文档库 最新最全的文档下载
当前位置:文档库 › 带有外力项的可压等熵Navier-Stokes方程的滞弹性逼近

带有外力项的可压等熵Navier-Stokes方程的滞弹性逼近

带有外力项的可压等熵Navier-Stokes方程的滞弹性逼近
带有外力项的可压等熵Navier-Stokes方程的滞弹性逼近

“信息”一词的来源

“信息”一词最早出自南唐诗人李中《暮春怀故人》中的“梦断美人沉信息,目穿长路依楼台”。再用“李中暮春怀故人”查得原诗在〈全唐诗〉748卷 Information 1.信息是物质、能量、信息及其属性的标示。[2006年,医学信息(杂志)]. 2.信息是确定性的增加。 3.信息是事物现象及其属性标识的集合 绪论 对于读者来说,如何通俗的了解和接受所谓信息的概念,来得更加重要。 信息,假如使用数学表达的话,很难理解。 举个例子,有十个人,两两传递一句话,“我告诉你一句话!”到第十个人那里的时候,可能听到的是这样的,“火车什么时候出发?”这说明什么问题呢?耳提面命,两两传递,语言失真!一句同样的话,经过十个人,九次传递,面目全非。 再举个例子, 别人告诉你个事,说 1、“前面有个人!”——非常含糊! 2、“前面有个男人!”——更具体! 3、“前面有个老人,是个男的!”——更具体! 4、“前面有个老头,是个盲人!”——更具体! 5、“前面有个老头,是个盲人!迷路了!”——更具体! 6、“前面有个老头,是个盲人!迷路了!需要帮助!”——更具体! 7、“前面有个老头,是个盲人!迷路了!有个警察把他送回家了!”——更具体! 在大多数情况下,我们听到的和事情的本质,是存在非常大的差异的!我们听到的是消息!而不是信息! 举个例子,单位通知作息时间, “下周开始, 长白班, 上午上班时间8:00——12:00, 下午上班时间14:00——18:00, 即日生效。” 这就是信息应用的一个具体事例。 提供一个精准数据,供传播执行。 [编辑本段]一、信息的基本定义 信息是物质、能量、信息及其属性的标示。[2006年,医学信息(杂志)]. 信息是确定性的增加。 信息是事物现象及其属性标识的集合 信息以物质介质为载体,传递和反映世界各种事物存在方式运动作态的表征。 信息(Information)是物质运动规律总和,信息不是物质,也不是能量! 信息是客观事物状态和运动特征的一种普遍形式,客观世界中大量地存在、产生和传递着以这些方式表示出来的各种各样的信息。 信息的目的是用来“消除不确定的因素”。 信息相关资料: 图片信息(又称作讯息),又称资讯,是一种消息,通常以文字或声音、图象的形式来表现,是数据按有意义的关联排列的结果。信息由意义和符号组成。文献是信息的一种,即通常讲到的文献信息。信息就是指以声音、语言、文字、图像、动画、气味等方式所表示的实际内容。

熵的应用和意义

浅谈熵的意义及其应用 摘要:介绍了熵这个概念产生的原因,以及克劳修斯对熵变的定义式;介绍了玻尔兹曼从微观角度对熵的定义及玻尔兹曼研究工作的重要意义;熵在信息、生命和社会等领域的作用;从熵的角度理解人类文明和社会发展与环境的关系。 关键词:克劳修斯熵玻尔兹曼熵信息熵生命熵社会熵 0 前言:熵是热力学中一个非常重要的物理量,其概念最早是由德国物理学家克劳 修斯(R.Clausius)于1854年提出,用以定量阐明热力学第二定律,其表达式为 dS=(δQ/T)rev。但克劳修斯给出的定义既狭隘又抽象。1877年,玻尔兹曼(L.Boltzmann)运用几率方法,论证了熵S与热力学状态的几率W之间的关系,并由普朗克于1900给出微观表达式S=k logW,其中k为玻尔兹曼常数。玻尔兹曼对熵的描述开启了人们对熵赋予新的含义的大门,人们开始应用熵对诸多领域的概念予以定量化描述,促成了广义熵在当今自然及社会科学领域的广泛应用【1】【2】。 1 熵的定义及其意义 由其表达式可知,克劳修克劳修斯所提出的熵变的定义式为dS=(δQ/T)rev , 斯用过程量来定义状态函数熵,表达式积分得到的也只是初末状态的熵变,并没有熵的直接表达式,这给解释“什么是熵”带来了困难。【1】直到玻尔兹曼从微观角度理解熵的物理意义,才用统计方法得到了熵的微观表达式:S=k logW。这一公式对应微观态等概出现的平衡态体系。若一个系统有W个微观状态数,且出现的概率相等,即每一个微观态出现的概率都是p=1/W,则玻尔兹曼的微观表达式还可写为:S=-k∑plogp。玻尔兹曼工作的杰出之处不仅在于它引入了概率方法,为体系熵的绝对值计算提供了一种可行的方案,而且更在于他通过这种计算揭示了熵概念的一般性的创造意义和价值:上面所描述的并不是体系的一般性质量和能量的存在方式和状态,而是这些质量和能量的组构、匹配、分布的方式和状态。 玻尔兹曼的工作揭示了正是从熵概念的引入起始,科学的视野开始从对一般物的质量、能量的研究转入对一般物的结构和关系的研究,另外,玻尔兹曼的工作还为熵概念和熵理论的广义化发展提供了科学依据。正是玻尔兹曼开拓性的研究,促使熵概念与信息、负熵等概念联姻,广泛渗透,跨越了众多学科,并促

