文档库 最新最全的文档下载
当前位置:文档库 › 生物制药

生物制药

生物制药
生物制药

生物制药简答论述

1.什么是酶的固定化,特点。

固定化酶是指限制或固定于特定空间位置的酶,具体来说,是指经物理或化学方法处理,使酶变成不易随水流失即运动受到限制,而又能发挥催化作用的酶制剂。制备固定化酶的过程称为酶的固定化。

优点:具有生物催化剂的功能,又有固相催化剂的功能。

①可多次使用

②反应后,酶底物产物易分开,产物中无残留酶,易纯化,产品质量高。

③反应条件易控制。

④酶的利用效率高。

⑤比水溶性酶更适合于多酶反应。

缺点:酶活损失,成本增加,只能用于可溶底物和小分子底物,比菌体不适宜多酶反应和需要辅助因子的反应。

2.离体培养动物细胞分为几类,各自特点。

贴壁细胞,悬浮细胞,半贴壁半悬浮细胞

3.体外培养动物细胞基本条件

无菌;营养充足,防止有害物质;氧气;随时清除代谢有害物质;良好的生存外环境;及时分种

4.无血清培养基优点

;提高重复性;减少微生物污染;供应充足稳定;产品易纯化;避免血清因素对细胞的毒性;减少血清中蛋白对生物测定的干扰

5.简述生物制药六个阶段

原料的选择和预处理→原料的粉碎→提取→纯化→浓缩干燥及保存→制剂

6.生物制药有哪些药理学特性,和生产制备的特殊性。

①分子结构复杂;②具有种属特异性;③治疗针对性强、疗效高;④稳定性差;

⑤基因稳定性;⑥免疫原性;⑦体内的半衰期短;⑧受体效应;⑨多效性和网络性效应

生物制备特性:检验的特殊性:生物技术来源药物的生产系统复杂性,致使它们的同源性,批次间一致性及安全性的变化大于化学产品。所以对生产过程的检测、GMP步骤的要求和质控的要求就更为重要和严格。

7.生物技术在制药中有哪些应用

1.基因工程制药

(1)基因工程药物品种的开发

(2)基因工程疫苗

(3)基因工程抗体

(4)基因诊断与基因治疗

(5)应用基因工程技术建立新药的筛选模型

(6)应用基因工程技术改良菌种,产生新的微生物药物

(7)基因工程技术在改进药物生产工艺中的应用

(8)利用转基因动、植物生产蛋白质类药物

2.细胞工程制药

(1)单克隆抗体技术

(2)动物细胞培养

(3)植物细胞培养生产次生代谢产物

3.酶工程制药

4.发酵工程制药:工艺改进,新药研制,菌种改造

8.请简要说明影响目的基因在大肠杆菌中的表达因素

1外源基因的拷贝数;2外源基因的表达效率;3启动子的强弱;4核糖体接合位点的有效性;5 SD序列和起始密码ATG的间距;6 密码子组成;7表达产物的稳定性;8细胞代谢负荷;9工程菌的培养条件

9.基因工程表达载体必要具备条件

1)具有一个或多个限制酶切点,以供外源基因插入其中;

2)具有标记基因,以鉴定重组是否进入受体细胞;

3)能自我复制,否则可能导致重组丢失;

4)对受体细胞无害;

5)大小应适合,以便提取和在体外进行操作,太大不便操作

10.基因工程制药步骤和优点

优点

1可大量生产过去难以获得的生理活性蛋白

2提供足够的产量,满足深入的研究需要

3利用该激素能挖掘更多内源活性物质

4内源物质利用时,如有不足,可改造

5可获得新型化合物,扩大药物筛选来源

步骤获得目的基因→组建重组质粒→构建工程菌(或细胞)→培养工程菌→产物分离纯化→除菌过滤→半成品检定→成品检定→包装

11.试论述植物生物药物特点,现状与发展趋势

特性:药用植物的使用已有上千年的历史了,药用植物中具有药物功能的物质种类繁多,结构复杂,既含有小分子天然有机化合物,又含有多种生物大分子活性物质。

现状与发展趋势:进入20世纪90年代以来,伴随着特效抗癌药紫杉醇被美国应用于临床,诱导子,前体饲喂,两相培养法,质体纯化等新技术新方法的出现和发展,加快了植物细胞工程发展的步伐,展现了植物生物技术制药的广阔发展前景。

12.人体来源药物特点,研究意义

特点:安全性好不易产生副反应;效价高、疗效可靠质量好、效价高;稳定性好冻干制剂10度以下可保存2年以上

研究意义:资源有限性对医药学有重大意义

13.新药毒理学特殊毒性试验需什么测试

健康志愿者安全性试验

小量患者中的有效性和安全性试验

大量患者中的有效性和安全性试验

特别长期给药的药物上市后安全性监督

14.基因工程菌的遗传不稳定性主要表现形势(2种),主要机制。

结构不稳定性分配不稳定性

机制受体细胞中的限制修饰系统对外源重组DNA 分子的降解;外源基因的高效表达严重干扰受体细胞正常的生长代谢;重组质粒在受体细胞分裂时的不均匀分配;受体细胞中内源性的转座元件促进重组分子的缺失重排

15.简要说明培养基对发酵的影响

(1)碳、氮、磷的平衡:C/N直接影响菌体的生长和代谢,如果C/N偏小,易造成菌体提前衰老自溶;C/N过大,不利于产物的积累。磷不足影响菌体生长。在代谢方面,适量磷有利于糖代谢的进行并适度调节PH纸

(2)基质浓度对发酵的影响:低浓度有诱导作用,高浓度会起分解代谢物阻遏作用;培养基过于丰富,会使菌体生长过盛,发酵液黏稠,影响传质。

(3)碳源的种类和浓度对发酵的影响:

碳源的种类对发酵的影响主要取决于其性质,速效碳源效果迟效碳源好

碳源的浓度对菌体的生长和产物的合成有着明显的影响。低浓度下有诱导作用,而高浓度下有分解代谢产物阻遏效应

(4)氮源的种类和浓度对发酵的影响

速效氮源易于被菌体吸收利用,所以有利于菌体生长,却会影响某些产物的的产量;迟效氮源对延长次级代谢产物的分泌期、提高产物产量有好处,但一次性投入容易使养分过早耗竭,导致菌体过早衰老自溶,从而缩短产物分泌期。(5)无机盐含量

