文档库 最新最全的文档下载
当前位置:文档库 › 光学原理复习(13级).doc

光学原理复习(13级).doc

光学原理复习(13级).doc
光学原理复习(13级).doc

一. 解释概念

1.高斯光束的准直距离

答:-?般认为基模高斯光束在瑞利长度/2范围内是近似平行的,因此也把瑞利距

离长度称为准直.距离。

2.相速度和群速度

答:a.等相面沿其法线向前推进的速度——相速度

b.等幅平面的传播速度,这个速度称为群速度。

3.左旋圆偏振光

答:满足E?*E? = E:),Ey比的相位落后冗/2, sin 5 <0 ,称为左旋圆偏振光。

4.倏逝波

答:全反射时,光波不是绝对地在界面上被全部返回第一介质,而是透入第二介质大约一个波长的深度,并沿着界面流过波长量级距离后重新返M笫一介质,再沿反射方向射出。这个沿第二介质表面流动的波就称为倏逝波。

5.电磁波的能量密度和能流密度

答:a.能量密度是单位体积内电磁场的能量。

b.能流密度是单位时间内垂直通过单位面积的电磁能。

6.等倾干涉和等厚干涉

答:a.凡入射角(倾角)相同的光,形成同一干涉条纹。因此把这种干涉称为等倾干涉。

b.等厚干涉是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉

条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.

7.时谐电磁波

答:所谓时谐波是指空间每点的振动是时间变量的谐函数的波。

8.空间频谱

答:傅氏变换也称为的空间频率谱,简称空间频谱。

9.受挫全反射

答:对介质2中透射场的任何干扰都会直接影响全反射光的强弱。

10.负折射率介质

答:电场、磁场和波矢三者之间构成左手关系的非常规材料(也就是折射率为负的材料),现在也称为左手材料(left-handed materials,简称LHM ),或负折射率介质。

11 .非定域干涉

答:在两束光的叠加区内,到处都可以观察到干涉条纹,只是不同地方条纹的间距、形状不同而已。这种在整个光波叠加区内,随处可见干涉条纹的干涉,称为非定域干涉。

12.相干长度

答:波长宽度为△入的光源,能够产生干涉条纹的最大光程差,称为相干长度。

13.驻波

答:两个频率相同,振动方向相同而传播方向相反的相干光波,在同一直线上沿相反方向传播时,控加而形成的波就叫做驻波。

二.简答题

1,.筒述菲涅尔棱镜的工作原理

答:利用全反射时的相位变化特性,选取适当的折射率n和入射角可以得到反射

光中s和p分量特定的相位差,从而改变入射光的偏振状态。

2.两相干光束强度悬殊时为什么观察不到清晰的干涉图样

答:定义干涉条纹可见度(对比度)为:

L T L L,当两相干光束强度悬殊时,几乎等于心,,,V接近于零,所I M* I m

V =

以观察不到清晰的干涉图样。

3.光的偏振态有哪些表示方法

答:1、三角函数表示法,2、琼斯矢量表示法3、斯托克斯矢量表示法4、邦加球表示法。

4.关于光的空间相干性问题中,光源的临界宽度和许可宽度是如何定义的

答:使干涉条纹可见度为零的光源宽度称为临界宽度。一般认为,光源宽度不超过临界宽度的1/4时,V=0. 9,条纹的可见度尚可。这时的光源宽度称为允许宽度。

5.用单色球面波照射单缝衍射实验装置能否观察到夫琅禾费衍射?为什么?

答:不能。因为要发生夫琅禾费衍射,单缝距光源和接受屏均为无限远或者接近于无限远,即入射波和衍射波都要是平面波,对于球面波,只能发生菲涅尔衍射, 不能发生夫琅禾费衍射。

6.何谓光的时间相干性和空间相干性

答:光的时间相干性是指光源单色性对干涉条纹可见度的影响,实际光源包含有一定的光谱宽度小人,每一种波R的光都生成各自的一组干涉条纹,各组条纹除零级外,均有位移,相对位移量随光程差△的增大而增大,则条纹可见度随着光程差的增大而卜降,最后降为零。光的空间相干性是指光源实际大小对干涉条纹可见度的影响,有一定大小的光源看作是由许多个点光源组成的,每个点光源都将通过干涉系统在干涉场中产生各自的一组干涉条纹,这些干涉条纹之间有位移,干涉场中的总光强分布为各条纹强度的总和,暗条纹的强度不为零,可见度下降。

7.试列举出你认为光具有波动性的实验

答:干涉:1、杨氏双缝实验2、牛顿环实验3、迈克尔孙干涉仪4、法布里-珀罗干涉仪。衍射:1、夫琅禾费衍射实验2、菲涅耳衍射实验

8.迈克尔逊干涉仪的双光束干涉图样和法布里波罗干涉仪的干涉图样有何异同?

答:同:都是内疏外密的同心圆环。异:法布里-珀罗干涉仪的分辨本领比迈克尔孙干涉仪的分辨本领强。

9.惠更斯一菲涅尔原理的内容是什么?

答:惠更斯原理:波前(波阵面)上的每一点都可以看做是一个次级扰动中心,

发出球面子波;在后一口寸刻这些子波的包络面就是新的波前。菲涅耳在惠更斯原理上补充“子波相干叠加”的原理称为惠更斯一菲涅尔原理。

10>如果玻璃平板是由两部分组成(冕牌玻璃n= 1.50和火石玻璃〃=1.75),如图所示,平凸透镜由冕牌玻璃制成,而透镜与玻璃板之间的空间充满二硫化碳

3 = 1.62),这时牛顿环是什么形状?为什么?

答:中心是亮纹,明暗相间的同心圆环。当竖直光线从光疏介质射向光密介质,反射光振动相对于入射光振动发生勿的位相跃变,即“半波损失二冕牌玻璃与二硫化碳的分界面、二硫化碳与火石玻璃的分界面都发生半波损失,综合作用可看

成无半波损失,所以中心是亮纹。

11、洛埃镜实验与杨氏双缝实验的异同点是什么?它揭示了什么样的重要规律?答:同:两者都是分波而干涉,且条纹间距公式相同,都为* =竺O d

异:在杨氏双缝时屏上产生亮条纹的地方,在洛埃镜实验屏上将产生暗条纹。

揭示的重要规律:当光线接近正入射或掠入射下从光疏介质与光密介质的分界面反射时,反射光振动相对于入射光振动发生了〃的位相跃迁。

12、普通光源为什么是非相干光源?