动量方程及其应用分析

辽宁工程技术大学力学与工程学院 流体力学综合训练(二) 题目动量方程式及其应用 班级工力13-3班 赵永振吕周翔顾鹏 姓名 李壮张敬尧陈锦学 指导教师吴迪 成绩 辽宁工程技术大学 力学与工程学院制 1

目录 1动量方程能解决流体中的问题 (1) 1.1用欧拉方法推导动量方程式 (1) 1.2特殊情况下的动量方程 (2) 2动量方程式在实际中的应用 (2) 2.1水力真空喷射泵 (2) 2.2轮船、火箭 (4) 参考文献 (6)

引言:动量方程式是根据牛顿第二定律及N-S 方程推导出来的,是以微分形式 表示的质点运动方程。动量方程式是通过质点系动量变化率的办法计算求解,是求解流体力学问题的又一条途径。该方程式在水利、航天、工业等工程方面都有应用。 一、用欧拉方法表示的动量方程式 1.1用欧拉方法推导动量方程式 在流场中,选择控制体(固定)如图中虚线所示,一部分与固体边界重合,在某一瞬时t,控制体内包含的流体是我们要讨论的质点系,设控制体内任一质点的速度为v, 密度为ρ。在t 瞬时的初动量为t V vdV ][???ρ经过△t ,质点系运动到实线位置,这个质点系在t+△t 瞬时的末动量为: 原来质点系尚留在控制 图1 动量方程式 体中的部分及新流入控 (I )部分通过A1面非 (II )部分通过A2 制体的总动量。 原质点系的流入动量 面流出的动量 ↓ ↓ ↓ ?????????????∑∑?+ ??=-??+?==?+→?A V V t A V t t t dA v v vdV t vdV dA v v t vdV t dt mv d F ) (}][)(]{[1lim )(0ρρρρρ对于控制体的全部控制面: ?? ???????????∑∑?+?? =-??+?== ?+→?A V V t A V t t t dA v v vdV t vdV dA v v t vdV t dt m v d F ) (} ][)(]{[1 lim ) (0ρρρρρ 这就是用欧拉方法表示的动量方程式,这个方程式既适用于控制体固定的情况,也适用于控制体运动的情况。在运动时需将速度v 换成相对速度, 并在控制

熵增加原理

熵增加原理 热力学第一定律是能量的定律,热力学第二定律是熵的法则.相对于“能量”,“熵”的概念比较抽象.但随着科学的发展,“熵”的意义愈来愈重要.本文从简述热力学第二定律的建立过程着手,从各个侧面讨论“熵”的物理本质、科学内涵,以加深对它的理解. “熵”是德国物理学家克劳修斯在1865年创造的一个物理学名词,其德语为entropie,简单地说,熵表示了热量与温度的比值,具有商的意义.1923年5月25日,普朗克在南京的东南大学作“热力学第二定律及熵之观念”的学术报告时,为其作现场翻译的我国著名物理学家胡刚复根据entropie的物理意义,创造了“熵”这个字,在“商”旁加火字表示这个热学量. 一、热力学第二定律 1.热力学第二定律的表述 19世纪中叶,克劳修斯(R.E.Clausius,德,1822—1888)和开尔文(KelvinLord即W.Thomson,英1824—1907)分别在证明卡诺定理时,指出还需要一个新的原理,从而发现了热力学第二定律. 克劳修斯1850年的表述为,不可能把热量从低温物体传到高温物体而不引起其他变化.1865年,克劳修斯得出了热力学第二定律的普遍形式:在孤立系统中,实际发生的过程总是使整个系统的熵值增加,所以热力学第二定律又称“熵增加原理”.其数学表示为 SB-SA= , 或 dS≥dQ/T(无穷小过程). 式中等号适用于可逆过程. 开尔文1951年的表述为,不可能从单一热源吸热使之完全变成有用的功而不引起其他变化,开氏表述也可以称为,第二类永动机是不可能造成的.所谓第二类永动机是指能从单一热源吸热,使之完全变成有用的功而不产生其他影响的机器,该机不违反热力学第一定律,它能从大气或海洋这类单一热源吸取热量而做功. 2.热力学第二定律的基本含义 热力学第二定律的克氏表述和开氏表述具有等效性,设想系统经历一个卡诺循环,可以证明,若克氏表述不成立,则开氏表述也不成立;反之,亦能设想系统完成一个逆卡诺循环,如果开氏表述不成立,则克氏表述也不成立. 克氏表述和开氏表述直接指出,第一,摩擦生热和热传导的逆过程不可能自动发生,也就是说摩擦生热和热传导过程具有方向性;第二,这两个过程一经发生,就在自然界留下它的后果,无论用怎样曲折复杂的方法,都不可能将它留下的后果完全消除,使一切恢复原状.只有无摩擦的准静态过程被认为是可逆过程.

用动量定理推导气体压强公式和理想气体状态方程

用动量定理推导气体压强公式和理想气体状态方程 云南省玉溪第一中学周忠华 摘要:容器内气体压强的产生是由于大量气体分子频繁地撞击容器壁而使容器壁受到持续的压力,压强的大小就等于容器壁上单位面积上受到的压力。我们可以选取一定时间内与容器壁某一面积发生碰撞的气体分子作为研究对象,对它们应用动量定理,求出容器壁对这些气体分子的弹力,从而求出气体压强。得到气体的压强公式后,我们可以很自然地推导出质量一定的理想气体的状态方程。 关键词:动量定理、气体压强、理想气体状态方程 普通高中物理(必修加选修)第二册第十二章气体的压强这一节内容,教材为解释气体压强的产生和大小是通过两个演示实验来完成的。第一个实验是在玻璃罩内放一个充气不多的气球,然后用抽气机将罩内的空气逐渐抽离,抽气过程中可以看到气球体积不断膨胀,用这个实例说明气球内的气体确实对球皮产生了由内向外的压强;第二个演示实验是把大量的小滚珠均匀地倒在电子秤盘上,倾倒的过程中可以观察到滚珠对秤盘产生了持续的、均匀的压力,用这个实验来模拟大量的气体分子频繁地撞击容器壁会产生压强。这两个实验的优点是比较直观,学生看后基本上都能定性地感知气体压强的存在和产生的原因,但这两个实验都偏重于直观印象,缺乏充分严密的数学推证,许多学生对教材如此解释压强感到过于简单,说两个实验都不能给出决定气体压强大小的数学公式。为解决这个问题,笔者通过多年的教学实践发现,可以应用高中学生学习过的相关知识,对与容器壁发生碰撞的气体分子用动量定理,推导出容器内的气体压强公式,较好地解决了这个问题,下面我谈谈我的处理方法。 常温常压下的气体分子间隙很大,分子间距达到分子直径数量级