(6)水

16.影响植物次级代谢产物产生和积累的主要因素

生物条件:外植体、季节、休眠、分化等;

物理条件:温度、光(光照时间、光强、光质)、通气(O2)、pH和渗透压等;化学条件:无机盐(N、P、K等)、碳源、植物生长调节剂、维生素、氨基酸、核酸、抗生素、天然物质、前体等;

工业培养条件:培养罐类型、通气、搅拌和培养方法等。

17.植物细胞培养主要成分

无机盐、碳源、有机氮源、植物生长激素、维生素

18.固定化酶细胞特点优点

优点:具有生物催化剂的功能,又有固相催化剂的功能。

1可多次使用

2反应后,酶底物产物易分开,产物中无残留酶,易纯化,产品质量高。

3反应条件易控制。

4酶的利用效率高。

5比水溶性酶更适合于多酶反应。

缺点:酶活损失,成本增加,只能用于可溶底物和小分子底物,比菌体不适宜多酶反应和需要辅助因子的反应。

填空

1.生物技术制药的特征

高技术;高投入;高风险;高收益

2.生物药物的分类(功能)

重组蛋白质药物;治疗性抗体药物;核酸药物

3.生物技术包括的几大工程主要技术范畴

基因工程、细胞工程、发酵工程、酶工程、生化工程以及后来衍生出来的第二代、第三代的蛋白质工程、抗体工程、糖链工程和海洋生物技术等

1重组DNA技术;2细胞和原生质体融合技术;3酶和细胞的固定化技术;4植物脱毒和快速繁殖技术;5动物和植物细胞的大量培养技术;6动物胚胎工程技术;7现代微生物发酵技术;8现代生物反应工程和分离工程技术;9蛋白质工程技术;10海洋生物技术

4.酶在医药领域应用主要体现方面

在疾病诊断方面的应用;在疾病治疗方面的应用;在药物生产方面的应用;在分析检测方面的应用

5.植物培养基主要成分

无机盐、碳源、有机氮源、植物生长激素、维生素

6.目的基因获得方法

鸟枪法、cDNA法、PCR扩增法、化学合成法、构建基因文库

7.植物细胞生长分为几期

延迟期加速期对数期稳定期

8.动植物细胞培养方式

植物培养对象:原生质体培养单倍体细胞培养

培养基类型:固体培养

液体培养(悬浮培养成批培养半连续培养连续培养固定化培养)

动物:悬浮培养;贴壁培养;贴壁-悬浮培养

9.发酵工业生产水平取决于3要素

生产菌种的性能、发酵和提取工艺条件、生产设备

10.新药毒理学特殊毒性试验

健康志愿者安全性试验

小量患者中的有效性和安全性试验

大量患者中的有效性和安全性试验

特别长期给药的药物上市后安全性监督

11.酶的化学本质是:绝大多数是蛋白质和少量是RNA

12.真核基因在大肠杆菌中表达方式

胞内表达蛋白分泌表达

13.生物药物分类药物按功能分类

药物结构来源生理功能和用途

(1)、治疗药物(2)、预防药物(3)、诊断药物(4)、其它

全国生物制药企业排名

全国生物制药企业排名(最新版) 北京集琦医药网络有限公司信息部 升华集团控股有限公司 1? ?? ?? ?? ?? ?? ? 山东山松生物工程集团有限公司??2? ?? ?? ?? ?? ?? ?? ?? ? 诺维信(中国)生物技术有限公司 3? ?? ?? ?? ?? ?? ?? ?? ??? 山东正大福瑞达制药有限公司 4? ?? ?? ?? ?? ?? ?? ? 上海生物制品研究所5 宝鸡阜丰生物科技有限公司6

辽宁诺康生物制药有限责任公司7 福建省石狮市华宝集团公司8 广西北生药业股份有限公司9 上海葛兰素史克生物制品有限公司10 艾康生物技术(杭州)有限公司11 华兰生物工程股份有限公司12 北京天坛生物制品股份有限公司13 成都蓉生药业有限责任公司14

兰州生物制品研究所15 山东鲁抗医药集团赛特有限责任公司16 上海莱士血制品有限公司17 四川蜀阳企业(集团)有限公司18 烟台东诚生化有限公司19 扬州市三药制药有限公司20 巩义市惠康生物工程有限公司21 湖北新生源生物工程股份有限公司22

山东天顺药业股份有限公司23 上海新兴医药股份有限公司24 溧阳市维多生物工程有限公司25 莱阳方舟生物制品有限公司26 徐州万邦生化制药有限公司27 珍奥集团股份有限公司28 成都生物制品研究所29 广东天普生化医药股份有限公司30

常州千红生化制药有限公司31 哈尔滨维科生物技术开发公司32 苏州工业园区赛康德万马化工有限公司33 莱阳祥和生化制品有限公司34 威海环宇生物技术有限公司35 卫生部长春生物制品研究所36 长春金赛药业有限责任公司37 南通双林生物制品有限公司38

