文档库 最新最全的文档下载
当前位置:文档库 › 220kV变电站一次部分的设计

220kV变电站一次部分的设计

220kV变电站一次部分的设计
220kV变电站一次部分的设计

摘要

随着经济的发展和现代工业建设的迅速崛起,供电系统的设计越来越全面、系统,工厂用电量迅速增长,对电能质量、技术经济状况、供电的可靠性指标也日益提高,因此对供电设计也有了更高、更完善的要求。

本设计主要介绍了220kV变电站一次部分的设计。首先通过对原始资料进行分析,设计主接线形式,综合比较各种接线方式的特点、优缺点,根据电气主接线设计的基本要求选择两种较其它方案可靠的主接线方案;再对两种方案进行全面的可靠性、灵活性和经济性比较,确定最优的主接线方案;然后根据题目要求选择主变压器的台数以及容量,再进行短路电流计算,为设计中需要的高压电气设备的选择、整定、校验等方面做准备;继而进行主要电气设备的选择与校验,最后进行防雷保护设计。

关键词:变电站;主变压器;短路计算;电气设备选择。

ABSTRACT

With the development of economy and the rapid rise of the modern industrial construction, design of power supply system is more and more comprehensive, system, factory power consumption increased rapidly, the power quality, technical and economic conditions, power supply reliability index is increasing, so the design of power supply also has a higher, better.

This design mainly introduces the design of 220 kv substation a part. Through analyze the raw data first, design main wiring forms, comprehensive comparison of various characteristics of wiring method, advantages and disadvantages, choose according to the basic requirement of the main electrical wiring design two kinds of main wiring scheme than other solutions and reliable; Again to the reliability of the two plans to conduct a comprehensive, flexible and economical comparison, to determine the optimal main wiring scheme; Then the sets and the capacity of main transformer according to the request of topic selection, short-circuit current calculation again, needed for the design of high voltage electrical equipment choice preparation, setting, calibration, etc; And then to the main electrical equipment selection and calibration, finally carries on the lightning protection design.

Keywords: substation; The main transformer; Short circuit calculation; Equipment selection.

目录

1 引言 (1)

2 电气主接线的设计 (2)

2.1 主接线概述 (2)

2.2 主接线设计原则 (3)

2.3 主接线选择 (4)

3 主变压器的选择 (7)

3.1负荷计算 (7)

3.2主变压器的选择原则 (7)

3.2.1主变压器台数的选择 (8)

3.2.2主变压器容量的选择 (8)

3.2.3主变压器型式的选择 (9)

3.2.4绕组数量和连接形式的选择 (9)

3.3 主变压器选择确定 (10)

4 短路电流计算 (11)

4.1 变压器的各绕组电抗标幺值计算 (11)

4.2 10kV侧短路计算 (12)

4.3 220kV侧短路计算 (15)

4.4 110kV侧短路计算 (16)

5 导体和电气设备的选择 (18)

5.1 断路器和隔离开关的选择 (19)

5.2 电流互感器的选择 (29)

5.3 电压互感器的选择 (33)

5.4 导体的选择与校验 (34)

6 防雷接地设计 (41)

6.1 防雷设计 (41)

6.1.1 防雷设计原则 (41)

6.1.2 避雷器的选择 (41)

6.1.3 避雷针的配置 (44)

6.2 接地设计 (45)

6.2.1 接地设计的原则 (45)

6.2.2 接地网型式选择 (46)

7 结论与展望 (47)

致谢 (48)

参考文献 (49)

1 引言

随着经济的发展,工业水平的进步,人们生活水平的不断提高。电力系统在整个行业中所占的比例逐渐增大,现代电力系统是一个巨大的,严密的整体。电力系统是我国经济的重要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。

变电站对电力的生产和分配起到了举足轻重的作用,是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,作为电能输送与控制的枢纽,设计是否合理,不仅直接影响了基建投资、运行费用和有色金属的消耗量,也会反映在供电的可靠性和安全生产方面,它和企业的经济效益、设备人身安全密切相关。

通过对原始资料的分析,查阅相关资料,结合发电厂电气部分、工厂供电等所学专业课以及其他人的设计,根据要求拟定以下设计,该设计包括以下任务:1、主接线的设计:根据电气主接线的基本要求,从可靠性、灵活性以及经济性对所选的两种主接线进行比较,确定最优的主接线方案;2、主变压器的选择:确定主变压器的容量、台数以及型式和结构;3、短路计算:采用标幺值的方式分别对220kV、110kV、10kV侧短路计算;4、导体和电气设备的选择:分别对断路器、隔离开关、电压互感器、电流互感器导体进行选择和校验;5、防雷接地设计。

2电气主接线的设计

2.1主接线概述

电气主接线又称电气一次接线,它是将电气设备以规定的图形和文字符号,按电能生产、传输、分配顺序及相关要求绘制的单相接线图。主接线代表了发电厂或变电站电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性,同时对电气设备的选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。

单母线接线及单母线分段接线

(1)单母线接线

单母线接线供电电源在变电站是变压器或高压进线回路。母线既可保证电源并列工作,又能使任一条出线都可以从任一个电源获得电能。各出线回路输入功率不一定相等,应尽可能使负荷均衡地分配在各出线上,以减少功率在母线上的传输。

单母接线的优点:接线简单,操作方便、设备少、经济性好,并且母线便于向两端延伸,扩建方便。缺点:①可靠性差。母线或母线隔离开关检修或故障时,所有回路都要停止工作,也就成了全厂或全站长期停电。②调度不方便,电源只能并列运行,不能分列运行,并且线路侧发生短路时,有较大的短路电流。

综上所述,这种接线形式一般只用在出线回路少,并且没有重要负荷的发电厂和变电站中。

(2)单母分段接线

单母线用分段断路器进行分段,可以提高供电可靠性和灵活性;对重要用户可以从不同段引出两回馈电线路,由两个电源供电;当一段母线发生故障,分段断路器自动将用户停电;两段母线同时故障的几率甚小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分段,任一母线故障时,将造成两段母线同时停电,在判别故障后,拉开分段隔离开关,完成即可恢复供电。

这种接线广泛用于中、小容量发电厂电压配电装置,一般每段母线上所接发电容量为12mV左右,每段母线上出线不多于5回;变电站有两台主变压器时的6~10kV配电装置;35~63kV配电装置出线4~8回;110~220kV配电装置出线3~4回。

(3)单母线分段带旁路母线的接线

单母线分段断路器带有专用旁路断路器母线接线极大地提高了可靠性,但这增加了一台旁路断路器,大大增加了投资。

双母线接线及分段接线

(1)双母线接线

双母接线有两种母线,并且可以互为备用。每一个电源和出线的回路,都装有一台断路器,有两组母线隔离开关,可分别与两组母线接线连接。两组母线之间的联络,通过母线联络断路器来实现。其特点有:供电可靠、调度灵活、扩建方便等特点。

由于双母线有较高的可靠性,广泛用于:进出线回数较多、容量较大、出线带电抗器的6~10kV配电装置;35~60kV出线数超过8回,或连接电源较大、负荷较大时;110~220kV出线数为5回及以上时。

(2)双母线分段接线

为了缩小母线故障的停电范围,可采用双母分段接线,用分段断路器将工作母线分为两段,每段工作母线用各自的母联断路器与备用母线相连,电源和出线回路均匀地分布在两段工作母线上。双母接线分段接线比双母接线的可靠性更高,当一段工作母线发生故障后,在继电保护作用下,分段断路器先自动跳开,而后将故障段母线所连的电源回路的断路器跳开,该段母线所连的出线回路停电;随后,将故障段母线所连的电源回路和出线回路切换到备用母线上,即可恢复供电。这样,只是部分短时停电,而不必短期停电。

双母线分段接线被广泛用于发电厂的发电机电压配置中,同时在220~550kV大容量配电装置中,不仅常采用双母分段接线,也有采用双母线分四段接线的。

(3)双母线带旁路母线的接线

双母线可以带旁路母线,用旁路断路器替代检修中的回路断路器工作,使该回路不致停电。这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线的线路回数较多,并且对供电可靠性有特殊需要的场合是十分必要的。