信息与负熵

第一章 信息与负熵 1.1耗耗耗耗耗耗耗耗耗耗?  1948年,维纳(N.Wiener)出版《控制耗》一书〔8〕,申农(C.E.Shannon)发表《通信的数学耗耗》〔9〕一文,几乎同时以熵的形式表述了信息量的概念。但信息耗的熵概念较热力学的熵概念推广了。这一点,在科学界引起了骚动和混乱。普里高津 (I.Prigoging) 在提出耗耗耗耗耗耗之前,曾在《不可逆过程热力学导耗》〔10〕 一书中说:“生物体的组织耗耗普遍地增加的事实相应于熵的减少”。这里所说的熵,是相应于信息耗的熵而不是热力学的熵。 看来,普里高津后来察觉到了这一点,因此他在耗耗耗耗耗耗中就小心翼翼地避免用熵减或负熵来指有序化。他只是说,耗耗耗耗依靠来自环境的负熵流输入而产生有序化,但他决不肯再〖ZK)〗轻易说有序化也是负熵。这是普里高津的严谨之耗。他避开了信息耗的熵和负熵的概念,而将整个耗耗耗耗耗耗局限于热力学中。即使是“非平衡、非线性热力学”,也仍然是热力学!非平衡非线性,普里高津事实上已经在耗经典热力学开刀了,但他却没有做得更彻底一些。 可是,事情的发展却偏偏不以人的意志为转移。在目前浩如烟海的评介性文章中,耗耗耗耗屡屡被定义为“在远离平衡的条例下,借助于外界能量流、质量流和信息流而维持的一种空间或时间的有序耗耗”。偏偏要节外生枝,在能量流和质量流之外再加上“信息流”!这样的说法已经连篇累牍,而普里高津却不置一词,莫非他已经默许了? 更有甚者,不少人还在耗耗耗耗与信息系统之间划等号。有一篇题为“科学系统与耗耗耗耗”的文章,就毫无顾忌地说:“对于科学系统,特别重要的是伴随着物质能量交换过程而产生的信息过程”。好家伙! 被普里高津小心翼翼地排除了的信息幽灵,又神不知鬼不觉地溜进了耗耗耗耗领域。 把信息系统与耗耗耗耗联系起来的文章比比皆是,普里高津本人也有志于社会系统的探索。社会系统不是一个热力学系统而是信息系统。那么,一方面要避开信息耗的概念,同时又要涉足于信息系统,“又要马儿跑,又要马儿不吃草”,行得通吗?这岂不是“普里高津悖耗”了吗? 普里高津的耗耗耗耗耗耗相对于经典热力学来说,是一次科学革命,正如普朗克的量子耗相对于经典力学来说是一次科学革命一样。现在我们在信息系统的研究领域已经面临推广耗耗耗耗耗耗的问题,这如同量子力学诞生前夕,旧量子耗所面临的问题一样。 经典力学—→旧量子耗—→量子力学 经典热力学—→耗耗耗耗耗耗—→? 我们将怎样来回答这个问号呢?耗耗耗耗耗耗耗耗耗耗?

用动量定理推导气体压强公式和理想气体状态方程审批稿

用动量定理推导气体压强公式和理想气体状态 方程 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

用动量定理推导气体压强公式和理想气体状态方程 云南省玉溪第一中学周忠华摘要:容器内气体压强的产生是由于大量气体分子频繁地撞击容器壁而使容器壁受到持续的压力,压强的大小就等于容器壁上单位面积上受到的压力。我们可以选取一定时间内与容器壁某一面积发生碰撞的气体分子作为研究对象,对它们应用动量定理,求出容器壁对这些气体分子的弹力,从而求出气体压强。得到气体的压强公式后,我们可以很自然地推导出质量一定的理想气体的状态方程。 关键词:动量定理、气体压强、理想气体状态方程 普通高中物理(必修加选修)第二册第十二章气体的压强这一节内容,教材为解释气体压强的产生和大小是通过两个演示实验来完成的。第一个实验是在玻璃罩内放一个充气不多的气球,然后用抽气机将罩内的空气逐渐抽离,抽气过程中可以看到气球体积不断膨胀,用这个实例说明气球内的气体确实对球皮产生了由内向外的压强;第二个演示实验是把大量的小滚珠均匀地倒在电子秤盘上,倾倒的过程中可以观察到滚珠对秤盘产生了持续的、均匀的压力,用这个实验来模拟大量的气体分子频繁地撞击容器壁会产生压强。这两个实验的优点是比较直观,学生看后基本上都能定性地感知气体压强的存在和产生的原因,但这两个实验都偏重于直观印象,缺乏充分严密的数学推证,许多学生对教材如此解释压强感到过于简单,说两个实验都不能给出决定气体压强大小的数学公式。为解决这个问题,笔者通过多年的教学实践发现,可以应用高中学生学习过的相关知识,对与容器壁发生碰撞的气体分子用动量定理,推导出容器内的气体压强公式,较好地解决了这个问题,下面我谈谈我的处理方法。

