文档库 最新最全的文档下载
当前位置:文档库 › 高钛型高炉渣的渣钛分离试验

高钛型高炉渣的渣钛分离试验

高钛型高炉渣的渣钛分离试验
高钛型高炉渣的渣钛分离试验

第20卷第4期1999年12月

钢 铁 钒 钛

IRON STEEL VANADIUM TITAN IUM

Vol.20,No.4

December1999高钛型高炉渣的渣钛分离试验

周志明 张丙怀 朱子宗

(重庆大学)

摘 要 将碱性渣钛分离剂加入到高钛型高炉渣中,在高温下渣中的钙钛矿结构被破坏,生成的共熔渣用水浸取。试验表明,渣与分离剂的作用属酸碱反应,反应的最佳温度区间为1200~1300℃,水浸后渣中TiO2含量有不同程度的降低。

关键词 高钛型高炉渣 分离剂 钙钛矿

A TEST OF TITANIA SEPARATION FR OM HIGH TITANIA BEARING

B LAST FURNACE SLAG

Zhou Zhiming Zhang Binghuai Zhu Z izong

(Chongqing University)

Abstract Alkaline separation agents are added into high titania bearing blast furnace slag.Structure of perovskite in the slag is destroyed at the high temperature and co-molten slag formed is leached in wa2 ter.The tests indicate that the interaction of slag and separation agents belongs in the acid-base reac2 tion at optimum temperature ranges of1200~1300℃and TiO2content in the slag is reduced to a cer2 tain degree after leaching.

K ey Words high titania bearing blast furnace slag,separation agent,perovskite

1 引言

我国攀西地区具有丰富的钒钛磁铁矿资源,原矿约含13126%的TiO2,磁选后得到的铁精矿中约含13%的TiO2,经高炉冶炼后, 90%以上的钛进入高炉渣,形成含TiO2达22%~25%的高钛型高炉渣。由于高钛型高炉渣中钛的分布很分散,含钛矿物相的粒度又非常细小(<10μm)[1],从而使得钛组分至今不能充分利用,炉渣大量堆积。这一方面污染了环境,同时又造成了钛资源的浪费。因此,高钛型高炉渣的综合利用是一个难度很大,受国家和冶金企业极为关注的重大课题[2]。本研究采用在含钛渣中加入碱性渣钛分离剂,使含钛渣和分离剂在高温下反应生成共熔渣。在矿相显微镜下观察共熔渣的结构,与原高钛型高炉渣相比共熔渣的结构发生了根本变化。用水对共熔渣进行浸取,用化学方法分析浸取残渣中TiO2含量,初步研究表明:共熔渣经水浸后,TiO2含量大大降低,这为进一步综合利用高钛型高炉渣提供了一种新的途径。

2 试验方法与仪器

211 试验方法与原料

由于高钛型高炉渣的特殊结构,使其在

基金项目:国家自然科学基金项目(59774012)

常温常压下很难和酸碱发生反应。为了能充分利用高炉渣排出时的热量,应采用在高温下加入分离剂。但由于在实验室较难实现这一条件,改用在冷态时加入分离剂。试验中采用一定量的高钛型高炉渣与一定量的分离剂混合,倒入石墨坩埚中,放入自制钼丝炉,升温至指定温度,恒温30min ,采用急冷(恒温结束后,直接从石墨坩埚中倒出共熔渣)或缓冷(从钼丝炉中取出坩埚,让共熔渣和坩埚一同冷却)两种方式冷却。取部分共熔渣磨

样,用矿相显微镜观察高钛型高炉渣共熔前后的晶型变化;另取共熔渣磨细至<200目,用水浸取,过滤,将浸取后的渣样烘干,用铝片还原硫酸高铁铵容量法分析残渣中的TiO 2含量。

试验所用的高钛型高炉渣取自攀钢,其成分见表1;渣钛分离剂为NaOH (化学纯)。212 试验仪器与装置

①自制温控高温钼丝炉,见图1;②XP K -1矿相显微镜;③常规分析仪器。

表1 攀钢高钛型高炉渣的成分

%

TFe

MFe FeO CaO MgO SiO 2Al 2O 3MnO

V 2O 5TiO 21191

0173

1147

26111

9113

23181

14124

0186

0120

221

88

图1 共熔渣试验装置

3 试验结果与分析

311 温度及冷却过程对渣钛分离的影响31111 共熔温度与共熔渣矿相

在不同温度下生成的共熔渣经急冷或缓冷后的矿相见图2,3。

由图2和图3可知:①由于缓冷比急冷更利于晶粒的生长,因此,在相同的共熔温度下生成的共熔渣,在缓冷时比急冷所生成的

晶粒(晶体的具体组成与结构,有待于进一步确定,为叙述方便,以下将晶体命名为J 1)要大;②共熔渣的矿相结构随共熔温度由低到高发生变化。在高温下,高钛型高炉渣与分离剂所发生的主要反应如下:

2NaOH +TiO 2=Na 2O ?TiO 2+H 2O

2NaOH +2TiO 2=Na 2O ?2TiO 2+H 2O 2NaOH +3TiO 2=Na 2O ?3TiO 2+H 2O 2NaOH +SiO 2=Na 2O ?SiO 2+H 2O 2NaOH +Al 2O 3=Na 2O ?Al 2O 3+H 2O 2NaOH +5Al 2O 3=Na 2O ?5Al 2O 3+H 2O 2NaOH +11Al 2O 3=Na 2O ?11Al 2O 3+H 2O

在高温下分离剂与渣中的部分组分发生了酸碱反应。共熔反应的温度主要取决于NaOH 和渣的特性,NaOH 的熔点为328

℃[3]

,沸点为1390℃;而高钛型高炉渣的熔

点一般在1250℃以上。在加入NaOH 后,渣的熔点可降到1200℃左右。因此,在1150℃时,由于渣没有完全熔化,反应是在固

液相之间进行,反应不充分,在矿相上就表现

?

63? 钢铁钒钛 1999年第20卷

为钙钛矿消失,生成一些小的晶粒;而当温度在1200~1300℃时,由于分离剂与渣都呈液态,反应比较充分,矿相上表现为钙钛矿完全消失,晶粒也大;当共熔温度到了1350℃以后,由于接近NaOH 的沸点,NaOH 挥发严重,反应条件反而较差,矿相上表现为J 1消失,钙钛矿长大。

31112 共熔温度与残渣中TiO 2含量的关系

图4,5是不同温度下生成的共熔渣经浸取后残渣中TiO 2的重量百分含量与共熔温度的关系,由图4和图5可知,残渣中TiO 2含量随共熔渣共熔温度的提高有一个从高到低再增高的过程,共熔温度在1200~1300℃之间时

,残渣中TiO 2含量可降到较低水平。

图2 共熔渣急冷时的矿相结构

(试验条件:100g 渣+25g 分离剂)

图3 共熔渣缓冷时的矿相结构

(试验条件:100g 渣+25g 分离剂)

图4 残渣中TiO 2含量与共熔温度的关系(急冷时)图5 残渣中TiO 2含量与共熔温度的关系(缓冷时)

?73? 第4期 周志明等:高钛型高炉渣的渣钛分离试验

原因是分离剂与渣生成了可溶于水的化合物。在1150℃以前,分离剂与渣中钛生成的化合物较少,而在1200~1300℃之间时所生成的钛的化合物较多,当温度超过1300℃以后,所生成的钛的化合物又开始减少。

无论钠与钛形成何种形式的钠盐,都能溶于水,其主要的反应如下:

Na 2O ?T iO 2+n H 2O =2NaOH+T iO 2?(n -1)H 2O Na 2O ?2T iO 2+n H 2O =2NaOH+2T iO 2?(n -1)H 2O Na 2O ?3T iO 2+n H 2O =2NaOH+3T iO 2?(n -1)H 2O 312 分离剂加入量对渣钛分离的影响

图6,7是共熔温度1250℃时,不同分

离剂添加量与残渣中的TiO 2含量的关系。 从图6,7可知,①在相同浸取条件下,相同温度下生成的共熔渣缓冷的比急冷的在用水浸取后其残渣中的TiO 2含量要低,且残渣中TiO 2含量可降到10%以下。主要原因是,缓冷的共熔渣比急冷的共熔渣所生成的J 1晶粒相对要大,较易浸取;②随着分离剂加入量的增加,用水浸取后残渣中TiO 2的含量有一个快速降低的过程,以后逐渐减缓

图6 分离剂的加入量与残渣中TiO 2

含量的关系(急冷时

)

图7 分离剂的加入量与残渣中TiO 2

含量的关系(缓冷时)

这主要是由于在分离剂的加入量较小时,共熔反应事实上是渣过量的反应,J 1的生成量取决于分离剂的量,但随着分离剂加入量的增加,分离剂开始过量,J 1的量则主要取决于渣中TiO 2的含量。