2.2 主接线设计原则

电气主接线时发电厂、变电站电气设计的首要部分,也是构成电力系统的主要环节。主接线代表了发电厂或变电站电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性,同时对电气设备的选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。直接影响运行的可靠性、灵活性。

电气主接线的设计的基本要求,概括的说应包括可靠性,灵活性和经济性三个方面。

(1)可靠性

安全可靠时电力生产的首要任务,保证供电可靠时电气主接线的最基的要求,停损

点逼近时发电厂造成损失,而且对国民经济各部门带来的损失将更加严重,在经济发达的地区,故障停电的经济损失时实时电价的数十倍,乃至上百倍,至于导致人身伤亡、设备损坏等等经济损失和社会影响更是难以估量。因此主接线的接线形式必须保证供电可靠。

(2)灵活性

电气主接线应能适应各种运行状态,并能灵活的进行运行方式的转换。包括:①操作的方便;②调度的方便性;③扩建的方便性。

(3)经济性

在设计主接线时,主要矛盾往往发生在可靠性与经济性之间。通常设计应在满足可靠性和灵活性的前提下做到经济合理。经济性主要从下列几方面考虑:①节省一次投资;

②占地面积;③电能损耗少。

2.3主接线选择

根据原始资料的分析现列出两种主接线方案。

方案一:220kV侧双母接线、110kV侧双母接线、10kV侧单母分段接线。

220kV出线6回(其中备用2回),而双母接线使用范围是110~220kV出线数为5回及以上时。满足主接线的要求。且具备供电可靠、调度灵活、扩建方便等特点。

110kV出线10回(其中备用2回),110kV侧有两回出线供给远方大型冶炼厂,其容量为80000kVA,其他作为一些地区变电所进线,其他地区变电所进线总负荷为100MVA。根据条件选择双母接线方式。

10kV出线12回(其中备用2回),10kV侧总负荷为35000kVA,Ⅰ、Ⅱ类用户占60%,最大一回出线负荷为2500kVA,最大负荷与最小负荷之比为0.65。选择单母分段接线方式。方案主接线如图2-1所示。

方案二:220kV侧双母带旁路接线、110kV侧双母接线、10kV侧单母分段接线。

220kV出线6回(其中备用2回),而由于本回路为重要负荷停电对其影响很大,因而选用双母带旁路接线方式。双母线带旁路母线,用旁路断路器替代检修中的回路断路器工作,使该回路不致停电。这样多装了价高的断路器和隔离开关,增加了投资,然而这对于接于旁路母线的线路回数较多,并且对供电可靠性有特殊需要的场合是十分必要的。方案主接线如图2-2所示。

图2-1 主接线方案一

图2-2 主接线方案二

现对两种方案比较如下:

表2-1 主接线方案比较表

方案项目方案一:220kV侧双母接线,110kV

侧双母接线、10KV侧单母分段接

线。

方案二、220kV侧双母带旁路接线,110kV

侧双母接线、10kV侧单母分段接线。

可靠性1.220kV接线简单,设备本身故障

率少;

2.220kV故障时,停电时间较长。

1.可靠性较高;

2.有两台主变压器工作,保证了在变压

器检修或故障时,不致使该侧不停电,

提高了可靠性。

灵活性1.220kV运行方式相对简单,灵活

性差;

2.各种电压级接线都便于扩建和发

展。

1.各电压级接线方式灵活性都好;

2.220kV电压级接线易于扩建和实现自

动化。

经济性

设备相对少,投资小。 1.设备相对多,投资较大;

2.母线采用双母线带旁路,占地面增加。

通过对两种主接线可靠性,灵活性和经济性的综合考虑,辨证统一,现确定第二方案为设计最终方案。

3 主变压器的选择

在发电厂和变电站中,用来向电力系统或用户输送功率的变压器,称为主变压器;用于两种电压等级之间交换功率的变压器,称为联络变压器;只供本所(厂)用的变压器,称为站(所)用变压器或自用变压器。本章是对变电站主变压器的选择。

3.1负荷计算

原始资料分析

(1)按规划要求,该所有220kV 、110kV 和10kV 三个电压等级。220kV 出线6回(其中备用2回),110kV 出线10回(其中备用2回),10kV 出线12回(其中备用2回)。

(2)110kV 侧有两回出线供给远方大型冶炼厂,其容量为80000kVA ,其他作为一些地区变电所进线,其他地区变电所进线总负荷为100MVA 。10kV 侧总负荷为35000kVA ,ⅠⅡ类用户占60%,最大一回出线负荷为2500kVA ,最大负荷与最小负荷之比为0.65。

(3)各级电压侧功率因数和最大负荷利用小时数为:

220kV 侧 9.0cos =? 年小时/3600max =T 110kV 侧 0.85cos =? 年小时/4600max =T 10kV 侧 8.0cos =? 年小时/4000max =T (4)110kV 功率因数0.85

ΣP 1= 80000kVA+100MVA =180MVA , 10kV 侧功率因数0.8 ΣP 2=35000kVA

3.2主变压器的选择原则

(1)主变容量一般按变电所建成后 5~10 年的规划负荷来进行选择,并适当考虑远期10~20 年的负荷发展。

(2)根据变电所所带负荷的性质和电网结构来确定主变的容量。对于有重要负荷的变电所,应考虑一台主变停运时,其余变压器容量在计及过负荷能力后的允许时间内,保证用户的Ⅰ级和Ⅱ级负荷,对于一般变电所,当一台主变停运时,其他变压器容量应能保证全部负荷的70%~80%。

(3)为了保证供电可靠性,变电所一般装设两台主变,有条件的应考虑设三台主变的可能性。

3.2.1主变压器台数的选择

(1)对大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。

(2)对地区性孤立的一次变电所或大型工业专用变电所,在设计时应考虑装设三台主变压器的可能性。

(3)对于不重要夫人较低电压等级的变电所,可以支装设一台主变压器。

3.2.2主变压器容量的选择

(1)主变压器容量一般按变电所建成后5~10 年的规划负荷选择,适当考虑到远期10~20 年的负荷发展。对于城郊变电所,主变压器容量应与城市规划相结合。

(2)根据变电所所带负荷的性质和电网结构来确定主变压器的容量。对于有重要负荷的变电所,应考虑当一台主变压器停运时,其余变压器容量在计其过负荷能力后的允许时间内,应保证用户的一级和二级负荷;对一般性变电所,当一台变压器停运时,其余变压器容量应能保证全部负荷的70%~80%。

同级电压的单台降压变压器容量的级别不宜太多,应从全网出发,推行系列化,标准化.

())

kVA (75.2414608

.005.1350009.085.005.11800009.085

.0)

05.01(219.0)

1(00=??+

??=+?+?=

+=∑∑∑∑P P a P K S COS C ?