熵的由来 物理学中,熵有两个定义——热力学定义和统计力学定义。 熵最初是从热力学角度定义的。19世纪50年代,克劳修斯 (... R J E C lausius)编造了一个新名词:entropy,它来自希腊 词“trope”,意为“转变,变换”。为了与能量(energy)相对 应,克劳修斯在“trope”上加了一个前缀“en”。在克劳修斯看 来,“energy”和“entropy”这两个概念有某种相似性。前者从 正面量度运动转化的能力;后者从反面量度运动不能转化的能力, 即运动丧失转化能力的程度,表述能量的可转换能力(活力)丧失的程度,或能量僵化(蜕化)的程度(尽管能量总体是守恒的)。 例如,你用20元人民币购得一袋大米,你的价值总量(能量)不变,但一袋大米在市场上的再交换能力(活力)低于20元人民币。这种消费使其熵(经济)增大。按当初的设计,活力越丧失,能量越僵化,熵越大。热力学第一定律描述了自然界中各种形式的能量转换过程中量的守恒,并未指出不同形式能量的本质的差异。而热力学第二定律告诉我们,能量之间的品质是有差别的:有序运动的能量可以通过做功完全转变成无序运动的能量;而无序运动的能量不能完全转变成有序运动的能量(效率为100%的热机是不能实现的)。或者说,有序运动的能量转化为其他形式的能量的能力强,能被充分利用来做功,品质较高;而无序运动的能量转化能力弱,做功能力差,品质较低。根据热力学第二定律,高品质的能量转换为低品质的能量的过程是不可逆的。高品质的能量转换为低品质的能量后,就有一部分不能再做功了。我们把这样的过程称为能量的退化,通过物理学知识可以证明:退化的能量与系统的熵增成正比。于是,我们可以说:熵是能量不可用程度的度量。 “熵”的中文译名是我国物理学家胡刚复教授确定的。他于1923年5月为德国物理学家普朗克作《热力学第二定律及熵之观念》讲学时做翻译,把“entropy”译为“熵”。它是热量变化与温度之比(商),又与热学有关,就加了个“火”字旁,定名为熵。 我们知道,事物(封闭系统)变化的过程大多是不可逆的。从初态可变到终态,而终态却不能自发地(不影响周围环境)变回初态,尽管能量始终是守恒的。例如,封闭容器中气体分子可以自由膨胀充满整个容器,但却不能自发地回缩到原来的某个局部;瓷瓶落地成碎片,而碎瓶却不能自发复原成瓷瓶;生米煮成熟饭,熟饭却不能晾干成生米;热量可以自动从高温物体传递给与之相连的低温物体,但却不能自动逆向传递,等等。这就是说,这些初态与终态之间有着某种本质上的差别。物理学家用“熵”(S)这个物理概念来描述这种差别,进而用“熵变”(S ?)这个物理量来计算这种差别。认为初态(宏观)所含的微观状态数较少(即熵值小,较有序),而终态(宏观)则相反。在一封闭系统中,自然演变总是指向微观状态数多的方向(熵值大,较无序)发展,而不是相反。这就是熵增大原理:0 ?>。 S 增大的最终结果只能是大家都处在同等状态——平衡态,碎瓶越摔越碎,温度差越来越小。 1896年,奥地利物理学家玻尔兹曼从分子运动论的观点对熵做 了微观解释,认为熵是分子运动混乱程度的量度。这不仅是人们对 熵的理解豁然开朗,而且为熵概念的泛化(推广)创造了契机。玻 尔兹曼证明了,在系统的总能量、总分子数一定的情况下,表征系 统宏观状态的熵(S)与该宏观态对应的微观数W有如下关系: =? S k W ln 这就是著名的玻尔兹曼公式。它把熵和微观状态数联系起来,熵 越大,微观状态数越多,分子运动越混乱,熵成为分子运动混乱程

信息与熵

从一个信息与熵的表达式看有序结构中信息的作用 刘琼慧 (北京师范大学管理学院系统科学系) 熵是热力学的一个中心概念。1948年申农第一次将熵概念引入信息论,从此被广泛用于信息的度量。为了对系统组织化状态及其变化进行定量描述,人们正研究并试图建立熵-信息理论。新的宇宙观认为,宇宙由物质(M)、能量(E)和信息(I)三部分构成,信息在宇宙进化中起着决定性作用。人类的发展由低级走向高级,从无序走向有序。人类社会的演化是在非平衡状态下进行的,这个规律是在非平衡态和一定条件下发生的。普里高津(I. Prigogine)就提出过“非平衡是有序之源”[1]。负熵是系统从无序到有序所发生的必然现象。信息对宇宙的发展起着支配作用。量子力学的奠基人薛定谔指出:“一个生命有机体是赖负熵为生的。”[2]非平衡态下系统在一定条件时有演化到有序状态这种趋势,不可逆演化过程中熵会变化。近来人们对非平衡态的有序结构已有一定的认识,但其规律还有待进一步发掘。纵观宇宙的发展,无不与信息的变化相关。因此,有必要从信息的角度对热力学系统、自组织过程及生物系统演化等进行进一步的认识和阐述。 一、波尔兹曼方程与薛定谔方程 热力学第二定律是熵增定律,断言一个孤立系统总是从有序状态走向无序状态。生物进化论描述的是自然界从无序趋向于有序的发展,二者的矛盾困惑着19世纪的人们。20世纪自组织理论为化解这一矛盾打开了缺口。第二定律只是局部地反映了不同运动形式的差异及其变化的自然趋势,对于自然界发展的普遍规律,可能还得从信息角度加以归纳和总结。 玻尔兹曼对熵提出了一种精确的描述:一个系统在保持宏观特性不变的情况下,它所包含的粒子可能具有的所有不同微观状态数就是熵。玻尔兹曼熵的表达式为S=klnW。熵是对无序的度量。这一定律适用条件是系统孤立。这样的系统自发地向熵增大方向演化,越来越无序。而生物系统的演化趋势与热力学第二定律描述的方向相反,是从无序到有序。自然界普遍存在的系统是开放系统,与外界有物质、能量和信息的交流。例如,生物系统在生存中不断吸取负熵,使它的器官和组织越来越精细有序,不断向更高级发展。 薛定谔提出了熵的统计意义,将波尔兹曼方程表示为 S = k ln D,(1) 其中,k为波尔兹曼常数,D是所考虑的体系中无序的定量测量,1/D代表着有序。因此 -S = k ln 1/D,(2) 带有负号的熵在此就代表有序的量度。 二、Stonier以熵作为信息的负指数函数的表达式、含义 Tom Stonier利用薛定谔提出的观点,就信息与熵的联系作了大量探讨[3],得出一些有意义的结论,便于在此基础上更深入地思考宇宙进化中出现有序的规律。 组织性是秩序的反映,组织性、秩序、低概率、低熵与高信息状态相关;信息与无序反

