽量减少库存,所以x=20. 答:每件衬衫应降价20元. 2若把上面的问题换为:某商店购进一种商品,单价30元,试销中发现这种商品每天的销售量p(件)与每天的销售价x(元)满足关系:p=100-2x,若商店每天销售这种商品要获得200元的销售利润,那么每件商品的售价应为多少元?每天要售出这种商品多少件? 【解析】根据题意得:(x-30)(100-2x)=200, 整理得:x2-80x+1600=0, ∴(x-40)2=0, ∴x=40, ∴p=100-2x=20(件). 答:每件商品的售价应定为40元,每天要销售这种商品20件. 3.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽. (部分参考数据:322=1024,522=2704,482=2304) 【解析】利用平移,原图可转化为右图,设道路宽为x米, 根据题意得:(20-x)(32-x)=540.

相关文档
相关文档 最新文档