答:普通光源主耍是自发辐射,各原子都是一个独立的发光中心,发光动作杂乱无章,彼此无关,因此不满足相干条件。

13、简述衍射理论中的傍轴近似、菲涅耳近似和夫琅禾费近似。

答:衍射孔径上的任一点与考察面上的任一点之间的距离为r:

〃 =@-打+(广〃A/]%

傍轴近似的条件:dNg, 〃,x, y的最大值。

2 2 2

菲涅尔近似的条件:当d大到能够满足:[(x—S) +3一〃)]必

豚 4

夫琅和费近似的条件:d大到可以满足:& +〃皇

2d ~ 4

14、相干光源的三个必须条件是什么?除此之外,还需要什么样的条件才能使双光束干涉条纹清晰可见?

答:三个必须条件:两束光波的频率相同;两束光波在相遇处的振动方向相同;两束光波在相遇处有固定不变的相位差。

双光束干涉,采用相干点光源照明,且两束光的光强度相等时,有Z M=4Z0, Z w=0o

此时V=l,这种情况称为全对比,这时的条纹可见度最好。

15、光的全反射有哪些基本性质和应用?

答:性质:反射光的s分量和p分量有相位差,当两个介质的折射率确定以后,适当的控制入射角,即可改变这个相位差,从而可?以改变反射光的偏振状态。应用:制作菲涅尔棱镜。性质:全反射时,光波不是绝对地在界面上被全部返回第一介质,而是透入第二介质大约一个波长的深度,并沿着界面流过波长量级距离后重新返回第一介质,再沿反射方向射出。应用:制作激光可变输出耦合器。性质:全反射口寸,光能能够全部反射回介质,而没有损失。应用:制作光导纤维。

16、非定域干涉的特点是什么?一般情况下,扩展光源能否产生非定域干涉,为什么?

答:特点:在整个光波叠加区内,随处可见干涉条纹的干涉。不能。随着观察屏的移动,扩展光源上不同点在屏上同一位置附近产生的干涉条纹之间rr位移,条纹的对比度将下降。

17、光的干涉和衍射有无本质区别,对此你是如何理解的?

答:光的衍射现象与干涉现象,都是光波的相干叠加引起的光强的重新分布。不

同之处在于:干涉是有限个相干光波的叠加,衍射是无限多个相干光波叠加的结果。

18、马赫一曾德干涉仪属于分振幅干涉还是分波面干涉?试简述其工作原理。

分振幅干涉。原理图如下:

答:假设S是一个单色点光源,所发出的光波经L1准直后入射到反射面A1上,经A1透射和反射、并由Ml和M2反射的平面光波的波面分别为W1和W2,则在一般情况下,W1相对于A2的虚像W 1 7与W2互相倾斜,形成一个空气隙,在W2上将形成平行等距的直线干涉条纹,条纹的走向写W2和W1'所形成空气楔的楔棱平行。

三、计算与证明题

1、试用夫琅禾费衍射积分公式证明,当平行光垂直照射单缝时,衍射暗条纹的

条件为:sin a = mA; m = ±1,±2,...,其中%为缝宽,。为衍射角,人为波长。

解:夫琅禾费衍射积分公式:

1 疽 + ,

2 k

E(x, y) = — exp[流(d +' _ )] J J .』(£, 〃) exp[-z - (xs + 问)]

A Z LL T匕04 0/

由题意知单缝的衍射图样只存在于X轴上

2 2

(1) 式化为E(x,*) = —exp[沅(W + " +' )]「A(e)exp[-z—xe\d£

ild 2d j d

单缝的复振幅透过系数表示为,⑹=rect\—) %

2 2 EE )=金御"+亍)E 衍射圆形辐照度为 L(x,y) = E(x, y) ? E*(x, y) = 0sin c 2

2 f

sin 华

=()

7F

显然当sin 竺变=0 ,即竺5时,辐照度为0,对应暗条纹

暗条纹的位置为工=也 %

. X sin a tana =— f

=> % sin a — mA, tn = ±1,±2,?…

2、若法布里??-珀罗干涉仪两反射镜面之间介质为空气,距离为1.0cm,用绿光

A = 500W n 做实验,干涉图样的中心正好是一个亮斑,求第10圈亮环的角半径。

解:半角公式为i = J P (i )

/? = 1,人=,d = 0.0 Im, p(i) = 10

由题意式中 l5xl0^7m I —

代入上式得,=J ----------- x y/10 = 2.236 x 10

V 0.01

3 证明.尸=-sin (

4 -■)= q cos (!\ -电 cos

' sin0 + 知) 〃i cos 族 + n 2 cos 饱

透过衍射物体的关系复振幅为/⑹=B (8)3 = rect (—)

由公式「rect(—)exp(-z2^-f c £)d£ = % sinc(%Q A ,

4 d=f, X = -f-代入(2)式得

单缝的夫琅禾费衍射的复振幅分布为:

其中

sin

._ 2cos^ sin^2 _ 2〃]C0sS]

tS — =

' sin (°] + ?2) 4 cos 族 + n 2 cos (/)2

解:由边界条件知

EiOs +E& = Eg,.(])

-Hj°p cos 9i + %p cos 6V = cos 0r (2)

利用J",.H = J 普E ,得到

(—Em + E& L 仔 cos Q = -瓦。s i 件 cos Q ⑶

VAi V 外

联立(1)式利(3)式消去厅小,经过整理可得

E E~ IOS 冬 cos

Q 以2 —cos 0i -

A -------- 产 --------- (4)

—cos Q + /— cos 0t

"\ V 必

联立(1) 式和(3)式消去已次,经过整理可得

并结合折射定律4 sin 。\ =n 2 sin 02

将折射定律代入(4) (5)式之后简化

E& _ " cos 。】—〃2 cos 右 _ sin (Q 一Q )

Em cos A 、+ /弓 cos ?2 sin ( Q + Q )

E tos _ 2sin?2 cos 。〕_ 2n } cos^

E jos sin (S + ?2) n \ cos 4 + /?2 cos 奴

4、一束准直的白光正入射到折射率为〃厚度为d 的玻璃板上(其两侧介质为空 气)。推导作为波长函数的透射率公式,并证明透射率最大值落在A N =2nd/N 的 波长处。

解:当振幅为No 的光线正入射时,各支反射光的复振幅分别为:

E

^tos 当匕俨 (5

:.T = \-R = E\ = §)*2

号琳2由2册(腿)

E3 = E(/12必沿必‘21 exp(z2A?9)= E2W23 exp(zA^)

£4=£2(^3)2exp(z2A^)