动量方程验证实验

实验六动量方程验证实验 一、实验目的 1、验证不可压缩流体恒定流的动量方程;进一步理解动量方程的物理意义。 2、通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研究,进一步掌握流体动力学的动量守恒特性; 3、了解活塞式动量方程实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验原理 1、设备工作原理 自循环供水装置1由离心式水泵和蓄水箱组合而成。开启水泵和流量大小的调节由流量调节开关3控制。水流经供水管供给恒压水箱。工作水流经管嘴6形成射流,射流冲击到带活塞和翼片的抗冲平板9上,并以与入射角成90°的方向离开抗冲平板。带活塞的抗冲平板在射流冲击力和测压管8中的静水压力作用下处于平衡状态。活塞形心水深h c可由测压管8测知,由此可求得射流的冲击力,即动量力F。冲击后落下的水经集水箱7汇集后,再经排水管10流出,在出口用体积法或称重法测流量。水流经接水器和回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡以及减小摩擦阻力对活塞的作用,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术,具有如下结构: 图6-1 图6-2 带活塞和翼片的抗冲平板9和带活塞套的测压管8如图5-1所示,该图是活塞退出活塞套时的分部件示意图。活塞中心设有一细导水管a,进口端位于平板中心,出口端转向90°向下伸出活塞头部。在平板上设有翼片b,活塞套上设有窄槽c。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位上升,水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测压管内水位降低,水压力减小。在恒定射流冲击下,经过短时间的自动调整,即可达到射流冲击力和水压力的平衡状态。这时活塞处在半进半出,窄槽部分开启的位置上,过a流进测压管的水量和过c外溢的水量相等。由于平板上设有翼片b,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静摩擦力。 为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱高度的±5‰(约0.5~1 mm),活塞在旋转下亦能有效地克服动摩擦力而作轴向位移,开大或减小窄槽c,使过高的水位降低或过低的水位提高,恢复到原来的平衡状态。这表明该装置的灵敏度高达0.5%,亦即活塞轴向动摩擦力不足总动量力的5‰。

关于信息的定义

关于信息的定义 关于信息定义的讨论,钟义信在《信息科学原理》一书中对各种观点进行了归纳分析。到目前为止,围绕信息定义所出现的流行说法已不下百种。以下是一些比较典型、比较有代表性的说法。 (1)信息就是信息,既不是物质也不是能量(Wiener,1948)。 (2)信息是事物之间的差异(Longo,1975)。 (3)信息是集合的变异度(Ashby,1956)。 (4)信息是一种场(Eepr,1971)。 (5)信息是系统的复杂性(张学文等)。 (6)信息不是物质,它是物质状态的映射(张学文等)。 (7)信息是事物相互作用的表现形式。 (8)信息是事物联系的普遍形式。 (9)信息是物质和能量在时间和空间中分布的不均匀性(Eepr,1971)。 (10)信息是物质的普遍属性。 (11)信息是收信者事先所不知道的报导。 (12)信息是用以消除随机不定性的东西(Shannon,1948)。 (13)信息是使概率分布发生变动的东西(Tribes etal, 1971)。 (14)信息是负熵(Brillouin,1956)。 (15)信息是有序性的度量(Wiener,1948)。 (16)信息是系统组织程度的度量(Wiener,1948)。 (17)信息是被反映的差异( УΛ cy Λ,1968)。 (18)信息是被反映的变异度(УΛ cy Λ,1968)。 (19)信息是被反映的物质的属性(刘长林,1985)。 (20)信息是被反映的特殊性(鲁晨光) (21)信息是与控制论系统相联系的一种功能现象(Укра u нчев ,1963)。 (22)信息是作用于人类感觉器官的东西。 (23)信息是选择的自由度(Hartley,1928)。 (24)信息是通信传输的内容(Wiener,1950)。