Sc ——某电压等级的计算负荷

∑K ——同时系数 00a ——该电压等级电网的线损率,一般取5%

P 、cos ?——各用户的负荷和功率因数

因为此变电站主变选择是两台变压器,单台变压器容量式中 ,Se 按一台主变压器停运时,其余变压器容量不应小于60~80%的全部负荷或全部重要负荷,并保证I 类、Ⅱ类负荷的可靠性供电考虑:

Se ≥Sc ×70﹪=241460.75×0.7=169022.525kVA 所以单台主变变压器的容量为180000kVA

变压器额定电压规定:变压器一次绕组的额定电压等于用电设备的额定电压。但是,当变压器的一次绕组直接与发电机的出线端相连时,其一次绕组的额定电压应与发电机额定电压相同,即U1=1.05Ue。变压器的二次绕组的额定电压比同级电力网的额定电压高10﹪,即U2=1.1Ue.但是10KV及以下电压等级的变压器的阻抗压降在7.5﹪以下。若线路短,线路上压降小,其二次绕组额定电压可取1.05Ue。

因此,高压侧额定电压:220 kV

中压侧额定电压:110×1.05 =115.5 kV

低压侧额定电压:10×1.05 =10.5 kV

3.2.3主变压器型式的选择

选择主变压器,需考虑如下原则:

(1)当不受运输条件限制时,在330kV 及以下的发电厂和变电站,均应选用三相变压器。

(2)当发电厂与系统连接的电压为500kV 时,已经技术经济比较后,确定选用三相变压器、两台50%容量三相变压器或单相变压器组。对于单机容量为300MW、并直接升到500kV的,宜选用三相变压器。

(3)对于500kV 变电所,除需考虑运输条件外,尚应根据所供负荷和系统情况,分析一台(或一组)变压器故障或停电检修时对系统的影响。尤其在建所初期,若主变压器为一组时,当一台单相变压器故障,会使整组变压器退出,造成全网停电;如用总容量相同的多台三相变压器,则不会造成所停电。为此要经过经济论证,来确定选用单相变压器还是三相变压器。在发电厂或变电站还要根据可靠性、灵活性、经济性等,确定是否需要备用相。

3.2.4绕组数量和连接形式的选择

具有三种电压等级的变电所,如各侧的功率均达到主变压器额定容量的15%以上,或低压侧虽无负荷,但需要装设无功补偿设备时,主变压器一般选用三绕组变压器。

变压器绕组的连接方式必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只要有丫和△,高、中、低三侧绕组如何结合要根据具体工作来确定。我国110kV 及以上电压,变压器三相绕组多采用YN连接,即三相星形接线,中性点直接接地;35kV亦采用丫连接,其中性点多通过消弧线圈接地。35kV 以下电压,变压器三相绕组多采用△连接即三角形接法。由于35kV 采用丫连接方式,与220、110 系统的

线电压相位角为0,这样当变压变比为220/110/35kV,高、中压为自耦连接时,否则就不能与现有35kV 系统并网。因而就出现所谓三个或两个绕组全星接线的变压器,全国投运这类变压器约40~50 台

3.3主变压器选择确定

查《电力工程电气设备手册:电气一次部分》,选定变压器的容量为180MVA。

由于升压变压器有两个电压等级,所以这里选择三绕组变压器,查《大型变压器技术数据》选定主变型号为:SFPS7-18000/220。

主要技术参数如下:

额定容量:180000(kVA)

额定电压:高压—220±2×2.5% ;中压—121;低压—10.5(kV)

连接组标号:YN/yn0/d11

空载损耗:178(kW)

阻抗电压(%):高中:14.0;中低:7.0;高低:23.0

空载电流(%):0.7

所以一次性选择两台SFPS7-180000/220型变压器为主变。

4 短路电流计算

研究供电系统的短路并计算各种情况下的短路电流,对供电系统的拟定、运行方式的比较、电气设备的选择及继电保护整定都有重要的意义。在供电系统中,最严重的故障就是短路。所谓短路是指供电系统中不等电位的导体在电气上短接。短路的种类:三相短路、两相短路、两相接地短路、单相接地短路。

系统阻抗:220kV 侧电源近似为无穷大系统A ,归算至本所220kV 母线侧阻抗为0.015(S j =100MVA ),110KV 侧电源容量为500MVA ,归算至本所110kV 母线侧阻抗为0.36(S j =100MVA )。变压器型号为SFPS7—180000/220。

S N =180MVA 其中高中、高低、中低阻抗电压(%)分别为14,23,7。简化图如下图所示:

图4-1 系统图的等值电路

4.1 变压器的各绕组电抗标幺值计算

s1s(1-2)s(3-1)s(2-3)11

U %=[U %+U %-U ]= (14+23-7)=1522

s2s(1-2)s(2-3)s(3-1)11

U %= [U %+U %-U %]= (14+7-23)=-122

A B

110kV

X T3

0.044C

*

X T2

0.006

*

X T2

0.006

*

X T1

0.083

*

X T1

0.083

*

X AS

0.015

*

X T3

0.044*

X T30.36*

s3s(3-1)s(2-3)s(1-2)1

U %= [U %+U %-U %]= (23+7-14)=82

设S B =100MVA ,U B =U av

0.083180

100

10015S S 100%U X N B s1*T1=?=?=

-0.006180100

1001-S S 100%U X N B s2*T2=?=?=

0.044180

100

1008S S 100%U X N B s3*T3=?=?=

4.2 10kV 侧短路计算

f (3)-1短路时, 示意图如下:

X AS

0.015

B

X BS 0.36f-1C 220kV

A

*

X 3

-0.241

*

10kV

*

X 20.018*

X 10.033

*

图4-2 f (3)

-1短路的等值电路图

0.0330.0440.0830.006-0.006-0.08321X X X X X 21X *T3*

T2*T1*T2*T1*

'1

=??? ???+=???? ??++= 0.0180.0830.0440.006-0.0440.006-21X X X X X 21X *T1*

T3

*T2*T3*T2*

'2

=??? ???++=???? ??++=

-0.2410.006-0.0440.0830.0440.08321X X X X X 21X *T2*

T3*T1*T3*T1*

'3

=??? ???++=???? ??++= 三角形变为星形:

()0.0420.241-0.0180.0330.24-0.033X X X X X X *

3*2*1*3*1*

1

=+?=++= ()0.0230.241-0.0180.0330.24-0.018X X X X X X *3*2*1*

3*2*2

=+?=++= -0.0030.241-0.0180.0330.0330.018X X X X X X *

3*2*1*

1

*2*3

=+?=++=

X 2

0.023

f-1

A B

C

*X 1

0.042

*X AS 0.015*

X 2

-0.003

*

X BS 0.36*

图4-3 f (3)

-1短路的等值电路图

再次简化

因为:0.042X *1= 0.015X *AS = 0.36X *BS = 所以:0.0570.0420.015X X X *

1*AS *A =+=+=

0.3570.003-0.36X X X *

3*BS *B ==+=

*

2*C X X =

示意图如下所示:

X C

0.023

f-1

A B

C

*

X A 0.057

*

X B

0.357*

图4-4 f (3)

-1短路的等值电路图

再做三角形变换

0.0840.0840.0230.0570.0230.057X X X X X X

*B

*

C

*A *C

*

A

*AF

=?++=++=

0.5240.0570.0230.3570.0230.357X X X X X X

*

A

*

C

*B *C

*

B

*BF

=?++=++= 示意图如下:

f-1

B

A

10kV

C

X AF 0.084

*

X BF 0.524

*

图4-5 f (3)

-1短路的等值电路图

计算电抗:

2.62100

500

0.524S S X X N Ni *BF

jsB =?== 汽轮发电机计算曲线,0s 时标么值为

0.390I *B0=

因为A 电源为无穷大系统所以提供的短路电流为:

11.900.0841X 1I *

AF

*P ===

所以短路电流有名值为: kA 154.7610.5

310011.9010.5

35000.390I F0=??

+??

=

冲击电流: kA 193.194154.7655.2i sh =?= 短路容量: A 1384.977MV 154.7610.53S K =??=

4.3 220kV 侧短路计算

f (3)-2短路时,示意图如下图所示。

图4-6 f (3)

-2短路的等值电路图

()

()0.0390.006-0.0832

1

X X 21X *T2

*T1*T ==+=

f-2A

B

X T

0.039

*

X BS 0.36

*

X AS 0.015*

图4-7 f (3)

-2 短路的等值电路图

0.3990.360.039X X X *

BS *T *B =+=+=

f-2A

B

X T

0.339

*

X AS 0.015*

4-8 f (3)

-2短路的等值电路图

A 电源(无穷大系统)的短路电流为:

66.6670.0151

X 1I *AS

*P ===

2.00100

500

0.399X jsB =?

= 查汽轮发电机计算曲线有

0.512I B0=

所以短路电流有名值为

17.376kA 230

310066.667230

35000.512I f0=??

+??