E (0必广2 expp (秫-2)M]

其中是光在薄膜内来回一次传播引入的相位延迟(含界面的相位突变)

, f c , A 兀n.d

\(p = kln 2a =————7t

于是,反射光的合振幅和总的反射系数可表示为:

co 77

E R = £ E m =£,0^2 + ■ = ~777~~7

"7=1 '1-弘3exp (,"

利用斯托克斯公式樨,,击=1-强 得 尸=虽=上+必exp (,M )

E° 1 + /12^3 exp (zA^)

反射率是反射系数的平方,所以总的反射率为:

R 二厂2 = q ;+U + 2*2々cos △低

1 +尺尺+ 2上弓3 cos \(p

(!-疽)(i -建)

1 + "必2+2书知COS △低 很显然当cosA^? = -l 时,T 取最大值即

4兀nd c 入r

-------- 7i = 2Nm AN

1 2nd "2

5、证明菲涅耳透镜的焦距满足&=令,其中幻为衍射孔径半径,N 为波带数,

人为光波长。

解:由圆孔半径九 和露出的波带数N 之间的关系

九2 二 N 入鸟-

R +尸。

[(g) = red 得挡=■+%即上+2_ =坐

妒 A-。 R ? h :

这与薄透镜成像公式相似,式中R 是物距,弁是像距,则焦距.4=^4 o N A

6、在迈克尔孙干涉仪的一个臂中引入150nm 充一个大气压空气的玻璃管, 用人=600m 的光照射。如果将玻璃管内逐渐抽成真空,发现有196条干涉条纹 移动,求空气的折射率。

解:将玻璃管空气抽成真空,改变光程差为伽-l )?2d 令(〃 —1)?2 刁= 196/1 式中 d = 0.15/?7,A = 6x10 7m =>/7 = 1.000392

7、矩形孔径的复振幅透射系数可以用二维矩形函数表示:

/ 、 rect 2。试根据傅里叶变换方法,求出其夫郎和费衍射的复振 幅分布和光强分布。

解:由夫琅禾费衍射积分得

2 2

*3'*)= 土 exp [流以+ J 匚

7)exp[-z j (xe + yi^dsdr/ (1)

I /LC/

Ct 其中 A(E , 〃) = rect(—)rect(—) % b°

由公式

J 「rect(—)rect(^-) exp [-眼(./> + f^dsdr]

=a Q b Q sin c(a Q f £ ) - sin c^bj^ 令drhfM ;.代入(1)式得矩形孔径的夫琅禾费衍射复振幅分布

为皿)啥湖皿奇麟nc (芳g 罪

光强:

I (x, y) = E(x, y) - £* (x, y)

. 2 6T 0X ? 2,4*、

=* * sine ( )sinc ( u ) 矿产 "

信息光学重点解答题

(1)()?? ? ? ?-=?? ? ??-?? ? ? ?-=?? ? ??--2 5.22 121*232121*32x rect x rect x x rect x δδ (2)()()1*=x rect x comb (3)??? ??+21x rect *?? ? ??-21x rect 设卷积为()x g ,当0≤x 时,()x g =220+=?+x d x α,当0>x 时,()x g =x d x -=?22α ()?????>-<+=0,2 10 ,212x x x x x g 即 ()?? ? ??Λ=22x x g (4)已知()2 ex p x π-的傅里叶变换为()2 ex p πξ-,求 (){}()222 ex p ex p ξππ-=-x (){}() 2 2222 2ex p 22/ex p ξσππσ-=-x (5)单位振幅的单色平面波垂直入射到一半径为a 的圆形孔径上,试求菲涅耳衍射图样在轴上的强度分布 解:孔径平面撒谎能够的透射场为()??? ? ??+=a y x circ y x U 2020000,由菲涅耳公式,当0==y x 时,得到轴上点的复振幅分布为 ()()0020 202 020 2exp exp ;0,0dy dx z y x jk a y x circ z j jkz z U ??? ? ??+??? ? ? ?+=??∞∞-λ ()rdr z r jk d z j jkz a ?????? ??=02202exp exp π θλ()??? ? ?????? ??-=z a z a jk jkz j λπ2sin 4exp exp 222 ()??? ? ??=z a z I λπ2sin 4;0,022 (6)焦距 mm f 500=,直径mm D 50=的透镜将波长nm 8.632=λ的激光束聚焦,激光束的截面mm D 201=。试求透镜焦点处的光强是激 光束光强的多少倍? 解:设入射激光束的复振幅为0A ,强度为200A I =,通过透镜后的出射光场为,将此式代入菲涅耳衍射公式,并令0==y x 得焦点处的复振幅 和光强为 ()()()4exp 2/exp ;0,02100012 020 0D z j jkz A dy dx D y x circ z j jkz A f U πλλ=??? ? ? ?+=??∞∞- ()6 02120 104;0,0?≈??? ? ??=I f D A f I λπ (14)彩虹全息照相系统中使用狭缝的作用是什么?为什么彩虹全息图的色模糊主要发生在狭缝垂直的方向上? 在彩虹全息照相中使用狭缝的目的是为了能在白光照明下再现准单色像。在普通全息照相中,若用白光照明全息图再现时,不同波长的光同时进入人眼,我们将同时观察到相互错位的不同颜色的再现像,造成再现像的模糊,即色模糊。在彩虹全息照相中,由于狭缝起了分色作用,再现过程中不同波长的光对应不同的水平狭缝位置,通过某一狭缝位置只能看到某一准单色的像,从而避免了色模糊。 在彩虹全息照相中,为了便于双眼观察,参考平面波的选择总是使全息图的光栅结构主要沿水平方向,因而色散沿竖直方向。狭缝沿水平方向放置,这样色散方向与狭缝垂直,即色模糊主要发生在与狭缝垂直的方向上,这样做的结果便于人眼上下移动选择不同颜色的准单色像