熵与信息熵

熵与信息熵 1.熵 熵的概念最早起源于物理学,一百四十年前,熵的主要用途是用于研究热机(蒸汽机、内燃机..),主要使用宏观形式(克劳修斯形式)即任何可以自发进行的过程中,恒温热Q 和温度T 的比值永远是一个正值(熵增定理它的定义是dQ dS T = ,不可能把热量从低温物体传向高温物体而不引起其它变化。);熵描述的是一团气体分子的混乱程度,但我们所想要的是他不混乱的程度,也就是这团分子的能量所做功的潜力是多少, 从一百多年前世界进入量子时代以后,研究主要使用熵的微观形式(玻尔兹曼形式) 混乱度又称为热力学几率,用Ω表示,系统在一定温度T 下,其混乱度Ω是一定的。若系统不断吸热,分子在空间分布和能量分布的状况就要不断变化,其微观花样数将不断增大。温度T 时的混乱度是Ω,在温度T 时系统以可逆方式吸热r Q ?,混乱度增加d Ω。 r Q T ?表示系统吸收的热量对单位温度的分摊量,即是系统熵的改变量dS 。d ΩΩ 表示系统增加的混乱度对单位热力学几率的分摊量,称为混乱度增加率。也就是说,在热力学过程中,系统混乱度Ω增减与系统熵S 的增减是同步的,即混乱度Ω越大,熵越大。 公式为;r Q T ?=dS ∝d ΩΩ。加入比例系数后为dS =k d ΩΩ,对函数进行积分,S = Kln Ω+ I ,热力学第三定律说过绝对零度时熵为0,所以I=0,比例系数经理想气体恒温可逆膨胀推理后被定义为玻尔兹曼常数(K=1.3806505 × 10-23 J/K ) 信息熵 Shannon 在通信的数字原理一书中把信息定义为消除不定性的东西。既然如此,那么信息量就可以用被消除的不定性的大小来表示。而这种不定性是由随机性引起的,因此可用概率论方法来描述。这就是Shannon 信息度量方法的基本思想。 离散信源的引入:如果相邻符号的选择不是独立的,其概率取决于之前的字符,则会得到一种更为复杂的结构。在最简单的此种类型中,字符的选择仅取决于它前面的一个字母,而与再之前的字母无关。这种统计结构可以由一组转换概率P i (j )来描述,该概率是指字母i 之后跟有字母j 的概率。下标i 和j 的取值范围为所有可能出现的符号。如果P i 是状态i 的概率,P i (j )是由状态i 向状态j 变换的转换概率,则对于平稳过程,显然可以得出,P i 必须满足平衡条件:()j i i i p p p j =∑。 我们能不能定义一个量,用来在某种意义上,度量这样一个过程“生成”多少信息?甚至更进一步,度量它以什么样的速率生成信息?假定有一个可能事件集,这些事件的发生概率为p 1,p 2...这些概率是已知的,但关于将会发生哪个事件,我们也就知道这么多了。我们能否找到一种度量,用来测量在选择事件时涉及多少种“选择”,或者输出中会有多少不确定性?如果存在这样一种度量,比如说H (p 1,p 2...),那要求它具有以下性质是合理的: 1. H 应当关于p 1连续。 2. 如果所有p 1都相等,即p 1=1/n ,则H 应当是n 的单调增函数。如果事件的可能性相等,

动量方程

水力学网上辅导材料3: 一、第3章水动力学基础(2) 【教学基本要求】 1、掌握恒定总流的动量方程及其应用条件和注意事项,掌握动量方程投影表达式和矢量投影正负号的确定方法,会进行作用在总流上外力的分析。 2、能应用恒定总流的动量方程、能量方程和连续方程联合求解,解决工程实际问题。。 3、了解液体运动的基本形式:平移,变形(线变形和角变形),旋转。 4、理解无旋流动(有势流动)和有旋流动的定义。 5、初步掌握流函数、势函数的性质和流网原理。 【学习重点】 1、掌握恒定总流动量方程的矢量形式和投影形式,掌握恒定总流动量方程的应用条件和注意事项。重点注意和影响水体动量变化的作用力。 2、能应用恒定总流的连续方程、能量方程和动量方程进行水力计算。 【内容提要和学习指导】 3.6恒定总流动量方程 恒定总流动量方程是动量定理在液体流动中的表达式,它反映水流动量变化与作用力之间的关系。 恒定总流动量方程主要用于求解水流与固体边界之间的相互作用力,如水流对弯管的作用力,水流作用在闸门和建筑物上的动水压力以及射流的冲击力等。 (1)恒定总流动量方程 根据动量定理可导出恒定总流的动量方程式为 (3—9)恒定总流动量方程的物理意义表明:单位时间内流出控制体与流入控制体的水体动量之差等于作用在控制体内水体上的合外力。 恒定总流的动量方程是个矢量方程,把动量方程沿三个坐标轴投影,即得到投影形式的动量方程: ∑F x=ρQ(β2v 2x-β1v 1x) ∑F y=ρQ(β2v 2y -β1v 1y)(3—10) ∑F z=ρQ(β2v 2z -β1v 1z) 式中:∑F x、∑F y、∑F z是作用在控制体上所有外力的合力沿x、y、z轴方向的分量; v 1x 、v 2x 、v 1y 、v 2y 、v 1z 、v 2z 分别是控制体进出口断面上的平均流速在x、y、z轴上的分量; ()υβ υ β ρ 1 2 2 - = ∑Q F

可逆与不可逆过程与熵增加原理

可逆与不可逆过程与熵增加原理 熵是根据热力学第二定律引入的一个新的态函数,它在热学理论中占有核心的重要地位,本文根据卡诺定理推出克劳修斯不等式,再根据克劳修斯不等式的可逆部分以及热力学第二定律建立第二定律的不可逆过程的数学表述,最后得出熵增加原理. 由卡诺定理可知,工作于两个温度间的热机的工作效率不能大于可逆热机的工作效率 1 212111T T Q Q Q W -≤-== η, (1) 若取等号则表示是可逆热机.由(1)得 2 1 21T T Q Q ≥, (2) 亦即 02 2 11≤-T Q T Q . (3) 如果约定放热则0∑i i Q ,则0total >W ,违反了热力学第二定律的开尔文表述,故00≤∑i i Q . 当00=∑i i Q 时,系统经过可逆循环,没有发生任何变化. 当00<∑i i Q 时,表示不可逆过程中功变热或者功变成0T 的内能. 对于第i 个卡诺热机 000=-+i i i T Q T Q )321(n i ,,,, ?=, (6) 即得