=

冲击电流: 44.309kA 17.15455.2i sh =?=

短路容量: A 6922.106MV 17.1542303S K =??=

4.4 110kV 侧短路计算

f (3)-3短路时

A

B X T

0.039*

X BS

0.36

*

X AS 0.015

*

f-3

图4-9 f (3)

-3短路的等值电路图

0.0540.0150.039X X X *

AS *T *A =+=+=

上图简化图如下:

A

B

X BS 0.36

*

X AS 0.054*

f-3

图4-10 f (3)

-3短路的等值电路图

A 为无穷大系统所以有

18.5190.0541

X 1I *A

*P ===

而 jsB 500

X =0.36=1.80100

?

查汽轮发电机的计算曲线得 0.570I B0=

所以短路电流有名值为:

10.778kA 153100

18.51911535000.570I f0=??+??

= 冲击电流: 27.484kA 10.77855.2=?=sh i

短路容量: A 2146.825MV 10.7781153S K =??= 短路计算结果列表于下:

表4-1 短路计算成果表

短路点 基准电压 短路电流 冲击电流 短路容量S (k) (kA) (kA) (MVA) f-1

10.5

76.154

194.193

384.977

f-2 230 17.376 44.309 6922.106

f-3 115 10.778 27.484 2146.825

220KV变电站设计毕业

引言 随着经济的腾飞,电力系统的发展和负荷的增长,电力网容量的增大,电压等级和综合自动化水平也不断提高,科学技术突飞猛进,新技术、新电力设备日新月异,该地原有变电所设备旧,占地较大,自动化程度不高,为满足该地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对变电所的设计提出了更高、更新的要求。建设新的变电所,采用先进的设备,使其与世界先进变电所接轨,这对提高电力网的供电可靠性,降低线路损耗,改善电能质量,增加电力企业的经济效益有很大的现实意义。 1、绪论 由于经济社会和现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂。除了常规变电所之外,还出现了微机变电所、综合自动化变电所和无人值班变电所等。目前,随着我国城乡电网建设与改革工作的开展,对变电所设计也提出了更高、更新的要求。 1.1 我国变电所发展现状 变电技术的发展与电网的发展和设备的制造水平密切相关。近年来,为了满足经济快速增长对电力的需求,我国电力工业也在高速发展,电网规模不断扩大。目前我国建成的500kV变电所有近200座,220kV变电所有几千座;500kV电网已成为主要的输电网络,大经济区之间实现了联网,最终将实现全国联网。电气设备的制造水平也在不断提高,产品的性能和质量都有了较大的改进。除空气绝缘的高压电气设备外,GIS、组合化、智能化、数字化的高压配电装置也有了新的发展;计算机监控微机保护已经在电力系统中全面推广采用;代表现代输变电技术最高水平的750kV直流输电,500kV交流可控串联补偿也已经投入商业运行。

我国电网供电的可靠性近年来也有了较大的提高,在发达国家连续发生严重的电网事故的同时,我国电网的运行比较稳定,保证了经济的高速发展。 1.2 变电所未来发展需要解决的问题 在未来,随着经济的增长,变电技术还将有新的发展,同时也给电力工程技术人员提出了一些需要解决的问题,例如:高压、大容量变电所深入负荷中心进入市区所带来的如何减少变电所占地问题、环境兼容问题;电网联系越来越紧密,如何解决在事故时快速切除隔离故障点,保证电力系统安全稳定问题;系统短路电流水平不断提高,如何限制短路电流问题;在保证供电可靠性的前提下,如何恰当的选择主接线和电气设备、降低工程造价问题等。 1.3 地区变电所的未来发展 变电所实现无人值班是一项涉及面广、技术含量高、要求技术和管理工作相互配套的系统工程。它包括:电网一、二次部分、变电所装备水平、通信通道建设、调度自动化系统的建立以及无人值班变电所的运行管理工作等。所以要实现变电所的无人值班,必须满足一定的条件,主要有以下几个方面: ⑴变电所的基础设施要符合要求。如:主接线力求简单,运行方式改变易实现,变压器要具有调压能力(可以是有载调压变压器或由调压器与无载调压变压器相配合来实现调压),主开断设备要具有较高的健康水平,操作机构要能满足远方拉合要求等。另外,所还要具备一定的基础自动化水平,用以完成对一些辅助性设备实现控制(如主变风扇的开停、电容器的投切等),以减轻调度端的工作量。 ⑵调度自动化系统在达到部颁发的《县级电网电力调度自动化规》中所要求的功能的基础上,通过扩展“遥控”、“遥调”,实现“四遥”功能,达到实用

《220kV变电站电气部分初步设计》开题报告

电气与信息学院 毕业设计(论文)开题报告

《220kV变电站电气部分初步设计》开题报告 一、课题的目的和意义 随着国民经济的迅速发展,电力工业的腾飞,人们对能源利用的认识越来越重视。现在根据电力系统的发展规划,拟在某地区新建一座220KV的变电站。 本次设计是在掌握变电站生产过程的基础上完成的。通过它我不仅复习巩固了专业课程的有关内容,而且拓宽了知识面,增强了工程观念,培养了变电站设计的能力。同时对能源、发电、变电和输电的电气部分有个详细的概念,能熟练的运用有些知识,如短路计算的基本理论和方法、主接线的设计、导体电气设备的选择以及变压器的运行等。 二、文献综述 1 变电站的概述 随着经济的发展,工业水平的进步,人们生活水平不断的提高,电力系统在整个行业中所占比例逐渐趋大。现代电力系统是一个巨大的、严密的整体。各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。电力系统是国民经济的重要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。由于变电站的设计内容多,范围广,逻辑性强,不同电压等级,不同类型,不同性质负荷的变电站设计时所侧重的方面是不一样的。设计过程中要针对变电站的规模和形式,具体问题具体分析。 变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。我国电力系统的变电站大致分为四大类:升压变电站,主网变电站,二次变电站,配电站。我国电力工业的技术水平和管理水平正在逐步提高,对变电所的设计提出了更高的要求,更需要我们提高知识理解应用水平,认真对待。[1] 结合我国电力现状,为国民经济各部门和人民生活供给充足、可靠、优质、廉价的电能,优化发展变电站,规划以220KV、110KV、10KV电压等级设计变电站。从我国目前部分地区用电发展趋势来看,新建变电站应充分体现出安全性、可靠

220KV变电站电气设计说明书

220KV变电站电气设计说 明书 第1章引言 1.1 国外现状和发展趋势 (1) 数字化变电站技术发展现状和趋势 以往制约数字化变电站发展的主要是IEC61850的应用不成熟,智能化一次设备技术不成熟,网络安全性存在一定隐患。但2005年国网通信中心组织的IEC61850互操作试验极大推动了IEC61850在数字化变电站中的研究与应用。目前IEC61850技术在变电站层和间隔层的技术已经成熟,间隔层与过程层通信的技术在大量运行站积累的基础上正逐渐成熟。 (2) 当前的变电站自动化技术 20世纪末到21世纪初,由于半导体芯片技术、通信技术以及计算机技术飞速发展,变电站自动化技术也已从早期、中期发展到当前的变电站自动化技术阶段。其重要特点是:以分层分布结构取代了传统的集中式;把变电站分为两个层次,即变电站层和间隔层,在设计理念上不是以整个变电站作为所要面对的目标,而是以间隔和元件作为设计依据,在中低压系统采用物理结构和电器特性完全独立,功能上既考虑测控又涉及继电保护这样的测控保护综合单元对应一次系统中的间隔出线,在高压超高压系统,则以独立的测控单元对应高压或超高压系统中的间隔设备;变电站层主单元的硬件以高档32位工业级模件作为核心,配大容量存、闪存以及电子固态盘和嵌入式软件系统;现场总线以及光纤通信的应用为功能上的分布和地理上的分散提供了技术基础;网络尤其是基于TCP/IP的以太网在变电站自动化系统中得到应用;智能电子设备(IED)的大量应用,诸如继电保护装置、自动装置、电源、五防、电子电度表等可视为IED而纳入一个统一的变电站自动化系统中;与继电保护、各种IED、远方调度中心交换数据所使用的规约逐渐与国际接轨。这个时期国代表产品有CSC系列、NSC系列及BSJ系列。 (3) 国外变电站自动化技术 国外变电站自动化技术是从20世纪80年代开始的,以西门子公司为例,该公司第一套全分散式变电站自动化系统LSA678早在1985年就在德国汉诺威正式投入运行,至1993年初,已有300多套系统在德国和欧洲的各种电压等级的变电站运行。在中国,1995年亦投运了该公司的LSA678变电站自动化系统。LSA678的系统结构有两类,一类是全分散式,另一类是集中和分散相结合,两类系统均由6MB测控系统、7S/7U保护系统、8TK开关闭锁系统三部分构成。 (4) 原始变电站自动化系统存在的问题 资料分目前国际上关于变电站自动化系统和通讯网络的国际标准还没有正式公布,国也没有相应的技术标准出台。标准和规的出台远落后于技术的发展,导致变电站自动化系