信息光学技术第五章习题

第五章 习题解答 5.1两束夹角为 θ = 450的平面波在记录平面上产生干涉,已知光波波长为632.8nm ,求对称情况下(两平面波的入射角相等)该平面上记录的全息光栅的空间频率。 答:已知:θ = 450,λ= 632.8nm ,根据平面波相干原理,干涉条纹的空间分布满足关系式 2 d sin (θ/2)= λ 其中d 是干涉条纹间隔。由于两平面波相对于全息干板是对称入射的,故记录 在干板上的全息光栅空间频率为 f x = (1/d )= (1/λ)·2 sin (θ/2)= 1209.5 l /mm 故全息光栅的空间频率为1209.5 l /mm 。 5.2 如图5.33所示,点光源A (0,-40,-150)和B (0,30,-100)发出的球面波在记录平面上产生干涉: x z 图5.33 (5.2题图) (1) 写出两个球面波在记录平面上复振幅分布的表达式; 答:设:点源A 、B 发出的球面波在记录平面上的复振幅分布分别为U A 和U B , 则有 ()[{]}2 2--22 )()()/(e x p e x p A A A A A A y y x x z jk jkz a U += ()[{]}22--22)()()/(exp exp B B B B B B y y x x z jk jkz a U += 其中: x A = x B = 0, y A = -40, z A = -150, y B = 30, z B = -100; a A 、a B 分别是球面波的振幅;k 为波数。 (2) 写出干涉条纹强度分布的表达式; I = |U A +U B |2 = U A ·U A * + U B ·U B * +U A *·U B + U A ·U B *

几何光学的基本原理

第三章几何光学 本章重点: 1、光线、光束、实像、虚像等概念; 2、Fermat原理 3、薄透镜的物像公式和任意光线的作图成像法; 4、几何光学的符号法则(新笛卡儿法则); 本章难点: 5、理想光具组基点、基面的物理意义; §3.1 几何光学的原理 几何光学的三个实验定律: 1、光的直线传播定律——在均匀的介质中,光沿直线传播; 2、光的独立传播定律——光在传播过程中与其他光束相遇时,不改变传播方 向,各光束互不受影响,各自独立传播。 3、光的反射定律和折射定律 当光由一介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。 反射定律:入射光线、反射光线和法线在同一平面内,这个平面叫做入射面,入射光线和反射光线分居法线两侧,入射角等于反射角 光的折射定律:入射光线、法线和折射光线同在入射面内,入射光线和折射光线分居法线两侧,介质折射率不仅与介质种类有关,而且与光波长有关。 §3.2 费马原理 一、费马原理的描述:光在指定的两点间传播,实际的光程总是一个极值(最大值、最小值或恒定值)。 二、表达式 ,(A,B是二固定点) Fermat原理是光线光学的基本原理,光纤光学中的三个重要定律——直线传播定律,反射定律和折射定律()——都能从Fermat原理导出。 §3.3 光在平面界面上的反射和折射、光学纤维 一、基本概念:单心光束、实像、虚像、实物、虚物等 二、光在平面上的反射 根据反射定律,可推导出平面镜是一个最简单的、不改变光束单心性的、能成完善像的光学系统. 三、单心光束的破坏(折射中,给出推导) 四、全反射 1、临界角

2、全反射的应用 全反射的应用很广,近年来发展很快的光学纤维,就是利用全反射规律而使光线沿着弯曲路程传播的光学元件。 2、应用的举例(棱镜) §3.4 光在球面上的反射和折射 一、基本概念 二、符号法则(新笛卡儿符号法则) 在计算任一条光线的线段长度和角度时,我们对符号作如下规定: 1、光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正,凡在顶点左方者,其间距离的数值为负。物点或像点至主抽的距离,在主轴上方为正,在下方为负。 2、光线方向的倾斜角度部从主铀(或球面法线)算起,并取小于π/2的角度。由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动时,则该角度的数值为负。 3、在图中出现的长度和角度只用正值。 三、球面反射对光束单心性的破坏 四、近轴光线条件下球面反射的物像公式 五、近轴光线条件下球面折射的物像公式(高斯公式) 六、高斯物像公式 七、牛顿物像公式(注意各量的物理意义) 八、例题一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为2cm。若在哑铃左端5cm处的轴上有一物点,试求像的位置和性质。 §3.5 薄透镜 一、基本概念: 凸透镜、凹透镜、主轴、主截面、孔径、厚透镜、薄透镜、物方焦平面、像方焦平面等 二、近轴条件下薄透镜的成像公式 如果利用物方焦距和像方焦距

信息光学结课论文

信息光学原理结课论文 学院:物理与电子工程学院 专业:电子科学与技术 学号:5411110101 xx 姓名:xxx

光学器件CCD发展及应用 【摘要】:CCD英文全称:Charge-coupled Device,中文全称:耦合元件。可以称为CCD,也叫图像控制器。CCD是一种,能够把影像转化为。上植入的微小光敏物质称作(Pixel)。一块CCD上包含的像素数越多,其提供的分辨率也就越高。CCD的作用就像胶片一样,但它是把光信号转换成电荷信号。CCD上有许多排列整齐的光电二极管,能感应光线,并将光信号转变成电信号,经外部采样放大及模数转换电路转换成数字图像信号。此外,CCD还是蜂群崩溃混乱症的简称。 【关键词】:CCD 光学器件电压检测应用 CCD广泛应用在数码摄影、天文学,尤其是光学遥测技术、光学与频谱望远镜和高速摄影技术,如Lucky imaging。CCD在摄像机、数码相机和扫描仪中应用广泛,只不过摄像机中使用的是点阵CCD,即包括x、y两个方向用于摄取平面图像,而扫描仪中使用的是线性CCD,它只有x一个方向,y方向扫描由扫描仪的机械装置来完成。 CCD是于1969年由美国贝尔实验室(Bell Labs)的维拉·波义耳(Willard S. Boyle)和乔治·史密斯(GeorgeE. Smith)所发明的。当时贝尔实验室正在发展影像电话和半导体气泡式内存。将这两种新技术结合起来后,波义耳和史密斯得出一种装置,他们命名为“电荷‘气泡’元件”(Charge "Bubble" Devices)。这种装置的特性就是它能沿着一片半导体的表面传递电荷,便尝试用来做为记忆装置,当时只能从暂存器用“注入”电荷的方式输入记忆。但随即发现光电效应能使此种元件表面产生电荷,而组成数位影像。到了70年代,贝尔实验室的研究员已经能用简单的线性装置捕捉影像,CCD就此诞生。有几家公司接续此一发明,着手进行进一步的研究,包括快捷半导体(Fairchild Semiconductor)、美国无线电公司(RCA)和德州仪器(Texas Instruments)。其中快捷半导体的产品领先上市,于1974年发表500单元的线性装置和100x100像素的平面装置。 以上为CCD发展历程: HAD(HOLE-ACCUMULATION DIODE)传感器[1] 是在N型基板,P型,N+2极体的表面上,加上正孔蓄积层,这是SONY独特的构造。由于设计了这层正孔蓄积