我国生物制药行业的现状及发展方向

我国生物制药行业的现状及发展方向 一、我国生物制药行业现状 我国生物技术药物的研究和开发起步较晚,直到70年代初才开始将DNA 重组技术应用到医学上,但在国家产业政策的大力支持下,使这一领域发展迅速,逐步缩短了与先进国家的差距,产品从无到有,基本上做到了国外有的我国也有,目前已有15种基因工程药物和若干种疫苗批准上市,另有十几种基因工程药物正在进行临床验证,还在研究中的药物数十种。国产基因工程药物的不断开发生产和上市,打破了国外生物制品长期垄断中国临床用药的局面。目前,国产干扰素a的销售市场占有率已经超过了进口产品。我国首创的一种新型重组人y干扰素并已具备向国外转让技术和承包工程的能力,新一代干扰素正在研制之中。 随着国产生物药品的陆续上市,国内生物制药企业在基础设备,特别是上游、中试方面与国外差距缩小,涌现出大批技术实力较强的企业。最近我国对药品生产企业实施GMP管理,已经有正式生产文号的企业正在按国际接轨要求准备GMP认证,目前已有4家通过了GMP现场认证。企业通过GMP认证不仅有利于产品在国内销售,而且有利于产品开拓国际市场。目前,全国约有80多家基因工程产品开发研究单位,通过大量生产实践,积累了丰富的经验,培养和锻炼出一大批从事生物技术的骨干,为我国21世纪生物技术领域发展、参与国际竞争打下了良好的基础。 虽然我国生物医药产业发展较快,但也存在着严重的问题,突出的问题表现在研制开发力量薄弱,技术水平落后;项目重复建设现象严重:企业规模小,设备落后等几个方面。目前国内基因工程药物大多数是仿制而来,国外研制一个新药需要5~8年的时间,平均花费3亿美元,而我国仿制一个新药只需几百万元人民币,5年左右时间:再加上生物药品的附加值相当高,如PCR诊断试剂成本仅十几元,但市场上却卖到一百多元,因此许多企业(包括非制药类企业1纷纷上马生物医药项目,造成了同一种产品多家生产的重复现象。我国生物技术制药公司虽然已有200多家,但真正取得基因工程药物生产文号的不足30家。全国生产基因工程药物的公司总销售额不及美国或日本一家中等公司的年产值。企业规模过小,无法形成规模经济参与国际竞争。 二、“入世”以来对我国生物制药行业造成的冲击 (一)进口生物药品的冲击:从进口关税的角度看,以前制剂药品进口的关税为20%;目前关税已经逐步下调,估计2010年内将减到6.5%的水平。关税的下调使得国内的生物制药企业将失去靠关税政策保护下的竞争力。面对如此严峻的挑战,我国的生物制药业不能悲观消极地等待“狼来了”,而应把握机遇,利用我国的科研优势,走“产学研”结合的道路,多渠道筹集项目开发基金,增加科技风险投资,加强技术改革与创新能力,重视开发有自主知识产权的高科技生物制药新产品。

生物制药专业简介

生物制药专业简介 培养目标: 培养适应社会主义现代化建设和医药卫生事业发展需要,德、智、体、美全面发展,具备药学和生物学的基本理论、基本知识和基本技能,掌握生物制药的基本原理和技术,熟悉生物医药分析和药品检验技术,能在生物制药研究、开发、生产以及医学检验、卫生防疫等领域从事相关工作的应用型人才。 培养要求: 本专业学生应掌握生物化学、生化分离分析技术、生物技术及工业药剂学等方面的基本理论知识和专业技能,受到生物制药研究和生产技术的基本训练,毕业后能从事生物药物的资源开发、产品研制、生产、技术管理、质量控制等工作。学制:四年制本科。 授予学位:理学学士。 主干学科:药学、生物学。 主要课程:生物化学、微生物学、解剖生理学、分子生物学、细胞生物学、生物制药工艺学、生物药物分析、抗生素、发酵工艺学、生物技术药物、药理学、药剂学。 专业特色和优势: 1、生物制药专业是高新生物技术应用专业,具有广阔的发展前景 21世纪是生命科学的世纪,生物技术产业已经成为国际科技竞争乃至经济竞争的重点,生物制药是生物技术产业的龙头,被称为“永不衰落的朝阳产业”。我国在“十一五”发展规划中,把发展生物技术制药作为迎头赶上国际高新技术水平的重点领域之一。由于生物技术的飞速发展,生物药物的研究与开发已成为生命科学研究中极其活跃的组成部分,特别是人类基因组计划的实施,更是激起了人们对生物药物研究领域的关注。生物制药产业迅猛崛起,生物医药产业化发展急需应用型创新人才。 2、培养目标定位准确,符合社会和市场需要

本专业设立了由行业专家、一线管理人员和专业教师组成的专业指导委员会,共同制订专业培养方案,以全面素质为基础,以能力为本位,瞄准社会和行业需求,准确定位培养目标。毕业生受到用人单位的普遍欢迎。 3、业务素质过硬的师资队伍 本专业拥有一支教育观念新、理论水平高、改革意识强、专业能力强,热心高等教育的师资队伍。生物制药专业带头人为潘扬教授,教研室现有教授1人,副教授2人,讲师7人,实验师1人。目前承担生物制药、药学、中药、药物制剂等专业的生物制药工艺学、生物药物分析、抗生素、发酵工艺学、生物技术药物、药用真菌学等多门课程的教学任务。在科研方面,主持或参与国家级、部省级等各级各类课题20余项,在国内外权威学术期刊发表论文150多篇,出版著作6部,获得部省级科研教学成果奖6项。

生物制药在中国之现状、问题及解决策略

生物制药在中国之现状、问题及解决策略 F1640201 瞿清辉716401910019 1国内外生物制药产业的现状 1.1国外生物制药产业的发展现状自1971年世界上第一家生物制药公司诞生以来,国外很多国家和地区都在发展生物制药产业,从目前来看,生物制药产业主要集中在美国、欧洲和日本等发达国家和地区。美国目前已有超过1000家从事生物制药的企业,约占世界总量的2/3,每年的科研经费也超过了50亿美元,已经成功研发和正式投放市场的生物工程药物也有40多个,总的来说,美国在生物制药产业发展方面遥遥领先世界其他国家。欧洲在生物制药方面虽然整体落后于美国,但其发展势头迅猛,在生物制药的某些领域可以和美国平起平坐甚至超过美国。日本在生物制药产业上的发展速度也比较快,研发经费投入较多,部分公司的实力甚至超过美国和欧洲。除此之外,其他国家如澳大利亚、印度等在国家政策引导下,不断吸纳世界范围内的投资和引进先进技术,生物制药产业已经有了长足的发展和进步。 1.2我国生物制药产业的发展现状我国生物制药产业起步比较晚,经过了将近20年的发展,目前以基因工程药物为核心的研制、开发和产业化已经初具规模。据统计,目前全国注册成立的生物技术公司已经超过了200家,主要分布在北京、上海、广东、浙江、江苏、吉林、山东、辽宁等环渤海、长江三角洲、珠江三角洲等经济发达的地区。 虽然我国生物制药产业起步比较晚,但是我国非常重视生物制药产业的发展,目前国家发展规划已经将生物制药作为经济发展的重点建设行业和高新技术的支柱产业来发展。许多地区已经建立了生物制药产业基地,有效地带动相关产业的发展。总体而言,我国的生物制药产业未来充满希望,发展形势良好,必将对我国经济的发展起到推动作用。 2我国生物制药产业存在的问题 2.1产业结构不合理 截至目前,我国虽然已有200多家从事生物制药的公司,但是这些公司大多规模较小,大多是一些民营企业和外商企业,无法与国际大鳄相竞争,此外,市场陷入同质化竞争格局,另一方面,虽然这些公司打着生物制药的旗号但实际生产的生物药物所占比重并不高。更重要的是,我国生物制药产业在整个制药产业中所占的比重约为7.36%,远低于全球生物制药业在整个制药行业所占的比重。 2.2自主创新能力不足 发达国家每年投入大量经费用于生物制药的研发和生产,相比而言我国的投入远远不够。另外,从申请的生产专利来看,美国、欧洲等发达国家和地区申请的生物技术专利可以达到全部专利的50%以上,而我国申请的生物技术专利不足全部专利的1%。此外,由于我国生物制药缺乏核心技术,至今没有一个在技术和市场上有明显优势的产品,目前所畅销的药品还是十几年前开发的旧品种,新上马的生物制药企业还处于低水平重复建设阶段。 2.3生物医药系统平台建设不足 生物制药产业发展还存在着一些深层次、长期性的平台建设和大环境建设的问题[4]。如国内资本市场不完善,生物制药技术企业融资渠道单一,融资困难,限制了生物制药企业的资金投入;科技成果转化率低,新研发的技术无法很快投入实际应用;专利保护不到位,生物制药领域浮躁作风现象严重;现行药品招投标机制、流通体制等不适应快速发展的生物制药产业等。所有这些问题都与生物医药系统平台建设水平不足有关,都严重制约我国生物制药产业的持续、健康、快速发展。 2.4产业规模小 2002年,美国3000多家生物技术公司的净销售额就达到5670亿美元。而我国生物产业规模