220kV变电站设计

引言 发电厂及电力系统的毕业设计是培养学生综合运用所学理论知识,独立分析和解决工程实际问题的初步能力的一个重要环节。 本设计是根据毕业设计的要求,针对220/60KV降压变电所毕业设计论文。本次设计主要是一次变电所电器部分的设计,并做出阐述和说明。论文包括选择变电所的主变压器的容量、台数和形式,选择待设计变电所所含有的各种电气设备及其各项参数,并且通过计算,详细的校验了公众不同设备的热稳定和动稳定,并对其选择进行了详尽的说明。同时经过变压器的选择和变电所所带负荷情况,确定本变电所电气主接线方案和高压配电装置及其布置方式,同时根据变电所的电压等级及其在电力网中的重要地位进行继电保护和自动装置的规划设计,最后通过对主接线形式的确定及所选设备的型号绘制变电所的断面图、平面图、和继电保护原理图,同时根据所绘制的变电所平面图计算变电所屋外高压配电装置的防雷保护,并绘制屋外高压配电装置的防雷保护图。

第一篇毕业设计说明书 1 变电所设计原始资料 1.1 设计的原始资料及依据 (1) 待设计变电所建成后主要向工业用户供电,电源进线为220KV两回进线,电压等级为220/60KV。 (2) 变电所地区年平均温度14℃,最高温度36℃,最低温度-20℃。 (3) 周围空气无污染。 (4) 出线走廊宽阔,地势平坦,交通方便。 (5) 变电所60KV负荷表: (重要负荷占总负荷的80%,负荷同时率为0.7,线损率5%,Tmax=5600小时) 表1.1 变电所60kV负荷表 序号负荷名称最大负荷(KW)功率 因数出线 方式 出线 回路数 附注 近期远期 1 建成机械厂18000 25000 0.95 架空 2 有重要负荷 2 化肥厂8000 10000 0.95 架空 2 有重要负荷 3 重型机械厂10000 13000 0.95 架空 2 有重要负荷 4 拖拉机厂15000 20000 0.9 5 架空 2 有重要负荷 5 冶炼厂10000 15000 0.95 架空 2 有重要负荷 6 炼钢厂12000 18000 0.95 架空 2 有重要负荷 (6)电力系统接线方式如图所示: 图1.1 电力系统接线方式图 系统中所有的发电机均为汽轮发电机,送电线路均为架空线,单位长度正序电抗为0.4欧姆/公里

kV变电站一次部分初步设计开题报告

毕业设计 开题报告 课题名称 220KV变电站电气一次部分 初步设计及防雷保护院系机电与自动化学院 专业班电气工程及其自动化1306班姓名潘建雄 评分 指导教师张雅晶 武昌首义学院

毕业设计开题报告撰写要求 1.开题报告的主要内容 1)课题设计的目的和意义; 2)主要参考文献综述; 3)课题设计的主要内容; 4)设计方案; 5)实施计划。 6)主要参考文献:不少于5篇,其中外文文献不少于1篇。 2.撰写开题报告时,所选课题的课题名称不得多于25个汉字,课题研究份量要适当,研究内容中必须有自己的见解和观点。 3.开题报告的字数不少于3000字(艺术类专业不少于2000字),其中,主要参考文献综述字数不得少于1000字,开题报告的格式按学校《本科毕业设计/论文撰写规范》的要求撰写。 4. 指导教师和责任单位必须审查签字。 5.开题报告单独装订,本附件为封面,后续表格请从网上下载并用A4纸打印后填写。 6. 此开题报告适用于全校各专业,部分特殊专业需要变更的,由所在院(系)在此基础上提出调整方案,报学校审批后执行。

武昌首义学院本科生毕业设计开题报告

220kV电压等级接线方案 由于220kV侧出线数为4回,系统A、B的容量较大,要求供电可靠性高,双母线接线与单母线接线相比,投资有所增加,但可靠性和灵活性大为提高,宜采用双母线接线, 如图4-1。 图4-1 双母线接线 规程规定,采用母线分段或双母线的110-220kV的配电装置,在满足下列条件时可以不设旁路母线:当系统允许停电检修时,如为双回路供电或负荷点可又线路其他电源供电;当线路允许断路器停电检修;配电装置为屋内型为节约配电面积可不设旁路母线而用简易隔离开关代替。 110kV电压等级接线方案 由于110KV侧送出6回线路,I、II级负荷所占比重大,电压等级高,输送功率较大,停电影响较大,要求供电可靠性高,宜采用带有专用旁路断路器的旁路母线双母线接线,如图4-2。

220kV变电站电气一次部分设计

毕业设计(论文)任务书

220kV变电站设计 摘要 本设计书主要介绍了220kV区域变电所电气一次部分的设计内容和设计方法。设计的内容有220kV区域变电所的电气主接线的选择,主变压器、所用变压器的选择,母线、断路器和隔离刀闸的选择,互感器的配置,220kV、110kV、35kV线路的选择和短路电流的计算。设计中还对主要高压电器设备进行了选择与计算,如断路器、隔离开关、电压互感器、电流互感器等。此外还进行了防雷保护的设计和计算,提高了整个变电所的安全性。 关键词:变电站;主接线;变压器

220kV substation design ABSTRACT The design of the book introduces the regional 220kV electrical substation design a part of the content and design. The design of the contents of the electrical substation 220kV main regional cable choice, the main transformer, the transformer used in the choice of bus, circuit breakers and isolation switch option, the configuration of transformer, 220kV, 110kV, 35kV line choice and short-circuit current calculations. The design of the main high pressure also had a choice of electrical equipment and computing, such as circuit breakers, isolating switches, voltage transformers, current transformers and so on. In addition, a lightning protection design and computing, increased the safety of the entire substation. Keywords: substation; main connection; transformer

220KV变电所电气部分的初步设计

220KV变电所电气部分的初步设计

摘要 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,拟在某区域新建一座220KV变电站。 本设计主要介绍了220kv区域变电站电气一次部分的设计内容和设计方法。设计的内容有220kv区域变电站的电气主接线选择,主变压器,站用变压器的选择,母线,断路器和隔离刀闸的选择,互感器的配置,220kv,110kv,10kv线路的选择和短路电流的计算,设计中还对主要高压电气设备进行了选择与计算,如断路器,隔离开关,电压互感器,电流互感器等,此外还进行了防雷保护的设计,电气总平面布置及配电装置的选择,继电保护的设备等,提高了整个变电站的安全性。 关键词:变电站;主接线;变压器;继电保护

目录 1绪论 (1) 1.1选题的目的和意义 (1) 1.2国内外研究现状及发展趋势 (1) 1.3 变电站的设计任务 (1) 2主变压器的选择 (3) 2.1概述 (3) 2.2主变压器台数的确定 (3) 2.3主变压器型式的选择 (3) 2.4主变压器容量的选择 (4) 2.5主变型号选择 (5) 2.6无功补偿 (5) 2.6.1无功补偿的必要性 (5) 2.6.2无功补偿的方式 (6) 3 电气主接线的方案设计 (7) 3.1电气主接线概述 (7) 3.2电气主接线的方案选择 (7) 3.2.1主接线方式介绍 (7) 3.2.2主接线的方案选择 (8) 4 所用电系统设计 (10) 4.1 所用电系统设计的原则和要求 (10) 3.2所用变压器容量、台数选择 (10) 3.3 新建变电所所用电接线 (11) 5 短路电流的计算 (12) 5.1 概述 (12) 5.2短路电流计算的目的和内容 (12) 5.3短路电流的计算 (13) 5.3.1变压器参数的计算 (13) 5.3.2短路电流的计算 (14) 5.3.3回路最大持续工作电流的计算 (16) 6电气设备的选择 (18) 6.1概述 (18) 6.2断路器的选择 (19) 6.3隔离开关的选择 (21) 6.4电流互感器的选择 (23) 6.5电压互感器的选择 (25) 6.6母线的选择 (27) 6.7电力电缆的选择 (29) 6.8限流电抗器的选择 (31) 7继电保护配置 (32) 7.1概述 (32) 7.2主变压器保护 (32) 7.3线路及母线保护 (33)