从图4~7可知,分离剂的加入量以每加分离剂20~25g 为好。共熔反应的温度区域在1200~1300℃区间为佳。4 结语

(1)加入渣钛分离剂后,只要选择合适的

共熔温度,原高钛型高炉渣中钙钛矿的矿相就会消失,渣中矿相结构发生变化。

(2)用水对共熔渣进行浸取,残渣中TiO 2的含量都会降低。但对于缓冷的渣而

言,由于渣中J 1晶粒较急冷的大,因而用水浸取后,残渣中TiO 2含量比急冷的低。

(3)分离剂与炉渣的作用实际上就是酸

碱反应。NaOH 和炉渣的特性决定了反应的

最佳温度范围在1200~1300℃之间。

(4)分离剂NaOH 的添加量以每100g 渣中加入20~25g 为宜。

参 考 文 献

1 傅念新.卢 玲,隋智通,等.高钛型高炉渣中钙钛矿相的析出行为1钢铁研究学报,1998,10(3):701

2 隋智通,傅念新1基于“选择性析出”的冶金废渣增值新技术1中国稀土学报,1998,16(8):7321

3 徐楚韶,李祖树1高炉钛矿渣的综合利用(Ⅰ

)1钒钛,1993(5):4714 张向宇,等1实用化学手册1北京:国防工业出版社,19861147~1491

编辑 余文华

(收稿日期 1999-10-10)

?

83? 钢铁钒钛 1999年第20卷

#炉渣利用技术 炉渣利用工艺

炉渣利用技术炉渣利用工艺 1 用于流化床锅炉的链带式排渣控制冷却器 2 高炉水碎炉渣或其粒度调整物的防凝结剂及防凝结方法 3 高炉铁水渣铁分离装置 4 烟道灰、炉渣活化剂 5 高效利用工业炉熔渣显热的新一步法矿棉技术 6 一种电炉炼钢吹氧喷粉氧燃助熔及造泡沫渣工艺 7 钢包炉用脱氧造渣剂 8 用气、水反冲高炉水渣滤层的方法 9 旋风炉炉渣生产岩棉热衔接工艺及所采用的补热炉 10 用于液体炉渣脱铬和/或脱镍的方法 11 一种电渣炉控制系统 12 用锅炉废渣灰制水硬性凝固剂方法 13 粉煤灰炉渣砼小型空心砌块 14 炼钢电弧炉泡沫渣控制方法 15 危险废弃物及医疗垃圾处理用的溶渣焚烧炉及工艺方法 16 用于氧化处理炼钢厂炉渣的方法及所得到的LD渣 17 一种控制转炉炉底上涨溅渣的方法 18 一种用镍熔炼炉渣和钢渣的混合渣炼铁的方法 19 型煤炉正块缓漏卸双向分离排渣器 20 转炉出钢用挡渣锥 21 一种冶金炉风口、渣口表面强化的方法 22 用含钛高炉渣制备光催化材料的方法 23 一种以炉渣为基料的合成材料及其生产工艺 24 轻质隔声炉渣混凝土建筑板材 25 炉渣冷却机 26 利用沸腾炉渣制造泡沫型隔热防水保温材料 27 利用电厂炉渣生产水泥的方法 28 粒化高炉矿渣水泥砂浆 29 防御液态排渣炉析铁熔蚀的金属陶瓷涂层 30 转炉溅渣护炉方法 31 造气炉渣运用煅烧石灰的方法 32 一种石灰质碳化煤球(棒)造气炉渣的新用途 33 直流电弧电渣加热钢包炉及其控制方法 34 一种利用石灰质碳化煤球造气炉渣生产的路面砖及其方法 35 用于沸腾炉的层燃式灰渣燃烬冷却床 36 用浓盐酸高温高压处理锅炉灰渣浸取其中三氧化二铝的综合利用方法 37 稀土精矿渣电弧炉冶炼稀土中间合金 38 稀土精矿球团(或块)矿热炉制备稀土精矿渣和含铌磷铁 39 低温干馏、炉渣再燃、刮板传动式锅炉 40 用喷粉方法处理熔渣生产高价值炉渣制品 41 促进粒状炉渣脱水用的混合剂和使用方法

炉渣的的回收与再利用分析

炉渣的回收与综合利用分析 姓名:杜国震学号: 08L0101203 学院:理工学院专业:化学工程与工艺 班级:化工L082 指导教师:刘老师 2011--11--13