动物细胞生物制药应用

第11讲 动物细胞生物制药应用

新民周刊 2010,5.17-23.P76-9 2010.11.2:世界肺炎日(第2个) 全球每年约有160万人死于肺炎链球菌 疾病,平均每38秒1名5岁下儿童死于此 病,1100万儿童因肺炎住院。导致儿童 死亡的头号杀手,并高致残:智力低下 、癫痫(17%)、耳聋(27.7%)。 中国是10个肺炎发病率最高的国家之一 ,1/4儿童携带病菌;死亡儿童该病占 46.8%。占西太平洋区的70%。 红霉素不敏感几乎达到100%,青霉素达 86%。 1983年23价肺炎链球菌夾膜多糖疫苗 PPV23诞生。2000年针对2岁以下儿童的 7价肺炎链球菌蛋白结合疫苗PPV7问世 。目前已经接种3亿剂,世界第一大单 个疫苗。 肺炎链球菌发现100年后,真正安全有 效的PPV7疫苗才大规模使用。制造工艺 非常复杂,约需要一年左右。只有爱尔 兰、美国两家工厂。

猪流感(Swine Flu),是猪群中发现的一种可引起地方性流行性感冒的正黏液病毒,属呼吸系统疾病,由甲型流感病毒(A型流感病毒)引发。 以往曾经发生人类感染猪流感,但未有发生人传人案例。2009年4月墨西哥猪流感造成数150多死亡事 件,并在多个国家蔓延。 病毒及病毒疾病 甲型H1N1 流感病毒

H、N的意思 世界卫生组织2009年4月30日建议使用“A/H1N1流感”的名称。 病毒根据抗原性的不同,可分为A、B、C三型。根据血凝素(Hemagglutinin,H)和神经氨酸酶(Neyramidinase,N)的抗原特性,将A型流感病毒分成不同的亚型。目前,有15种特异的H亚型和9种特异的N亚型。 病毒进入细胞:血凝素(H)能和细胞膜上的蛋白结合,在细胞上打开一个通道,使得病毒能进入细胞。 病毒要钻出宿主细胞:神经氨酸酶(N)通过“水解”的方式切断病毒和宿主细胞的最后联系,使病毒脱离宿主细胞。

生物制药工艺

一、名词解释 1.自然选育:利用微生物在一定条件下产生自发突变的原理,通过分离,筛选排除衰退型菌株,选择维持原有生产水平的菌株。 2.诱变育种:在人为的条件下,利用物理、化学等因素,诱发生物体产生突变,从中选择,培育动植物和微生物的新品种。 3.初级代谢产物:微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质。 4.次级代谢产物:微生物代谢产生的,而与菌体的生长繁殖无明确关系的代谢产物。 5.培养基:是专门用于提供微生物生长繁殖和生物合成各种代谢产物所需要的按一定比例配制的多种营养物质的混合物。 6.分批发酵:一种准封闭式系统,种子接种到培养基后除了气体流通外发酵液始终留在反应器内。 7.连续发酵:发酵过程中一边补入新鲜的料液,一边以相近的流速放料,维持发酵液原来的体积。 8.基因工程:将外源基因通过体外重组后倒入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作过程。 9.细胞融合技术:指两种不同的亲株经酶法除去细胞壁得到两个球状原生质体或原生质体球,然后置于高渗溶液中,在以聚乙二醇助溶和氯化钙存在的条件下,促使两者互相凝集并发生细胞之间的融合,进而导致基因重组,获得新的菌株。 10.固定化酶:指经物理或化学方法处理,使酶变成不易随水流失即运动受到限制,而又能发挥催化作用的酶制剂。 11.生物制药的下游技术:从动植物器官与组织、细胞培养液、细胞发酵液中提取、分 离、精制有关生物药物的过程。 12.细胞破碎技术:利用外力破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来。 13、生物药物:是指运用生物学、医学、生物化学等的研究成果,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法,利用生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品。 14、生物制品:是指应用普通的或以基因工程、细胞工程、蛋白质工程、发酵工程等生物技术获得的微生物、细胞及各种动物和人源的组织和液体等生物材料制备的,用于人类疾病预防、治疗和诊断的药品。 15、等电点沉淀法:是利用蛋白质在等电点时溶解度最低而各种蛋白质又具有不同等电点的特点进行分离的方法。 16、原代培养:是指直接从机体取下细胞、组织和器官后立即进行培养。 17、传代培养:需要将培养物分割成小的部分,重新接种到另外的培养器皿(瓶)内,再进行培养的过程。 18、酶的激活剂:一些物质可以改变一个无活性酶前体(酶原),使之成为有活性的酶,或加快某种酶反应的速率产生酶激活作用。

中国生物医药行业研究报告

中国生物医药行业研究报告 2017-07-28分析师吕祖山药时代 作者:分析师吕祖山) (本文转自:益通资产 一、世界医药近况 1、全球医药快速增长 全球医药得益于主要药品的专利将陆续到期和新兴国家的经济快速增长,这些年取得了快速发展,2016年全球药品销售额突破1.1万亿元,2011-2016年复合增长率达到了6%。新兴经济体为代表的发展中国家,其医药市场占比大幅提高,从2005-2016年的十年间新兴经济体医药市场份额由原先的12%提升到了30%。