220kV变电站电气设备选择

目录 摘要 (2) 关键字 (2) 第一章引言 (2) 第二章电气主接线设计 (3) 2.1电气主接线的概念及其重要性 (3) 2.2 电气主接线的基本形式 (3) 第三章主变压器的选择 (5) 3.1主变压器的台数和容量选择 (6) 3.2主变压器形式的选择 (6) 3.3连接方式 (7) 3.4选择原则 (7) 3.5主变压器选择的结果 (7) 第四章 220kV电气部分短路电流计算 (8) 4.1变压器的各绕组电抗标么值计算 (10) 4.2 10kV侧短路电流计算 (11) 4.3 220kV侧短路电流计算 (14) 4.4 110kV侧短路电流计算 (15) 第五章导体和电气设备的选择 (17) 5.1电气设备选择的要求 (17) 5.2 220kV侧设备的选择和校验 (18) 5.3 110kV侧设备的选择和校验 (21) 5.4 10kV侧设备的选择和校验 (23) 小结 (26) 参考文献 (27) 附录 (28) 1

220kV变电站电气设备选择 张洋洋 摘要:随着我国科学技术的发展,电力系统对变电站的要求也越来越高,本设计讨论的220KV 变电站电气设备的选择设计,首先对原始资料进行分析,然后选择合适的主变压器,在此基础上进行主接线设计,短路电流计算等一系列相关工作。 关键字:变电站短路电流计算设备选择 第一章引言 毕业设计是我们在校期间最后一次综合训练,它从思维,理论以及动手能力方面给予我们严格的要求,使我们的综合能力有了进一步的提高。 能源是社会生产力的重要组成部分,随着社会生产的不断发展,人类对使用能源质量要求也越来越高。电力是工业的基础,在国家建设和国民经济发展中占据十分重要的地位,是实现国家现代化的战略重点。电能也是发展国民经济的基础,是一种无形的,不能大量存储的二次能源。如果要满足国民经济发展的要求,电力工业必须超前发展,这是世界发展的规律。因此,做好电力规划,加强电网建设,就很尤为重要。同时,电气设备的选择在改变或调整电压等方面在电力系统中起着重要的作用。它承担着变换电压,接受和分配电能,控制电力流向和调整电压的责任。220kV电气设备选择设计使其对边边站有了一个整体的了解。该设计包括以下任务:1、主接线的设计 2、主变压器的选择 3、短路电流的计算 4、导体和电气设备的选择。 2

220kv变电站电气一次部分初步设计

目录 前言 第1章设计原始材料及设计任务 (2) 24 参考文献 心得体会

前言 本毕业设计为二○○六级电力系统及自动化专业自学考试毕业设计,设计题目为:220KV变电站电气一次部分初步设计。此设计任务旨在体现我对本专业各科知识的掌握程度,培养我对本专业各科知识进行综合运用的能力设计(一次部分)的全过程。通过对变电站的主接线设计,站用电接线设计,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,运行方式分析,防雷及过电压保护装置的设计和无功补偿方案设计,较为详细地完成了电力系统中变电站设计。 第1章设计原始材料及设计任务 1、本次设计的变电站为地区性220KV降压变电站,

有三个电压等级,即220KV、110KV、35KV; 2、本系统中有110kv和35kv两个负荷等级, 其最大负荷为200MW,cosφ=0.85,和70MW,cosφ=0.8; 3、所用电系统采用380/220V中性点直接接地的三相四线制,动力与照明合用一个电源; 4、远期投入是3台主变,近期只要2台; 5、待设计变电所为长方形,环境温度最高为42°C; 6、本变电所主要由屋外配电装置,主变压器、二次室、静止补偿装置及辅助设施构成。

第2章变电站主接线设计 变电站电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。变电所的电气主接线是电力系统接线的重要组成部分。它表明变电所内的变压器、各电压等级的线路、无功补偿设备最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。 2.1主接线选择的主要原则 1)变电所主接线要与变电所在系统中的地位、作用相适应。根据变电所在系统中的地位,作用确定对主接线的可靠性、灵活性和经济性的要求。 2)变电所主接线的选择应考虑电网安全稳定运行的要求,还应满足电网出故障时应处理的要求。 3)各种配置接线的选择,要考虑该配置所在的变电所性质,电压等级、进出线回路数、采用的设备情况,供电负荷的重要性和本地区的运行习惯等因素。 4)近期接线与远景接线相结合,方便接线的过程。 5)在确定变电所主接线时要进行技术经济比较。 2.2主接线方案设计 2.2.1 方案拟定及技术比较 1)单母线分段

220kV变电站电气设计

摘要 随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。 本设计讨论的是220KV变电站电气部分的设计。首先对原始资料进行分析,选择主变压器,在此基础上进行主接线设计,再进行短路计算,选择设备,然后进行防雷接地以及保护、配电装置设计。 关键字:变电站;短路计算;设备选择;防雷保护。

目录 摘要 (1) 引言 (4) 任务书 (5) 第一章主变压器的选择 (6) 1.1主变压器的选择原则 (6) 1.1.1 主变压器容量和台数的选择原则 (6) 1.1.2 主变压器容量的选择 (6) 1.1.3 主变压器型式的选择 (7) 1.1.4 绕组数量和连接形式的选择 (7) 1.2主变压器选择结果 (8) 1.3所用变选择 (8) 第二章电气主接线的设计 (10) 2.1主接线概述 (10) 2.2主接线设计原则 (10) 2.3主接线的选择 (10) 第三章 220KV变电站电气部分短路计算 (14) 3.1变压器的各绕组电抗标幺值计算 (14) 3.210KV侧短路计算 (15) 3.3220KV侧短路计算 (18) 3.4110KV侧短路计算 (20) 第四章导体和电气设备的选择 (22) 4.1断路器和隔离开关的选择 (23) 4.1.1 220KV出线、主变侧 (23) 4.1.2 主变110KV侧 (27) 4.1.3 10KV断路器隔离开关的选择 (29) 4.2电流互感器的选择 (34) 4.2.1 220KV侧电流互感器的选择 (34) 4.2.2 110KV侧的电流互感器的选择 (36) 4.2.3 10KV侧电流互感器的选择 (37) 4.3电压互感器的选择 (38) 4.3.1 220KV侧母线电压互感器的选择 (38) 4.3.2 110KV母线设备PT的选择 (39) 4.3.3 10KV母线设备电压互感器的选择 (39) 4.4导体的选择与校验 (39)