信息光学参考答案

名词解释 单色平面波 波函数E 取余弦或正弦形式,对应的光波等相面为平面,且等相面上个点的扰动大小时刻相等的光波称为单色平面波。 光学全息 利用光的干涉原理将物体发出的特定光波以干涉条纹形式记录下来,使物光波前的全部信息都贮存在记录介质中形成全息图,当用适当光波照射全息图时,由于光的衍射原理能重现原始物光波,从而形成与原物相同的三维像的过程称为光学全息。 色模糊 由于波长不同而产生的像的扩展的现象叫做像的色模糊。 范西泰特—策尼克定理 指研究一种由准单色(空间)非相干光源照明而产生的光场的互强度,特别指研究干涉条纹可冗度。 11222(,) exp()2(,;,)(,)exp ()()j J x y x y I j x y d d z z ψπαβαβαβλλ+∞-∞?? = -?+??????? 其中 22 2222221121[()()]()x y x y z z ππψρρλλ= +--=- 12ρρ分别是点11(,)x y 和点22(,)x y 离光轴的距离 基元全息图 指单一物点发出的光波与参考光波干涉所形成的全息图。 彩虹全息 只利用纪录时在光路的适当位置加一个夹缝,使再现的同时再现狭缝像,观察再现像将受到狭缝再现像的调制,当用白光照明再现时,对不同颜色的光波,狭缝和物体的再现像位于不同颜色的像,犹如彩虹一样的全息图。 判断 1.衍射受限系统是一个低通滤波器。 2.物 000(,)x y μ通过衍射受限系统后的像分布(,)i i i x y μ是000(,)x y μ的理想像和点扩散 (,)i i h x y 的卷积。 3.我们把(,)H ξη称为衍射受限系统的想干传递函数。 4.定义:()()f x h x 为一维函数,则无穷积分 ()()()()() g x f h x d f x h x ααα+∞ -∞ =-=*? 5.二维卷积 (,) (,)(,)(,)(,)(,) g x y f h x y d d f x y h x y αβαβαβ+∞-∞= --=*?? 6.1,()()() ,x x x x x a rect rect a a a a a o ?-≤?*==Λ???其他 7.透镜作用 成像;傅里叶变换;相位因子。

(完整版)光学仪器基本原理习题及答案

第四章 光学仪器基本原理 1.眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1。试计算眼球的两个焦距。用右眼观察月球时月球对眼的张角为1°,问视网膜上月球的像有多大? 解;眼球物方焦距;当s ’=∞时,f=﹣5.55/﹙4/3﹣1﹚=﹣16.65㎜=﹣1.665㎝ 眼球的象方焦距:f '=s '=mm 2.2213455.534 =-? 当u=1°时,由折射定律n 1sinu 1=n 2sinu 2 U 1=1°n 1=1,n 2=4∕3 像高l '=f 'tanu 2=f 'sinu 2=f '×3∕4 sin1o =22.2×3∕4×0.01746=0.29mm 2.把人眼的晶状体看成距视网膜2㎝的一个简单透镜。有人能看清距离在100㎝到300㎝ 间的物体。试问:⑴此人看清远点和近点时,眼睛透镜的焦距是多少?⑵为看清25㎝远的物体,需配戴怎样的眼镜? 解:人眼s '=2cm. S 1=100cm.s 2=300cm 近点时透镜焦距'f =21002 100+?=1.961cm 远点时透镜焦距f '=23002 300+? =1.987cm 当s =﹣25cm 时s '=﹣100cm ﹦﹣1m 34125.0100.1111=+-=---=-'= Φs s D 300=度 3.一照相机对准远物时,底片距物镜18㎝,当镜头拉至最大长度时,底片与物镜相距20 ㎝,求目的物在镜前的最近距离? 解:.18.0m f =' m s 20.0=' 照相机成像公式: f s s '=-'1 11 556.020.01 18.01111-=+-='+'-=s f s m s 8.1-= 目的物在镜前的最近距离为m 8.1

信息光学试题--答案

信息光学试题 1. 解释概念 光谱:复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。 干涉图:在一定光程差下,探测器接收到的信号强度的变化,叫干涉图。 2. 傅里叶光谱学的基本原理是干涉图与光谱图之间的关系,是分别用复数形式 和实数表示之。 复数形式方程: 实数形式方程: 3. 何谓Jacquinot 优点?干涉光谱仪的通量理论上约为光栅光谱仪通量的多少 倍? Jacquinot 优点是:高通量。 对相同面积、相同准直镜焦距、相同分辨率,干涉仪与光栅光谱仪通量之比 为 对好的光栅光谱仪来说,由于 则 即干涉仪的通量为最好光栅干涉仪的190倍。 4. 何谓Fellgett 优点?证明干涉光谱仪与色散型光谱仪的信噪比之比为 2/1)/()/(M N S N S G I =,M 为光谱元数。 Fellgett 优点:多重性。 设在一扩展的光谱带1σ —2σ间,其光谱分辨率为δσ,则光谱元数为 δσσδσσσ?=-=21M 2()() (0)1[]2i R R B I I e d πσδσδδ∞ --∞=-?()0()(0)1(tan ){[]cos(2)}2R R B cons t I I d σδπσδδ∞=-? '2() M G E f l E π≈'30f l ≥

对光栅或棱镜色散型光谱仪,设T 为从1σ —2σ的扫描总时间,则每一小节观测时间为T/M ,如果噪音是随机的、不依赖于信号水平,则信噪比正比于 21)(M T 即21 )()(M T N S G ∝。 对干涉仪,它在所有时间内探测在 1σ —2σ间所有分辨率为δσ的小带,所 以探测每一个小带的时间正比于T ,即21 )()(T N S I ∝ 因此21)()(M N S N S G I = 5. 单色光的干涉图和光谱表达式是什么?在实际仪器使用中,若最大光程差为 L ,试写出其光谱表达式——仪器线性函数(ILS )。 单色光干涉图表达式: )2cos(2)]0(2 1)([1δπσδ=-R R I I 其中1σ为单色光的波数,δ为 光程差。 光谱的表达式: })(2])(2sin[)(2])(2sin[{2)(1111L L L L L B σσπσσπσσπσσπσ--+++= 仪器线性函数:])(2[sin 2)(1L c L B σσπσ-= 6. 何谓切趾?试对上题ILS 进行三角切趾,并说明其结果的重要意义。 切趾: 函数])(2[sin 1L c σσπ-是我们对单色光源所得到得一个近似,其次级极大或者说“脚“是伸到零值以下的22%处,它稍稍有点大。我们可以把一个有限宽度的中央峰值认为一个无限窄带宽的一个近似,但是这个”脚“会使在这些波长附近出现一个错误的来源。为了减小这个误差,我们通过截趾的方法来减小这个”脚“的大小,这就叫切趾。 三角切趾后的仪器函数: 21])([sin )(L c L B σσπσ-= 重要意义:

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

《信息光学》期末复习要点

2011《信息光学》期末复习要点 第一章:概念和简答题: 什么是线性系统?什么是线性不变系统?分别在空间域和频率域写出线性不变系统中输出函数和输入函数之间的关系式。 计算题:习题1.4; 1.12;求sgn(x) 的傅里叶变换 第二章:概念和简答题: 简述惠更斯-菲涅耳原理,写出基尔霍夫衍射公式和叠加积分公式,阐述三者之间的关系;简述如何利用透镜(物在透镜前)实现“准确的傅里叶变换”以及“准傅里叶变换”,要求写出相应的变换公式并比较二者的差别。 计算题:习题2.2;2.3; 第三章:概念和简答题: 简述衍射受限系统、入射光瞳和出射光瞳的概念,画出简图,指出各区间适用的光学规律;写出相干照明衍射受限系统在空间域和频率域的成像规律,给出光学传递函数OTF、相干传递函数CTF和光瞳函数之间的关系。 分别写出透镜和衍射受限系统的点扩散函数,指出二者的区别; 计算题:习题3.2;例题3.3.1;例题3.3.2; 第四章:概念和简答题: 简述理想的完全相干光源和实际的部分相干光源之间的区别,说明如何判断实际部分相干光源的时间相干性与空间相干性; 简述如何构造一个多色实信号的解析表示(两种方式),写出其数学表述; 给出互相干函数的谱表示,复相干度的谱表示; 计算题:习题4.1;4.2;例题4.1.2; 第五章:概念和简答题: 简述全息技术的基本原理(包括波前记录与波前再现)以及如何实现各再现分量的分离;简述全息图有哪些基本类型; 简述利用像全息和彩虹全息实现“激光纪录”和“白光再现”的基本原理。 给出基元全息图的定义和分类(空间域、频率域、平面波、球面波) 计算题:习题5.2;5.3;5.6;5.8;5.10;例题5.4.1

傅立叶光学基本原理

傅立叶光学基本原理 实验目的:在4f 系统中,观察不同的衍射物通过两个凸透镜后的傅立叶变换,计算栅格常数 实验原理:傅立叶变换,惠更斯原理,多缝衍射,阿贝成像原理 该实验使用当中,在进行相干光学处理时,采用了如下图所示的双透镜系统(即4f 系统)。这时输入图像(物)被置于透镜L1的前焦面,若透镜足够大,在L1的后焦面上即得到图像准确的傅立叶变换(频谱)。并且,因为输入图像在L1的前焦面,需要利用透镜L2使像形成在有限远处。在4f 系统中,L1的后焦面正好是L2的前焦面,因此系统的像面位于L2的后焦面,并且像面的复振幅分布是图像频谱准确的傅立叶变换。 物面 L1 频谱面 L2 像面 从几何光学看,4f 系统是两个透镜成共焦组合且放大倍数为1的成像系统。 在单色平面波照明下(相干照明),当输入图像置于透镜L1的前焦面时,在L1的后焦面上得到图像函数E *(x,y )准确的傅立叶变换: E *(x,y )=??∞+∞-+-∞+∞-?dadb e b a E f y x A b f y a f x B B B )(2),(),,(λλπ 其中,x,y 是L1后焦面(频谱面)的坐标。由于L1的后焦面与L2的前焦面重合,所以在L2的后焦面又得到频谱函数E *(x,y )的傅立叶变换,略去常数因子: ?=)?,?,?(?)?,?(?B f y x A y x E ??∞+∞-+-∞+∞-dadb e b a E b f y a f x B B )??(2),(λλπ 通过两次傅立叶变换,像函数与物函数成正比,只是自变量改变符号,这意味着输出图像与输入图像相同,只是变成了一个倒像。第一次傅立叶变换把物面光场的空间分布变为频谱面上的空间频率分布,第二次傅立叶变换又将其还原到空间分布。 相干光学信息处理在频谱面上进行,通过在频谱面上加入各种空间滤波器可以达到

信息光学复习笔记.doc

矩形函形 rect =??? ??-a x x 0?? ?? ? ≤-其他 , 021 0, 1a x x 函数以x0为中心,宽度为a (a >0)高度为1的矩形,当x0=0,a =1时,矩形函数形式变成rect (x),它是以x=0为对称轴的,高度和宽度均为1的矩形。当x0=0, a =1时,矩形函数形式变成rect (x),它是以x=0 为对称轴的,高度和宽度均为1的矩形,二维矩形函数可表为一维矩形函数的乘积?? ? ??-??? ??-b y y a x x rect 00, a ,b>0 c sin 函数 ()()a x x a x x a x x c /0/0sin 0sin --= ?? ? ??-ππ a >0,函数在x=x0处有最大值1。零点位于()Λ2,10=±=-n na x x .对于x0=0,a =1,函数图像 三角函数 ?? ??? -=??? ??Λ, 0, 1a x a x a >0 符号函数 ()?? ? ??<-=>=0,10,00,1sgn x x x x 阶跃函数 ()???<>=0,00 ,1x x x step 圆柱函数 在直角坐标系内圆柱函数定义式 ? ????<+=???? ??+其它 ,0,1222 2a y x a y x circ 极坐标内的定义式为 ???><=??? ??a r a r a r circ ,,01