2、医药研发支出大 2016年全球医药研发支出达到了1474亿美元,同比增长2.5%,同时期国内规模以上的药企研发支出达到了607.2亿元,同比增长27.5%。制药行业研发支出占比持续保持在高位,全球制药龙头企业研发投入占营业收入比重为21%,国内制药龙头企业在这一比重上略低,达到了12%,体现了制药行业高资本和知识密集型的特点。 全球的药物研发正在逐渐升温,这主要基于癌症、糖尿病、认知障碍和炎症等疾病治疗领域中一些新分子药物的出现、诊断和治疗的紧密结合和相辅相成,以及人们对传统商业模式依赖性的下降等重要因素的影响。

3、医药并购风行全球 2015年是生物医药界并购很强劲的一年,但出乎业内预料的是2016年医药行业的收购交易额和交易量都有明显的下降,当年全球生物医药并购前十位交易量为1956.06亿美元,较2015年的3039.26亿美元下降了36%。2016年医药行业最大的一笔并购是德国巨头拜耳以660亿美元收购农业巨头孟山都,其次是夏尔320亿美元收购Baxalta,相比于2015年辉瑞1600亿美元收购艾尔健、阿特维斯405亿美元收购艾尔健全球制药业务都有所下滑。预计2017年制药公司之间的大交易将会增加,各家公司将会拿出更多的现金,寻找重要的资产来扩张产品线。 二、中国医药工业现状 2016年中国药品终端市场总体规模达到了13775亿元,同比增长7.6%,较2010年增长近2倍。医药工业规模以上企业不但主营业务收入逐年增长,而且利润总额也是逐年增长。据统计2015年医药工业实现主营业务收入26885.2亿元,同比增长9%,高于全国工业增速8.2个百分点。实现利润总额为2768.2亿元,同比增长12.2%,高于全国工业增速14.5个百分点。在子行业中,生物制品的利润率增幅尤为明显。 中国的生物医药企业起步晚于发达国家,但大而不强,与发达国家在全球市场占有率、产品竞争力等方面的差距依然很大,美国、欧盟、日本企业的国际市场份额占有率已经分别达到59%、19%、17%,而包括中国在内的其它国家只占有不及5%。 预计2016-2020年五年间,中国医药市场的整体增速在7%左右,2018年和2019年将会有不少新药品上市,但是2019年之后由于有很多产品的一致性评价面临过期,可能会对本土企业和外资企业提出新的挑战和行业格局的变化。 三、生物医药产业特点 1、产品回报率高 生物医药产业具有高技术、高投入、长周期、高风险、高收益、低污染的特征。生物工程药物的利润回报率很高。一种新生物药品一般上市后2-3年即可收回所有投资,尤其是拥有新产品、专利产品的企业,一旦开发成功便会形成技术垄断优势,利润回报能高达10倍以上。

生物制药技术在制药工艺中的应用

生物制药技术在制药工艺中的应用 生物制药技术为制药行业提供了一个全新的发展方向,其展示出不可比拟的应用优势,极大地提高了制药质量,因此应加大对生物制药技术的探讨和研究,本文重点分析制药工艺中对于各种生物制药技术的应用,以供参考。 标签:制药工艺;生物制药技术;应用; 近年来,生物制药技术发展迅猛,成就突出,特别是在制药工艺中的应用,当前生产出的免疫性药物、神经性药物、肿瘤性药物等都取得了良好的临床试验效果,这引起国内外医学学者的广泛关注,在未来发展过程中,我国应高度重视制药工艺中生物制药技术的应用,研制出更多、更好的药品,提升我国的医疗服务水平。 1 常见的生物制药技术 1.1 细胞工程。 细胞工程技术主要包括染色体操作、基因转移、细胞拆合、培养和融合等内容,为制药工艺提供了更多的可能性,传统制药行业为了满足市场对于药品的需求,多是通过人工到全国各地区采摘各种中草药,而通过运用细胞工程技术,可以在实验室中培养中草药植物细胞,从而培养各种各样的中草药,为制药工艺提供充足的中药材,缩短了制药工艺周期,并且有效降低制药企业的人力成本,满足了制药工艺对于生产材料的需求,有助于实现制药工艺的标准化、产业化、规模化发展。 1.2 固定化酶技术。 固定化酶技术在制药工艺中应用非常广泛,这种技术通过连续回收相关反应酶,有效降低制药成本,提升制药质量和效率。同时,固定化酶技术可以定位和限制细胞特定位置,从而固定某些特殊细胞,主要用于生产激素、氨基酸、抗生素等药品。 1.3 基因工程技术。 基因工程技术在实际应用中,采用某种人工手段,将载体插入目标基因中,重新组合遗传物质。在应用基因工程技术时,主要集中在细胞级层面,在认为控制作用下实现基因的重新组合或者复制,从而达到制药目标。同时,细胞中各种激素和活性因子是维持人类正常生存和新陈代谢必不可少的部分,然而在正常情况下,人体细胞中只有有限含量的这些物质,根本无法满足实际的医疗需求,通过运用基因工程技术,如对于人们的糖尿病,利用基因工程技术代替传统药物治疗,增加人体胰岛素含量,获得良好的治疗效果。

全球重磅生物制药市场规模分析

全球重磅生物制药市场规模分析 全球重磅生物制药市场规模 新“四大金刚”销售直线增长 生物制药市场中不乏重磅产品,有句话说得好,如果年销售额不过千万美元,都不好意思说是圈里混的,足见生物制药行业每一个产品均能独当一面,功力深厚。根据全球50家大型制药企业的所有重磅生物制药(销售超过10亿美元的产品)建模推算,2013年全球重磅生物制药总销售额达1420亿美元,年增长率为9.1%。 图表2008-2013年全球重磅生物制药销售额趋势 数据来源:《医药观察家报》 中投顾问发布的《2016-2020年中国生物制药行业投资分析及前景预测报告》指出,事实上,自2007年后,重磅生物制药全球销售额增速由指数增长模式进入了线性增长模式,销售额逐渐扩大,获批的新药有限,销售增量难以维持行业销售额继续以指数模式增长,但个别产品的增长模式持续指数增长或爆炸增长模式,产品层级仍然是“重磅炸弹”丛生。 重磅生物制药可以划分为TNF抗体、癌症抗体、病毒抗体、促红细胞生成素、促卵泡激素、干扰素α、干扰素β、粒细胞集落刺激因子、酶替代疗法、人生长激素、炎症抗体、眼科用抗体、胰岛素及其类似物、重组凝血因子等几个大类,TNF抗体类以316亿美元三年蝉联冠军,其次为癌症抗体、胰岛素及其类似物、炎症抗体,成为生物制药领域的新“四大金刚”(前四大金刚:人胰岛素、人生长激素、干扰素、促红细胞生成素),虽然前四类仍然维持着高增长态势,但促红细胞生成素已风光不再,流放出了五强,价格逐年下降可能是其销售总额逆势下降的原因;另外人生长激素、干扰素市场均出现不同程度的萎缩,干扰素α下