什么是信息熵

什么是信息熵 飞翔发表于 2006-3-8 15:22:08 学习过程中,遇到有关信息熵理论,现整理如下: “熵”是德国物理学家克劳修斯在1850年创造的一个术语,他用它来表示任何一种能量在空间中分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的 那个系统来说,能量完全均匀地分布,那么,这个系统的熵就达到最大值。 在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。如果把两个水库连接起来,并且其中一个水库的水平面高于另一个水库,那么,万有引力就会使一个水库的水面降低,而使另一个水面升高,直到两个水库的水面均等,而势能也取平为止。 因此,克劳修斯说,自然界中的一个普遍规律是:能量密度的差异倾向于变成均等。换句话说,“熵将随着时间而增大”。 对于能量从密度较高的地方向密度较低的地方流动的研究,过去主要是对于热这种能量形态进行的。因此,关于能量流动和功-能转换的科学就被称为“热力学”,这是从希 腊文“热运动”一词变来的。 人们早已断定,能量既不能创造,也不能消灭。这是一条最基本的定律;所以人们把它称为“热力学第一定律”。 克劳修斯所提出的熵随时间而增大的说法,看来差不多也是非常基本的一条普遍规律,所以它被称为“热力学第二定律”。 举例来讲果我们能看到橡皮筋的分子结构,我们会发现它的结构在拉紧和放松的状态时是不一样的。放松的时候它的分子结构像一团乱麻交织在一起。而在把橡皮筋

拉长的时候,那些如同链状的分子就会沿着拉伸的方向比较整齐地排列起来。于是我们可以看到两种状态:一种是自然,或者自发的状态。在这种状态下结构呈“混乱”或“无序”状。而另一种是在外界的拉力下规则地排列起来的状态。这种“无序” 的状态还可以从分子的扩散中观察到。用一个密封的箱子,中间放一个隔板。在隔板的左边空间注入烟。我们把隔板去掉,左边的烟就会自然 (自发)地向右边扩散,最后均匀地占满整个箱体。这种状态称为“无序”。 在物理学里我们可以用“熵”的概念来描述某一种状态自发变化的方向。比如把有规则排列的状态称为“低熵”而混乱的状态对应于“高熵”。而熵则是无序性的定量量度。热力学第二定律的结论是:“一个孤立系统的熵永不减少。”换句话说,物质世界的状态总是自发地转变成无序;“从低熵”变到“高熵”。比如,当外力去除之后,整齐排列的分子就会自然地向紊乱的状态转变;而箱子左边的烟一定会自发地向右边扩散。这就是著名的“熵增定律”。 信息熵的定义与熵的定义相似,我们说的信息熵一般是指信息论的香农理论。 在日常生活中,信息是指“消息”,“情况”等。看电视、看报纸、看书、打电话、听广播、上网浏览,乃至聊天、开会,人们都获得了“消息”。消息通过“消息传递系统”传递,各种系统可以抽象为通讯系统模型。这一模型并不只限于通信系统,对于生物神经系统,遗传系统,市场的经济信号感知反馈系统,管理系统,都可以运用这个模型。 在消息传递系统中,其传输的是消息;但消息传递过程中,最普通,却容易被忽视的一点是:收信人在收到消息以前是不知道消息的具体内容的。消息的传递过程,对收信人来说,是一个从不知到知的过程,或者说是一个从不确定到确定的过程。 从通信过程来看,收信者的所谓“不知”就是不知道发送端将发送描述何种运动状态的消息。例如,看天气预报前,不清楚天气的将出现何种状态;看天气预报后,这种不确定性就大大缩小了。所以通信过程是一种从不确定到确定的过程。不确定性消除了,收信者就获得了信息。所以香农认为,信息是不定性的减少或消除。即 I = S(Q/X)-S(Q/X‘) I代表信息,Q 代表对某件事的疑问,S 代表不定性,X 为收到消息前关于Q的知识,X‘ 为收到消息后关于Q 的知识。

动量方程实验

动量方程验证实验 一、实验目的 1、测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2、将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 二、实验原理 应用力矩平衡原理如图一所示:求射流对平板和曲面板的冲击力。 力矩平衡方程:1GL FL =,L GL F 1= 式中:射流作用力?F ;作用力力臂?L ; 砝码重量?G ;砝码力臂?1L 。 图一 力矩平衡原理示意图 恒定总流的动量方程为)(1, 12,2V V Q F ααρ?=Σ 若令1,1, 2==αα,且只考虑其中水平方向作用力,则可求得射流对平板和曲面 的作用力公式为:)cos 1(αρ?=QV F 式中:管嘴的流量?Q ;管嘴流速?V ;?α射流射向平板或曲面板后的偏转角度。 。90=α时,QV F ρ=平。: 平F 水流对平板的冲击力

。135=α时,平。F QV QV F 707.1707.1)135cos 1(==?=ρρ 。180=α时,平F QV QV F 22)180cos 1(==?=ρρ 三、实验设备 实验设备及各部分名称见图二,实验中配有。90=α平面板和。135=α及 。180=α的曲面板,另备大小量筒及秒表各一只。 四、实验步骤 1、记录管嘴直径和作用力力臂。 2、安装平面板,调节平衡锤位置,使杠杆处于水平状态(杠杆支点上的气泡居中) 3、启动抽水机,使水箱充水并保持溢流。此时水流从管嘴射出,冲击平 图二 动量原理实验仪