卷积的定义 函数()x f 和函数()x h 的一维卷积,有含参变量的无穷积分定义,即 ()()()()()x h x f d x h x f x g *=-= ?∞ ∞ -αα 定义()x f 和()x h 的二维卷积:()()()()()y x h y x f d d y x h f y x g ,*,,,,=--=??∞ ∞ -βαβαβα 卷积的基本性质 线性性质 交换律 平移不变性 ()()()()() *21 2 1 21?∞ ∞ ---=---=--x x x g d x x h x f x x h x x f ααα 结合律 坐标缩放性质 ()()()ax g a ax h ax f 1 *= 函数()y x f ,与δ函数的卷积()()()()()? ?∞ ∞ -=--=y x f d d y x f y x y x f ,,,,*,βαβαδβαδ 即任意函数()y x f ,与δ函数的卷积,得出函数()y x f ,本身,而()()()0000,,*,y y x x f y y x x y x f --=--δ 互相关 两个函数()y x f ,和()y x g ,的无相关定义为含参变量的无穷积分,即 ()()()()()y x g y x f d d g y x f y x R fg ,,,,,*☆=--=?? ∞ ∞-βαβαβα 或 ()()()()()y x g y x f d d y x g y x f y x R fg ,,,,,* ☆=++=? ?∞ ∞ -βαβα 互相关卷积表达式:()()()()y x g y x f y x g y x f ,*,,,*--=☆ 性质:(1)()()y x R y x R fg gf ,,≠,即互相关不具有交换性,而有()()y x R y x R fg gf --=,,* (2)()()()0,00,0,2 gg ff fg R R y x R ≤ 自相关 当()()y x g y x f ,,=时,即得到函数f 的自相关定义式 ()()()()()y x f y x f d d f y x f y x R ff ,,,,,*☆=--=? ? ∞ ∞ -βαβαβα 和 ()()()y x f y x f y x R ff ,*,,*--= 性质:(1)自相关函数具有厄密对称性()()y x R y x R ff ff --=,,* 当()y x f ,是实函数时,()y x R ff ,是偶函数 (2)()()0,0,ff ff R y x R ≤

信息光学重点总结讲解学习

信息光学重点总结

1.什么是脉冲响应函数?其物理意义是什么? 脉冲响应函数(Impulse Response Function)也叫点扩散函数(Point-Spread Function),其表达式为:)},({),;,(1 12 2ηξδηξ--=y x y x F h ,表示在光学系统输 入平面式位于ηξ==y x 1 1,点的单位脉冲(点光源),通过系统以后在输出平 面上),(2 2y x 点得到的分布,它是输入输出平面上坐标的四元函数。脉冲响应 函数表征光学成像系统的成像质量好坏,对于一般的成像系统,由于其存在相差且通光孔径有限,输入平面上的一点(有δ函数表示)通过系统后,在输出平面上不是形成一个像点,而是扩散成一个弥散的斑,这也就是为什么把脉冲响应函数称为点扩散函数的原因。换句话说,如果没有相差且通光孔径无限大(没有信息散失,物空间的信息完全传递到像空间),则在像平面上即得到和物平面上完全一样的点。 2.什么是传递函数?其物理意义是什么? 在线性空间不变系统中,我们把系统的脉冲响应函数的傅里叶变换叫做该系统的传递函数,即:)},({), (y x h F H f f y x =,它表示系统在频域中对信号的传 递能力。传递函数和脉冲响应函数都是用来描述线性空间不变系统对输入信号的变换作用,两种方法是等效的。只不过脉冲响应函数是在空域中描述,而传递函数是在频域中对系统传递信号能力的描述。 3.什么是线性系统?什么是线性空间不变系统?有哪些性质? 若系统对一线性组合信号的响应等于单个响应的同样的线性组合,则该系统就是线性系统。用数学表达式表示如下:

)} ,({),()} ,({),(1 11 2 21 1 1 2 2 y x f a y x g a y x f y x g i n i i i n i i i i F F ∑∑====,其中 ),(1 1 y x f i 代表对系统的激励, ),(2 2 y x g i 代表系统相应的响应,a i 是任意复常数。 线性空间不变系统是线性系统的一个子类,它表示若输入信号在空间发生了平移,则输出信号也发生相应的位置平移。对于成像系统来说,若物函数分布不变,仅在物平面上发生一位移,则对应的像函数形式不变,也只是在像平面上有一个相应的位移。 线性空间不变系统的性质: (1)等晕性。),()},({),;,(2 21 12 2ηξηξδηξ--=--=y x y x y x h F h ,当点光源 在物场中移动时,其像斑只改变位置,而不改变其函数形式。 (2)脉冲响应函数h 即可完全描述线性空间不变系统的性质。 ),(),(),(2 22 22 2y x y x y x h f g *=,对于线性空间不变系统,输出函数可以表 示为输入函数与系统脉冲响应在输出平面上的一个二维卷积。 (3)傅里叶变换形式简单。对于线性空间不变系统,脉冲响应函数的傅里叶变换)},({), (y x h F H f f y x =可以用来描述系统在频域内对输入信号的变换作用, 我们称其为系统的传递函数,其对线性空间不变系统的理论和求解运算都有重要的意义。 4.透镜在傅里叶光学中的作用? 透镜是光学成像系统和光学信息处理系统中最基本的元件。透镜的作用有: (1)透镜起到位相调制作用。透镜对入射光的位相变换作用是由透镜本身的性质决定的,而与入射光的复振幅无关。

基本光学原理图文稿

基本光学原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

基本光学原理 第一节几何光学的基本原理 几何光学的含义及其范畴,是以光的直线传播性质为基础,研究光在透明介质中传播的光学。几何光学的理论基础,就是建立在通过观察和实验得到的几个基本定律。由于光的直线传播性对于光的实际行为只有近似的意义,所以,以它作为基础的几何光学,就只能应用于有限的范围和给出近似的结果。但这些对于了解与摄影有关的光学系统而言,已是足够的了。 一、光线 在几何光学中可用一条表示光传播的方向的几何线来代表光,并称这条线为光线。 二、光的传播定律 1.光的直线传播定律:光在均匀透明的介质中,光沿直线传播。 2.光的反射和折射定律:当光线由一均匀介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。这两条光线的进行方向,可分别由反射定律和折射定律来表述。 反射定律:反射线在入射线和法线所决定的平面上;反射线和入射线分别位于法线的两侧;反射角和入射角相等。

在反射现象里光路是可逆的。 折射定律:折射线在入射线和法线所决定的平面内;折射线和入射线分别位于法线的两侧 入射角i的正弦与折射角r的正弦的比,对于给定的两种媒质来说,是一个常数,叫做第二媒质对于第一种媒质的折射率,在这里我们用n21来表示。 前面所讲的n21是第二种媒质对于第一种媒质的折射率,叫做这两种媒质的相对折射率,即某种媒质对于真空的折射率叫做这种媒质的绝对折射率,简称媒质的折射率,用n表示。 因为光在空气中传播的速度与光在真空中传播的速度相差很小,所以通常用媒质对空气的折射率代替媒质的折射率。n=1。 光在任何媒质中传播的速度都小于在真空中的速度,所以,任何媒质的折射率都大于1。由此可以推论,光在一种媒质中传播的速度越小,这种媒质的折射率越大。两种媒质相比较如第一种媒质的折射率大于第二种媒质的折射率,则光在第一种媒质中的传播速度小于光在第二种媒质中的传播速度,相对而言第一种媒质称为光密媒质,第二种媒质称为光疏媒质。当光线从光疏媒质射进光密媒质时 ∴Sini>Sinr i>r 这时,r<i说明光线近法线折射。

光学原理及应用

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为

c=299 792 458 m/s 在通常的计算中可取 c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的. 由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线.