滑超过20%。 中投顾问发布的《2016-2020年中国生物制药行业投资分析及前景预测报告》指出,从近年销售趋势来分析,新四大金刚均处于直线增长趋势,TNF抗体、癌症抗体、胰岛素及其类似物增速放缓,炎症抗体近年市场快速增长,说明市场中实力产品已经出现。在年销售额百亿以下小类中,眼科用抗体增速强劲,年增长率25.6%,有望突破百亿大关,另外,重组凝血因子近年来销售额一直处于爬升状态,但较2012年增速放缓为4.2%,未来突破可能性不大。 图表2008-2013年全球重磅生物制药年销售额百亿以上大类销售情况 单位:百万美元 数据来源:《医药观察家报》

纳米技术在生物医药中的应用

科技创业 PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLY 月刊 科技创业月刊2007年第8期 1990年在美国召开了第一届纳米技 术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《 纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。 1纳米技术 纳米是英文nanometre的译名,像米、 厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够 利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世 界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃 里克?德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体 器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的 DNA片段装配进染色体,使机体正常运 作。 2.2灵敏的检测器 癌症是人类死亡率极高的疾病之一, 但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。 另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。 2.3多彩的标记物 科学家根据CD唱机中激光二极管的 发光原理,研制出半导体纳米晶体。这种微型的无机晶体被称作量子点,可通过对其大小的控制,使其经同一光源激发后,发出红、黄、蓝等多种颜色的光。又因量子点比传统有机染色小分子更稳定,目前得到了广泛应用。例如,研究者可用量子点附着在不同基因序列组成的DNA分子上,通过比较标记的基因序列与已知序列找出哪些基因在特定细胞或组织中表达较为活跃;当用量子点标记蛋白质或其他物质时,技术人员可动态跟踪标记物在体内的过程,从而使其应用于一些疾病的诊断。 纳米技术在生物医药中的应用 夏 涛 (华中师范大学第一附属中学 湖北 武汉 430223) 摘 要 纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用 的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词 纳米技术 纳米材料 生物医药 中图分类号 TD383:R319文献标识码 A 收稿日期:2007-04-17 86

生物制药

生物制药综述 高艺娜:浅谈川贝母的研究进展2011年04月08日 浅谈蛋白质折叠的研究进程 高艺娜 (大连民族学院生命科学学院生物08-1班2008031108 116600) 摘要蛋白质结构与功能的关系,近年来已经成为结构生物学研究的热点之一。本文主要介绍了关于蛋白质折叠的研究进程,并对蛋白质折叠的基本概念,机制,研究概况及今后的研究方向做了详细的介绍。 关键词蛋白质;折叠;分子伴侣;机制;研究 蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。[蛋白质像是一个微小而精密的机器。在蛋白质实现它的生物功能之前,它们会把自己装配起来。虽然蛋白质折叠是对所有的生物体系来说最重要的和最基本的过程,但这个过程对人类而言仍然是个未解之谜。由20种氨基酸组成的多种多样蛋白质,比核酸分子复杂的多,而且具有形形色色的功能,几乎参与了生命活动的所有方面并起着关键作用。但最终只有一种或少数几种特定三维构象是具有生物学活性或功能的,这种特定空间结构受到轻微破坏时,生物学功能就受到影响或丧失,新生的蛋白质如何形成有活性或共能的机构以及蛋白质结构与功能的关系等是蛋白质折叠研究需解答并去解决的问题。 1 基本概念 结构决定功能,仅仅知道基因组序列并不能使我们充分了解蛋白质的功能,更无法知道它是如何工作的。蛋白质可凭借相互作用在细胞环境(特定的酸碱度、温度等)下自己组装自己,这种自我组装的过程被称为蛋白质折叠。 2 蛋白质折叠机制的理论模型 2.1 框架模型(Framework Model) 框架模型[4] 假设蛋白质的局部构象依赖于局部的氨基酸序列。在多肽链折叠过程的起始阶段, 先迅速形成不稳定的二级结构单元;二级结构框架相互拼接,肽链逐渐紧缩,形成了蛋白质的三级结构。这个模型认为即使是一个小分子的蛋白也可以一部分一部分的进行折叠, 其间形成的亚结构域是折叠中间体的重要结构。 2.2 疏水塌缩模型 (Hydrophobic Collapse Model) 在疏水塌缩模型中,疏水作用力被认为是在蛋白质折叠过程中起决定性作用的力的因素。在形成任何二级结构和三级结构之前首先发生很快的非特异性的疏水塌缩。 2.3 扩散-碰撞-粘合机 (Diffusion-Collision-Adhesion Model) 该模型认为蛋白质的折叠起始于伸展肽链上的几个位点,在这些位点上生成不稳定的二级结构单元或者疏水簇,主要依靠局部序列的进程或中程(3-4个残基)相互作用来维系。球形中间体调整为熔球态结构。最后熔球态转变为完整的有活力的天然态。 2.3 成核-凝聚-生长模型 (Nuclear-Condensation-Growth Model) 根据这种模型,以“折叠晶核”为核心,整个肽链继续折叠进而获得天然构象。晶核的形成是折叠起始阶段限速步骤。 2.4 拼版模型(Jig-Saw Puzzle Model)