220kv变电站设计外文翻译

General Requirements to Construction of Substation Substations are a vital element in a power supply system of industrial enterprises.They serve to receive ,convert and distribute electric energy .Depending on power and purpose ,the substations are divided into central distribution substations for a voltage of 110-500kV;main step-down substations for110-220/6-10-35kV;deep entrance substations for 110-330/6-10Kv;distribution substations for 6-10Kv;shop transformer substations for 6-10/0.38-0.66kV.At the main step-down substations, the energy received from the power source is transformed from 110-220kV usually to 6-10kV(sometimes 35kV) which is distributed among substations of the enterprise and is fed to high-voltage services. Central distribution substations receive energy from power systems and distribute it (without or with partial transformation) via aerial and cable lines of deep entrances at a voltage of 110-220kV over the enterprise territory .Central distribution substation differs from the main distribution substation in a higher power and in that bulk of its power is at a voltage of 110-220kV;it features simplified switching circuits at primary voltage; it is fed from the power to an individual object or region .Low-and medium-power shop substations transform energy from 6-10kV to a secondary voltage of 380/220 or 660/380. Step-up transformer substations are used at power plants for transformation of energy produced by the generators to a higher voltage which decreases losses at a long-distance transmission .Converter substations are intended to convert AC to DC (sometimes vice versa) and to convert energy of one frequency to another .Converter substations with semiconductor rectifiers are convert energy of one frequency to another .Converter substations with semiconductor rectifiers are most economic. Distribution substations for 6-10kV are fed primarily from main distribution substations (sometimes from central distribution substations).With a system of dividing substations for 110-220kV, the functions of a switch-gear are accomplished

220kV变电站设计说明书

220kV变电站设计说明书1.1 220kV变电站在国发展现状与趋势 电力工业是国民经济的重要部门之一,它是负责把自然界提供的能源转换为供人们直接使用的电能的产业。它即为现代工业、现代农业、现代科学技术和现代国防提供不可少的动力,又和广大人民群众的日常生活有着密切的关系。电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。但是,随着近年来我国国民经济的高速发展与人民生活用电的急剧增长,电力行业的发展水平越来越高,特别是在电的输送方面有了更高的要求。因此,确定合理的变压器的容量是变电所安全可靠供电和网络经济运行的保证。在选择主变压器时,要根据原始资料和设计变电所的自身特点,在满足可靠性的前提下,要考虑到经济来选择主变压器。 1.2 220kV变电站设计规 (1)国家电网公司《关于印发<国家电网公司110(66)~500kV变电站通用设计修订工作启动会议纪要>的通知》(基建技术〔2010〕188号) (2)《国家电网公司220kV变电站典型设计》(2005版) (3)《国家电网公司输变电工程通用设备(2009年版)》 (4)《国家电网公司输变电工程典型设计-220kV变电站二次系统部分》(2007年版)(5)Q/GDW166-2007 《国家电网公司输变电工程初步设计容深度规定》 (6)Q/GDW204-2009 《220kV变电站通用设计规》 (7)Q/GDW383-2009 《智能变电站技术导则》 (8)Q/GDW393-2009 《110(66)~220kV智能变电站设计规》 (9)Q/GDW161-2007 《线路保护及辅助装置标准化设计规》 1.3变电站位置的选择 图1为广西大学西校园用电量比较大的建筑物简化地图,对于变电站位置的选取,我

(完整word版)220kV变电站一次部分初步设计开题报告

毕业设计 开题报告 课题名称220KV变电站电气一次部分 初步设计及防雷保护院系机电与自动化学院 专业班电气工程及其自动化1306班姓名潘建雄 评分 指导教师张雅晶 武昌首义学院

毕业设计开题报告撰写要求 1.开题报告的主要内容 1)课题设计的目的和意义; 2)主要参考文献综述; 3)课题设计的主要内容; 4)设计方案; 5)实施计划。 6)主要参考文献:不少于5篇,其中外文文献不少于1篇。 2.撰写开题报告时,所选课题的课题名称不得多于25个汉字,课题研究份量要适当,研究内容中必须有自己的见解和观点。 3.开题报告的字数不少于3000字(艺术类专业不少于2000字),其中,主要参考文献综述字数不得少于1000字,开题报告的格式按学校《本科毕业设计/论文撰写规范》的要求撰写。 4. 指导教师和责任单位必须审查签字。 5.开题报告单独装订,本附件为封面,后续表格请从网上下载并用A4纸打印后填写。 6. 此开题报告适用于全校各专业,部分特殊专业需要变更的,由所在院(系)在此基础上提出调整方案,报学校审批后执行。

武昌首义学院本科生毕业设计开题报告

4.1 220kV电压等级接线方案 由于220kV侧出线数为4回,系统A、B的容量较大,要求供电可靠性高,双母线接线与单母线接线相比,投资有所增加,但可靠性和灵活性大为提高,宜采用双母线接线,如图4-1。 图4-1 双母线接线 规程规定,采用母线分段或双母线的110-220kV的配电装置,在满足下列条件时可以不设旁路母线:当系统允许停电检修时,如为双回路供电或负荷点可又线路其他电源供电;当线路允许断路器停电检修;配电装置为屋内型为节约配电面积可不设旁路母线而用简易隔离开关代替。 4.2 110kV电压等级接线方案 由于110KV侧送出6回线路,I、II级负荷所占比重大,电压等级高,输送功率较大,停电影响较大,要求供电可靠性高,宜采用带有专用旁路断路器的旁路母线双母线接线,如图4-2。 图4-2 双母线带旁路母线接线 1 L2L 电源1电源2 1 QF 2 QS 3 QS 1 QS C QF PW Ⅱ P QF 4 QS

220kv变电站电气部分设计

220kv变电站电气部分设计

******毕业生论文 题目:220kV降压变电所电气部分设计 系别电力工程系_ 专业供用电技术 班级 ********** 学号*********** _ 姓名

Keywords: main electrical wiring;transformers;short circuit current;lightning protection。 目录 摘要 (2) ABSTRACT (2) 引言 (6) 第一章电气主接线选择 (7) 第1节概述 (7) 第2节主接线的接线方式选择 (6) 第二章主变压器容量、台数及型式的选择 (9) 第1节概述 (9) 第2节主变压器台数的选择 (9) 第3节主变压器容量的选择 (10) 第4节主变压器型式的选择 (10) 第三章短路电流计算 (12) 第1节概述 (14) 第2节短路计算的目的及假设 (15) 第四章电气设备的选择 (18) 第1节概述 (18)

第2节断路器的选择 (19) 第3节隔离开关的选择 (21) 第4节高压熔断器的选择 (23) 第5节互感器的选择 (23) 第6节母线的选择 (25) 第7节支持绝缘子及穿墙套管的选择 (27) 第8节限流电抗器的选择 (29) 第五章电气总平面布置及配电装置的选择 (30) 第1节概述 (30) 第2节高压配电装置的选择 (31) 第六章继电保护配置规划 (33) 第1节变电所主变保护的配置 (37) 第2节 220KV、110KV、10KV线路保护部分 (34) 第七章防雷设计规划 (35) 第1节概述 (35) 第2节防雷保护的设计 (36) 第3节主变中性点放电间隙保护 (37) 结论 (38) 致谢 (38) 参考文献 (38)

110KV变电站电气部分设计

110KV变电站电气部分设计 二〇〇九年八月 目录 设计任务书 (4) 第一部分主要设计技术原则 (5) 第一章主变容量、形式及台数的选择 (6) 第一节主变压器台数的选择 (6) 第二节主变压器容量的选择 (7) 第三节主变压器形式的选择 (8) 第二章电气主接线形式的选择 (10) 第一节主接线方式选择 (12) 第三章短路电流计算 (13) 第一节短路电流计算的目的和条件 (14) 第四章电气设备的选择 (15) 第一节导体和电气设备选择的一般条件 (15) 第二节断路器的选择 (18) 第三节隔离开关的选择 (19) 第四节高压熔断器的选择 (20) 第五节互感器的选择 (20) 第六节母线的选择 (24) 第七节限流电抗器的选择 (24) 第八节站用变压器的台数及容量的选择 (25) 第九节 10kV无功补偿的选择 (26) 第五章 10kV高压开关柜的选择 (26) 第二部分计算说明书 附录一主变压器容量的选择 (27) 附录二短路电流计算 (28) 附录三断路器的选择计算 (30) 附录四隔离开关选择计算 (32) 附录五电流互感器的选择 (34) 附录六电压互感器的选择 (35) 附录七母线的选择计算 (36) 附录八 10kV高压开关柜的选择 (37) (含10kV电气设备的选择) 第三部分相关图纸 一、变电站一次主结线图 (42) 二、10kV高压开关柜配置图 (43) 三、10kV线路控制、保护回路接线图 (44) 四、110kV接入系统路径比较图 (45) 第四部分 一、参考文献 (46)