光学原理

光学原理 Principles of Optics 课程编号:07370460 学分: 2 学时: 30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:大学物理 适用专业:无机非金属材料工程(光电材料与器件) 教材:《光学教程》,姚启钧主编,高等教育出版社,2008年6月第4版。 开课学院:材料科学与工程学院 一、课程的性质与任务: 本课程是属于专业选修课,是研究光的本性、光的传播和光与物质相互作用的基础学科,光学的基本理论渗透在自然科学的很多领域,应用于生产技术的各个部门,是自然科学的许多领域和工程技术的基础。激光的出现和发展,使光学的研究进入了一个崭新的阶段,成为现代科学技术的前沿阵地之一。本课程要求学生掌握几何光学的基本概念、成像规律和作图方法,理解典型光学仪器的基本原理;要求学生掌握有关光的传播规律及其本性,了解干涉、衍射和偏振等基本现象、原理和规律,并了解它们在科研、生产和实践中的应用;本课程力求使学生使学生对光的传播规律和光与物质相互作用时出项的现象和光的本性有一个深刻的认识。 二、课程的基本内容及要求: 第一章绪论 1.教学内容 (1)光学的研究内容和方法 (2)光学的发展简史 2.教学要求 重点了解光学的研究内容和方法,对光学简史要有一定了解。 第二章光的干涉 1.教学内容 (1)波动的独立性、叠加性和相干性 (2)由单色波叠加所形成的干涉图样 (3)分波面双光束干涉 (4)干涉条纹的可见度 (5)菲涅尔公式 (6)分振幅薄膜干涉-等倾干涉

(7)分振幅薄膜干涉-等厚干涉 (8)迈克尔逊干涉仪 (9) 法布里珀罗干涉仪 2.教学要求 掌握光的相干条件和光程的概念;掌握光的干涉相长和干涉相消的条件;学会分析光的干涉图样;掌握等倾干涉和等厚干涉的基本概念及其应用;介绍迈克耳逊干涉仪和法布里---珀罗干涉仪的原理及其应用。 第三章光的衍射 1.教学内容 (1)惠更斯-菲涅尔原理 (2)菲涅尔半波带和菲涅尔衍射 (3)夫琅禾费单缝衍射 (4)夫琅禾费圆孔衍射 (5)平面衍射光栅 2.教学要求 学会用惠更斯---菲涅耳原理解释光的衍射现象,理解菲涅耳积分式意义;掌握夫琅和费衍射,并能推导夫琅和费衍射光强公式;掌握光栅方程式导并理解其意义。 第四章几何光学的基本原理 1.教学内容 (1)几个基本概念和定律费马原理 (2)光在平面界面上的反射、折射 (3)光在球面上的反射折射 (4)光连续在几个球面界面上的折射 (5)薄透镜 (6)近轴物近轴光线成像的条件 2.教学要求 重点掌握费马原理;掌握光线、实物、虚物、实象和虚象的概念;掌握几何光学的符号法则(采用新笛卡儿符号法则);掌握薄透镜的物象公式;了解光学纤维构造及其应用。 第五章光学仪器的基本原理 1.教学内容 (1)助视仪器的放大本领 (2)显微镜的放大本领 (3)望远镜的放大本领

信息光学复习提纲华南师范大学

信息光学复习提纲 (自编) 第一章 二维线性系统 1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性? 2.空间频率分量的定义及表达式? 3.平面波的表达式和球面波的表达式? 对于单色光波。 时间量 空间量 22v T πωπ== 22K f ππλ== 时间角频率 空间角频率 其中:v ----时间频率 其中:f ---空间频率 T----时间周期 λ-----空间周期 物理意义: ① 当0 90,,<γβα时0,,>z y x f f f , 表示k ?沿正方向传播; 当0 90,,>γβα时0,,

信息光学习题

信息光学习题 问答题 1.傅里叶变换透镜和普通成像透镜的区别。 2.相干光光学处理和非相干光光学处理的优缺点。 3.菲涅耳衍射和夫琅和费衍射的区别与联系。 4.光学传递函数在0 = η = ξ处都等于1,这是为什么?光学传递函数的值可能大于1吗?如果光学系统真的实现了点物成像,这时光学传递函数怎样? 证明 1.如果() {()} g x Gξ = F,则()() 2 d g x j G dx πξξ ?? = ?? ?? F; 2.()()()()()() d d d f x g x f x g x f x g x dx dx dx ???? *=*=* ?? ?????? ???? 计算题 1.沿空间k方向传播的平面波可以表示为 试求出k方向的单位矢量。 2.有一矢量波其表达式如下: ]} ) 10 16 ( ) 4 3 2[ exp{ ) / 100 (1 8 1t s m z y x i m V E- -? - + + = ] 10 3 ) ( 10 [ 29t z y x j j i?- + + π

求 1)偏振方向,2)行进方向,3)波长,4)振幅 3. 如图所示的“余弦波的一段”这种波列可表示为 求E(z)的傅里叶变换,并画出它的频谱图。 4. “巴比涅原理是“开在挡板上的光瞳形成的衍射和与光瞳形状相同的不 透明物形成的衍射象之和,等于无任何挡板时的光分布”的原理。试利用基尔霍夫衍射公式证明此原理。 5. 在4F 系统中,输入物面的透过率为 x f t t t 0102cos π+= , 以单色平行光垂直照明, λ=0.63μm, f’=200mm, f 0 =400lp/mm, t 0=, t 1 =, 问频谱面上衍射图案的主要特征: 几个衍射斑? 衍射斑沿什么方向分布? 各级衍射斑对应的衍射角sin θ =? 各级衍射中心强度与零级衍射斑之比. (1)在不加滤波器的情况下,求输出图象光强分布. (2)如用黑纸作空间滤波器挡住零级斑,求输出图象光强分布. (3)如用黑纸挡掉+1级斑,求输出图象光强分布. 6. 在图示4F 系统中, λ=0.63μm <1>被处理物面最大尺寸和最高空间频率为多大?(设频谱面与物面同尺寸) <2>付里叶变换镜头的焦距和通光直径为多大? <3>欲将光栅常数0.1mm 的二维光栅处理成一维光栅。给出空间滤波器的形 状和尺寸。 ???><≤-=L z when L Z L when z k a z E 0cos )(0

相关文档
相关文档 最新文档