试论生物技术制药的发展状况及前景

试论生物技术制药的发展状况及前景 摘要:生物技术药物是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。本文主要论述了生物制药的研究现状及其进展状况。 关键词:生物技术制药发展前景 一、全球生物技术制药产业发展现状概况 随着以基因工程为核心的生物技术的迅猛发展,全球生物医药产业进入了一个前所未有的全新发展阶段,生物医药越来越成为新药创新的主要来源和未来医药产业的发展方向。全球生物医药产业发展呈现以下几方面的特点: (一)市场规模增幅迅速 根据相关的研究结果,2007年全球生物制药市场增速达到13%~14%,远高于全球医药市场5%~6%的增速。Frost & Sullivan公司的报告指出,2007年全球生物制药市场的收入为450亿美元,到2011年有望达到982亿美元。 (二)发达国家处于产业主导地位 由于生物制药产业的发展水平主要取决于国家的科技实力和人们的生活水平。因而美国作为全球第一超级大国,凭借其强大的技术实力和资金实力占有全球生物制药市场约60%的市场份额,并且这个比例还在逐年增加;欧洲一些制药发达国家例如英国、德国和瑞士等制药强国通过最近5年多的发展,其市场份额也达到了23%;日本生物制药产业虽然增长迟缓,但是凭借其过去的成绩以及对生物制药产业的持续投入和扶持,仍作为亚太地区的制药巨头与欧美共同抢占全球的市场份额;包括我国在内的其他国家和地区的生物制药产业基本上仍然处于起步阶段,生物制药的研究、开发和生产等关键技术与美国等发达国家差距非常明显。 据测算,2002年全球医药市场达到4058亿美元。其全球市场分布情况是:北美市场1695亿美元,占全球市场的41.76%;欧洲市场1008亿美元,占24.83%;日本市场458亿美元,占11.28%;拉丁美洲市场305亿美元,占7.51%;东南亚及中国市场201亿美元,占4.95%;中东地区市场106亿美元,占2.61%;东欧地区市场74亿美元,占1.82%;澳洲地区市场54亿美元,占1.33%;非洲市场53亿美元,占1.30%;其它地区32亿美元,占0.79%。从生物医药市场来看,大体情况也是如此。其一,全球生物技术药品品种,63%集中在北美,其中以美国为主;25%在欧洲,7%在日本,5%在世界其它地方。其二,全球生物技术药品市场,美国占有主要份额,为45%,

生物制药行业现状及前景

生物制药行业现状及前 景 Revised at 2 pm on December 25, 2020.

我国生物制药行业现状 我国生物技术药物的研究和开发起步较晚,直到年代初才开始将重组技术应用到医学上,但在国家产业政策特别是国家“”高技术计划的大力支持下,使这一领域发展迅速,逐步缩短了与先进国家的差距,产品从无到有,基本上做至了国外有的我国也有,目前己有种基因工程药物和若干种疫苗批准上市,另有十几种基因工程药物正在进行临床验证,还在研究中的药物数十种。国产基因工程药物的不断开发生产和上市,打破了国外生物制品长期垄断中国临床用药的局面。目前,国产干扰素α的销售市场占有率已经超过了进口产品。我国首创的一种新型重组人γ干扰素并已具备向国外转让技术和承包工程的能力,新一代干扰素正在研制之中。 我国目前登记在册的生物技术企业共有家,但其业务真正涉及到基 。 取得基因工程药物生产文号的不足家。全国生产基因工程药物的公司总销售额不及美国或日本一家中等公司的年产值。企业规模过小,无法形成规模经济参与国际竞争。 “入世”以来对我国生物制药行业造成的冲击 ⒈进口生物药品的冲击 从进口关税的角度看,以前制剂药品进口的关税为目前关税已经逐步下调,估计年内将减到的水平。关税的下调使得国内的生物制药企业将失去靠关税政策保护下的竞争力。 ⒉外资企业直接进入带来的冲击 世界上很多生物制药企业都已直接或间接进入我国市场,它们不仅将自己获得批准的药品迅速来中国注册,同时将生产线建在中国境内生产,有的还将新药开发的临床试验移到中国境内来完成,这对国内相关企业造成很大的威胁。 ⒊国外新药开发的冲击 生物制药是一个需要高投入的新兴行业,年美国对生物工程的风险投资已超过亿美元,而且每年追加的投资都在亿美元以上。我国在生物制药研究上的资金投入严重不足,在新产品的研究上极其缺乏竞争力,新药开发进程缓慢。在国外,一项基因工程药物的研制就需耗资亿美元甚至更多,而我国十几年来对生物制药的总投入还不到亿元人民币。一但国外竞争对手抢先申报药品专利权,就会使国内的前期开发投资落空。 ⒋外国公司市场开发的优势 一个基因工程新药的市场开发需要很长的时间和大量的资金投入。由于欧美一些公司强大的资金实力,可以在市场开发上投入巨额资金,做大量的产品宣传,并可以在长时间不盈利的情况下继续生存,这是中国公司所无法相比的。 ⒌知识产权的纷争 由于我国国力有限,对新药研究开发资金投入不足,目前除科兴生物技术公司干扰素外,国内生产的大部分基因工程药物都是模仿而来,这将潜伏着巨大的危机。年以来,随着国外高科技产品在国内申请专利,欧美国家来我国申请专利越来越多,如、、、等。 我国生物制药产业发展方向 ⒈中草药及其有效生物活性成份的发酵生产。

高效液相色谱在生物制药中的应用

高效液相色谱在生物制药中的应用 高效液相色谱法是近35年发展起来的一项高效、快速的分离分析技术,是现代分离测试的重要手段[1]。高效液相色谱法已经被广泛用在各种领域,它是以经典的液相色谱为基础,引入气相色谱的理论与实验方法,将流动相改为高压输送,并采用高效固定相及在线检测等手段,发展而成的分析、分离方法。以其灵敏度高、选择性好,可分析微量组成甚至痕量样品等特点,成为医药分析领域发展最快、应用最广的现代分析技术之一。于此同时,高效液相色谱法成为环境污染物检测技术及化工产品质量检验中的标准方法。鉴于其简便、快速、灵敏、准确的特点,目前,在医药、卫生、食品、环保等各个领域已得到广泛应用。随着色谱技术的不断发展,在世界许多科学领域中,色谱法已成为世界许多科学领域中普及的一种分离分析手段,色谱仪也呈多样化、高精化、自动化、联用技术化等方向发展。高效液相色谱仪具有柱效高、分析速度快、流动相和被测组分的体积流量小等特点,广泛应用于临床工作[2]。 1.高效液相色谱的介绍 高效液相色谱仪一般都具备贮液器、高压泵、梯度洗提装置(用双泵)、进样器、色谱柱、检测器、恒温器、记录仪等主要部件。高效液相色谱法有以下五个特点:①高压:流动相为液体,流经色谱柱受到的阻力比较大,为了能够快速的通过柱子,必须对流动相加很高的高压。②高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。③高灵敏度:紫外检测器可达0.01ng,进样量在uL数量级。④应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是强极性、热稳定性差、高沸点、大分子化合物的分离分析,显示出优势。⑤分析速度快、载液流速快:分析所需时间一般小于1小时,和传统经典液体色谱法相比速度快得多。高效液相色谱有5种类型: 1、吸附色谱(Adsorption Chromatography) 2、分配色谱(Partition Chromatography) 3、离子色谱(Ion Chromatography) 4、体积排阻色谱(Size Exclusion Chromatography)