板中心,标尺倾斜。加砝码并调节砝码位置,使杠杆处于水平状态,达到力矩平衡。记录砝码质量和力臂1L 。 4、用体积法测量流量Q 用以计算理F 。 5、将平面板更换为曲面板)180135(。。及==αα,测量水流对曲面板的冲击力并重新用体积法测量流量。 6、关闭抽水机,将水箱中水排空,砝码从杠杆上取下,结束实验。 五、注意事项 1、量测流量后,量筒内的水必须倒进接水器,以保证水箱循环水充足。 2、测流量时,计时与量筒接水一定要同步进行,以减小流量的量测误差。 3、测流量一般测两次取平均值,以消除误差。 六、实验成果及要求 1、有关常数。 喷管直径d= cm , 作用力力臂L = cm , 实验装置台号: 2、记录及计算(见表一)。 表一:计录及计算表 测次 体积 cm 3 时间 s 流量 cm 3/s 平均流量 cm 3/s 流速 cm/s 冲击板角度α 砝码重量 N ×10-5 力臂L 1 cm 实测冲 击力 F 实 N ×10-5 理论计算冲击力F 理 N ×10-5 3、成果分析:将实测的水流对板的冲击力与由动量方程计算出的水流对板 的冲击力进行比较,计算出其相对误差,并分析产生误差的原因。 七、思考题 1、与实F 理F 有差异,除实验误差外还有什么原因? 2、实验中,平衡锤产生的力矩没有加以考虑,为什么?

流体运动方程与能量方程

第一章流体力学基础——流体运动的微分方程 西安建筑科技大学 粉体工程研究所

质量传递——连续性方程动量传递——纳维-斯托克斯方程能量传递——能量方程状态方程 流体运 动微分方程组 所有流体运动传递过程的通解 质量守恒定律 动量定理能量守恒定律

1.3流体运动的微分方程 ?质量守恒定律——连续性方程?动量定理——纳维-斯托克斯方程?能量守恒定律——能量方程 ?定解条件

1.3.1 质量守恒定律——连续性方程 ?质量既不能产生,也不会消失,无论经历什么形式的运动,物质的总质量总是不变的。 ?质量守恒在易变形的流体中的体现——流动连续性。 18世纪,达朗贝尔推导不可压缩流体微分形式连续性方程 在控制体内不存在源的情况下,对于任意选定的控制体 单组分流体运动过程中质量守恒定律的数学描述:流入控制体的质量速率 流出控制体的质量速率 控制体内的质量累计速率 = A B

τ时刻A 点流体密度为,速度沿x ,y ,z 三坐标轴的分量为1.3.1 质量守恒定律——连续性方程 连续性方程的推导边长为dx ,dy ,dz 的控制体微元 )ρ(x,y,z, τ)(x,y,z,u τ z y x ,u ,u u 单位时间内通过左侧控制面流入微元控制体的质量(即质量流量) x 方向 dydz ρu x 通过右侧控制面流出微元控制体的质量速率 dydz dx x )(ρρu x x ?? ???? ??+u dxdydz x ) (ρx ??-u

A :流入与流出微元控制体的质量速率之差x 方向dxdydz x )(ρx ??-u y 方向z 方向 dxdydz y )(ρ??-y u dxdydz z )(ρ??-z u dxdydz z )(ρy )(ρx )(ρ????????+??+??-z y x u u u B :微元控制体内的质量累计速率 τ时刻 ρdxdydz ρ 密度 质量 τ+d τ时刻dxdydz d ρρ?? ? ?? ??+τττ τ d ρ ρ??+dxdydz ρd ρdxdydz dxdydz d ρρτ τ ττ??=-?? ? ?? ??+

生活中的熵增加原理

生活中的熵增加原理 1153814 夏涵宇 熵增加原理是热力学中极其重要的定理之一。它具体表述为“在孤立系统中,一切不可逆过程必然朝着熵的不断增加的方向进行”。然而随着科技的发展和社会的进步,人们对熵的认识已经远远超出了分子运动领域,被广泛用于任何做无序运动的粒子系统,也用于研究大量出现的无序事件。我们生活中许多不起眼的小事其实都蕴含着这样的原理。 比如说如今已经的到广泛运用的洗衣机。人们为了使生活更加便利快捷而发明了这一工具,从表面上看来,它提高了我们洗衣服的效率,使我们的生活更加有序。然而我们往往都忽略掉了,在洗衣机的使用过程中,消耗的电能是不可再生的,为了生产这些电能已经对环境造成了一定的破坏。此外还有在生产、运输洗衣机的过程中,所产生的垃圾、废气等都排放向了环境,并造成了不可逆的破坏,造成了实际上的环境的无序。 也就是说,在以洗衣机为代表的人类为了方便生活而发明的机器的使用过程,都体现着熵增加的原理。我们以为将眼前所能见到的地方打理的光鲜有序便是好的,然而终究没能跳出自然规律的运行法则,我们的环境其实一直在向着无序的方向发展。 与此相同的实例还在我们生活中的其他各个方面体现着。 一、 在现代化的大城市中,人们享受高科技带来的成果:四季如春的空调,便利的地铁汽车、手机、电脑,等等。实际上,它们在带来方便的同时,也给周围环境带来更多的废气、噪声、电磁波等污染。根据熵增加原理,每当消耗一定有效的能量、使城市更有序运转的同时,周围环境的熵就会增加。少数人享受的便利和舒适,往往是在牺牲多数人利益的前提下获得的。 从熵增加原理出发,社会需要发展,必须从外界获得能量来维持其耗散结构,必然会有能量的散发造环境的熵增加,而熵增加对于地球是一个不可逆的过程。环境的熵增加意味着自然灾害和人类生存环境的恶化、水旱灾害的增加、土壤的沙化、疾病的增加,等等。因此,在追求美好生活、寻求经济发展的同

相关文档