二、心得体会 (47) 设计任务书 一、设计任务: ***钢厂搬迁昌北新区,一、二期工程总负荷为24.5兆瓦,三期工程总负荷为31兆瓦,四期工程总负荷为20兆瓦;一、二、三、四期工程总负荷为75.5兆瓦,实际用电负荷 34.66兆瓦,拟新建江西洪都钢厂变电所。本厂用电负荷设施均为Ⅰ类负荷。 第一部分主要设计技术原则 本次110kV变电站的设计,经过三年的专业课程学习,在已有专业知识的基础上,了解了当前我国变电站技术的发展现状及技术发展趋向,按照现代电力系统设计要求,确定设计一个110kV综合自动化变电站,采用微机监控技术及微机保护,一次设备选择增强自动化程度,减少设备运行维护工作量,突出无油化,免维护型设备,选用目前较为先进的一、二次设备。 将此变电站做为一个终端用户变电站考虑,二个电压等级,即110kV/10kV。 设计中依据《变电所总布置设计技术规程》、《交流高压断路器参数选用导则》、《交流高压断路器订货技术条件》、《交流电气装置的过电压保护和绝缘配合》、《火力发电厂、变电所二次接线设计技术规程》、《高压配电装置设计技术规程》、《110kV-330kV变电所计算机监控系统设计技术规程》及本专业各教材。 第一章主变容量、形式及台数的选择 主变压器是变电站(所)中的主要电气设备之一,它的主要作用是变换电压以利于功率的传输,电压经升压变压器升压后,可以减少线路损耗,提高了经济效益,达到远距离送电的目的。而降压变压器则将高电压降低为用户所需要的各级使用电压,以满足用户的需要。主变压器的容量、台数直接影响主接线的形式和配电装置的结构。因此,主变的选择除依据基础资料外,还取决于输送功率的大小,与系统的紧密程度,同时兼顾负荷性质等方面,综合分析,合理选择。 第一节主变压器台数的选择 由原始资料可知,我们本次设计的江西洪都钢厂厂用电变电站,主要是接受由220kV双港变110kV的功率和220KV盘龙山变供110kV的功率,通过主变向10kV线路输送。由于厂区主要为I类负荷,停电会对生产造成重大的影响。因此选择主变台数时,要确保供电的可靠性。 为了提高供电的可靠性,防止因一台主变故障或检修时影响整个变电站的供电,变电站中一般装设两台主变压器。互为备用,可以避免因主变故障或检修而造成对用户的停电,若变电站装设三台主变,虽然供电可靠性有所提高,但是投资较大,接线网络较复杂,增大了占地面积和配电设备及继电保护的复杂性,并带来维护和倒闸操作的许多复杂化,并且会造成短路容量过大。考虑到两台主变同时发生故障的几率较小,适合负荷的增长和扩建的需要,而当一台主变压器故障或检修时由另一台主变压器可带动全部负荷的70%,能保证正常供电,故可选择两台主变压器。 第二节主变压器容量的选择 主变压器容量一般按变电站建成后5--10年规划负荷选择,并适当考虑到远期10--20年的负荷发展,对于城郊变电站主变压器容量应与城市规划相结合,该变电站近期和远期负荷都已给定,所以,应接近期和远期总负荷来选择主变容量。根据变电站所带负荷的性质和电网的结构来确定主变压器的容量,对于有重要负荷的变电站应考虑当一台主变压器停用时,其余变压器容量在计及过负荷能力的允许时间内,应保证用户的一级和二级负荷,对一般性变电站当一台主变压器停用时,其余变压器容量应能保证全部负荷的70--80%。该变电站的主变压器是按全部负荷的70%来选择,因此装设两

220KV变电站初步设计

220KV变电站初步设计

毕业设计报告 课题名称 220kV变电站初步设计 作者 *** 专业电气工程及其自动化 班级学号 20521429 指导教师范文 2012 年 10 月

目录 摘要 (2) 关键词 (3) 1.引言 (3) 1.1 变电站的类型 (3) 1.1.1 枢纽变电站 (4) 1.1.2 中间变电站 (4) 1.1.3 地区变电站 (4) 1.1.4 终端变电站 (4) 1.1.5 变电站发展 (4) 1.1.6 本变电站设计要求 (5) 2.原始资料 (5) 2.1 建站规模 (5) 2.2系统和保护要求 (6) 2.3主要技术参数 (6) 3.主接线的选择 (7) 3.1 电气主接线的概念及其重要性7 3.2 主接线的设计原则 (7)

3.3 主接线的基本要求 (8) 3.4 各种接线形式的特点 (9) 3.5 变电所的设计方案 (12) 4. 主变压器的选择 (13) 4.1 主变压器的选择 (13) 4.2 主变压器台数的选择 (14) 4.3 主变压器型式的选择 (14) 4.4主变压器容量的选择 (15) 4.5 主变压器型号的选择 (15) 结束语 (17) 参考文献 (18) 220kV变电站初步设计 *** 摘要:根据任务书的要求,本次设计为220kV变电站初步设计,并绘制电气主接线图及其他图。该变电站有两台主变压器,站内主接线为220kV、110kV、和10kV三个电压等级。为城郊提供稳定

而高质量的电能。 在规划该变电站主接线时,要充分的考虑各个电压等级在该系统中的重要性,以及今后发展对接线方式的扩建及运行和维护的要求,进一步达到设计要求的经济性和运行维护的可靠性。 此次进行变电站的设计,其主要内容主要包括对电气主接线的确定,主变压器的选择。关键词:电力系统变压器主接线 1.引言 电是能量的一种表现形式,电力已成为工农业生产不可缺少的动力,并广泛应用到一切生产部门和日常生活方面。电能有许多优点:首先,它可简便地转变成另一种形式的能量。其次,电能经过高压输电线路,还可输送很长的距离,供给远方用电。另外,许多生产部门用电进行控制,容易实现自动化,提高产品质量和经济效益。电力工业在国民经济中占有十分重要的地位[1]。 本次所设计的变电所是枢纽变电所,全所停电后,将影响整个地区以级下一级变电所的供电即本次设计的变电所最后规模:采用两台OSFPS7-120000/220型三绕组有载调压变压器,容量比为100/100/50,互为备用。220kV侧共有8回出线,近期5回,远期3回,其中4回出线朝西,4回出线朝北,110kV也有10回出线,一次建成,5回朝西,3回朝北,2回朝南。因此220kV及110kV主接线最后方案采用双母带旁母接线形式,正常运行时旁母不带电。 1.1 变电站的类型 电力系统由发电厂、变电站、线路和用户组成。变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

某220kV变电站电气部分设计

某220kV变电站电气部分设计 摘要 本设计的主要内容是对一座220kV变电站的电气部分进行设计。设计要求采用2回220kV进线,110kV出线7回,10kV出线9回。分三期完成,一期完成220kV进线2回,110kV出线3回,10kV出线3回。具体设计项目包括:主变容量选择、电气主接线方案设计、电气总平面布置、短路电流计算、一次设备的选择及校验、各级电压配电装置的布置、二次回路方案的选择及继电保护的整定所用电设计、防雷接地方案的设计。 本设计中所涉及的主要计算包括:短路计算、一次设备校验计算、继电保护整定计算。 关键词:220kV;变电站;设计;短路计算;校验

Design for the electrical part of a 220kV substation Abstract The main target of this design is the electrical part of a 220kV substation. Design requires that using two 220kV back into line, seven to 110kV line and 9 to 10kV line. The whole project is divided into tree periods while two 220kV back into line, three 110kV line and three 10kV line are planed to be accomplished in the first period. This design includes following parts: selection of the capacity of the main transfer, main connection, plane arrangement, short circuit calculation, first side facility selection and verification, plane arrangement for each voltage part, rely protection design, substation-used electricity design, lightning protection design. The main calculation mentioned in this design including: short circuit calculation, verification calculation for first part facility, rely protection calculation. Keyword: 220kV;Substation;Design;Short circuit calculation;verification

相关文档
相关文档 最新文档