生物技术制药名词解释

一、名词解释:每个概念5分,共50分 1. 生物技术制药 生物技术制药是指运用微生物学、生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液等,综合利用微生物学、化学、生物化学、生物技术、药学等科学的原理和方法进行药物制造的技术。 2. 基因表达 基因表达(gene expression)是指细胞在生命过程中,把储存在DNA顺序中遗传信息经过转录和翻译,转变成具有生物活性的蛋白质分子.生物体内的各种功能蛋白质和酶都是同相应的结构基因编码的。 3. 质粒的分裂不稳定 通常将质粒不稳定性分为两类:一类是结构不稳定性,也就是质粒由于碱基突变、缺失、插入等引起的遗传信息变化;另一类是分离不稳定性,指在细胞分裂过程中质粒不能分配到子代细胞中,从而使部分子代细胞不带质粒(即P-细胞)。在连续和分批培养过程中均能观察到此两类现象发生。一般情况下具有质粒的细胞(即P +细胞)需要合成较多的DNA、RNA和蛋白质,因此其比生长速率低于P-细胞,从而P-细胞一旦形成能较快速地生长繁殖并占据培养物中的大多数。 4. 补料分批培养 发酵培养基发酵培养基是供菌种生长、繁殖和合成产物之用。它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。因此,发酵培养基的组成除有菌体生长所必需的元素和化合物外,还要有产物所需的特定元素、前体和促进剂等。但若因生长和生物合成产物需要的总的碳源、氮源、磷源等的浓度太高,或生长和合成两阶段各需的最佳条件要求不同时,则可考虑培养基用分批补料来加以满足。 5. 人-鼠嵌合抗体 嵌合抗体(chimeric atibody )是最早制备成功的基因工程抗体。它是由鼠源性抗体的V 区基因与人抗体的 C 区基因拼接为嵌合基因,然后插入载体,转染骨髓瘤组织表达的抗体分子。因其减少了鼠源成分,从而降低了鼠源性抗体引起的不良反应,并有助于提高疗效。 6. 悬浮培养 非贴壁依赖性细胞的一种培养方式。细胞悬浮于培养基中生长或维持。某些贴壁依赖性细胞经过适应和选择也可用此方法培养。增加悬浮培养规模相对比较简单,只要增加体积就可以子。深度超过5mm,需要搅动培养基,超过10cm,还需要深层通入CO2和空气,以保证足够的气体交换。通过振荡或转动装置使细胞始终处于分散悬浮于培养液内的培养方法。 7. 贴壁培养 也称为细胞贴壁,贴壁后的细胞呈单层生长,所以此法又叫单层细胞培养。大多数哺乳动物细胞的培养必须采用这种方法。 8. 固定化酶 不溶于水的酶。是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。酶固定化后一般稳定性增加,易从反应系统中分离,且易于控制,能反复多次使用。便于运输和贮存,有利于自动化生产。 9. 双功能抗体 将识别效应细胞的抗体和识别靶细胞的抗体联结在一起,制成双功能性抗体,称为双特异性抗体。如由识别肿瘤抗原的抗体和识别细胞毒性免疫效应细胞(CTL 细胞、NK 细胞、LAK 细胞)表面分子的抗体(CD3 抗体或CD16 抗体)制成的双特异性抗体,有利于免疫效应细胞发挥抗肿瘤作用。 10. 组织工程 应用生命科学与工程学的原理与技术,在正确认识哺乳动物的正常及病理两种状态下的组织结构与功能关系的基础上,研究、开发用于修复、维护、促进人体各种组织或器官损伤后的功能和形态的生物替代物的一门新兴学科。 11抗体:由B细胞接受刺激后分化为浆细胞产生的能与相应抗原特异性结合的具有免疫功能的球蛋白。

全国生物制药企业排名

全国生物制药企业排名 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

全国生物制药企业排名(最新版) 北京集琦医药网络有限公司信息部 升华集团控股有限公司 1 山东山松生物工程集团有限公司2? 诺维信(中国)生物技术有限公司3? 山东正大福瑞达制药有限公司 4 上海生物制品研究所 5 宝鸡阜丰生物科技有限公司 6 辽宁诺康生物制药有限责任公司7

福建省石狮市华宝集团公司8 广西北生药业股份有限公司9 上海葛兰素史克生物制品有限公司10 艾康生物技术(杭州)有限公司1 1 华兰生物工程股份有限公司1 2 北京天坛生物制品股份有限公司1 3 成都蓉生药业有限责任公司1 4 兰州生物制品研究所1 5

山东鲁抗医药集团赛特有限责任公司1 6 上海莱士血制品有限公司17 四川蜀阳企业(集团)有限公司18 烟台东诚生化有限公司19 扬州市三药制药有限公司20 巩义市惠康生物工程有限公司2 1 湖北新生源生物工程股份有限公司2 2 山东天顺药业股份有限公司2 3

上海新兴医药股份有限公司2 4 溧阳市维多生物工程有限公司2 5 莱阳方舟生物制品有限公司2 6 徐州万邦生化制药有限公司27 珍奥集团股份有限公司28 成都生物制品研究所29 广东天普生化医药股份有限公司30 常州千红生化制药有限公司3 1

哈尔滨维科生物技术开发公司3 2 苏州工业园区赛康德万马化工有限公司3 3 莱阳祥和生化制品有限公司3 4 威海环宇生物技术有限公司3 5 卫生部长春生物制品研究所3 6 长春金赛药业有限责任公司37 南通双林生物制品有限公司38 沂南县天成生物原料有限公司39

相关文档