炉渣的的回收与再利用分析 摘要:许多炉渣都是完全燃烧的灰烬与不完全燃烧的煤块组成的混合物。它既不能用作燃料,也不能用作水泥的填料。造成环境的污染和浪费。选矿工艺将这部分分成可燃的炉渣与不可燃的炉渣,不论可燃与不可燃的都将能回收与再利用是我的文章要论述的内容。 关键字:炉渣回收再利用 1.炉渣的产生及现状。 工业生产中的炉渣一般不经过煤洗的原煤直接作燃料产生,也有经过洗过的灰分较高的中煤。这样除了造成严重的空气和粉尘污染外,大量的煤渣也造成了,环境的污染和煤矿资源的浪费,产生了固体废弃物。有来自中国矿业大学学报,报道每一百万吨燃烧,有超过二十万吨的炉渣,由于燃烧不完全煤渣中含有一定的可燃物质。如果不经过回收再利用而是当做废渣堆弃或是填充低地,就造成里环境的严重污染和资源的巨大浪费,因此回收与利用部分炉渣也就成了挖掘潜能措施,同时也成为了保护环境的有效手段。同时,也带来了一样的经济效益。可见回收与再次利用燃烧不完全的煤渣的意义与重要性。不单单是环境的要求也是保护资源的迫切要求。 就我国煤炭工业来说,由于国内的洗选能力与技术不足,不得不烧原煤的现状真是个遗憾。 2.炉渣的成分及用途 炉渣又称为熔渣。根据冶金过程的不同,炉渣可分为熔炼渣,精炼渣,混合渣。根据炉渣性质又分为碱性渣,酸性渣和中性渣。许多炉渣有重要的作用,如高炉渣可做水泥的原料,高磷渣可做肥料,含有钒,钛的炉渣可作为提取钒,钛的原料。还有些炉渣可以制炉渣水泥,炉渣砖,炉渣玻璃等。煤在锅炉燃烧室里的熔融物,由煤灰组成,可以作为砖,瓦的原料。 3.高炉渣的产生及回收与利用 高炉渣是冶炼生铁时从高炉中排除的废物,当炉温达到1400—1600时,炉料熔融,矿石中的脉石,焦炭中的煤灰和助溶剂和其他不能进入生铁中的杂质形成以硅酸盐,铝酸盐为主的浮

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用 摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。 关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析 1高炉渣处理工艺与综合利用 高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。 1.1高炉渣的化学成分 高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1 表 1 高炉渣的化学成分 高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。 1.2国内外高炉渣处理工艺概况 1.2.1 水淬粒化工艺 水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

含钛高炉渣的利用

专题 含钛高炉渣的利用 (西安建筑科技大学冶金工程学院,西安710055) 摘要:本文介绍了我国含钛高炉渣做了一个总体的介绍,并且从非提取钛与提取钛两个方面介绍了目前的研究对含钛高炉渣的利用方法,最后对含钛高炉渣的前景做了分析。 关键词:含钛高炉渣,成分,利用 1.含钛高炉渣的概述 含钛高炉渣是冶炼钒钛磁铁矿产生的高炉渣。含钛高炉渣一般由CaO、MgO、Si02、A1203和Ti02等组成,根据渣中TiO2:含量由低到高可以分为:低钛含钛高炉渣(Ti02<10%)、中钛含钛高炉渣(Ti0210%-15%)和高钛含钛高炉渣(渣中TiO2达24%左右)。含钛高炉渣经过富集形成一种含TiO2:较高的富钛料,TiO2含量一般大于90%。这种富钛料便于分离或提取金属钛。 国外高炉冶炼使用的钛铁矿石含钛量较低,一般含Ti02不超过3%~4%,其高炉渣中所含的TiO2一般都低于10%。因此,不需要特殊的加工处理,完全可按普通高炉渣加以利用。我国铁矿石资源多为伴生矿,尤其在攀枝花和承德等地冶炼钒钛矿时产生的钒钛矿高炉渣,每年排出几百万吨,其中有部分含钛5%以下的矿渣用做水泥掺合料,还有一些生产矿渣碎石以及膨胀矿渣珠。我国含钛高炉渣主要化学成分: 2.高钛高炉渣非提取钛方面的利用 2.1 用作建筑材料 普通的炉渣由于TiO2含量低,可以直接用于生产水泥,而高炉渣中TiO2 含量高,使它在这方面的应用变得困难。有研究表明,活化的高钛高炉渣可用于生产钛矿渣硅酸盐水泥。 含钛高炉渣在建筑方面的另一个重要应用是作为普通混凝土的骨料。含钛高炉渣分为重矿渣和水淬渣,重矿渣化学成分稳定,破碎后可用作普通混凝土的骨料,其性能满足使用要求。水淬渣的物理性能和力学性能接近天然砂,且比天然砂的强度高、棱角完整,可代替天然砂配制水泥砂浆用于建筑工程,将活化后的含钛高炉渣也可用作水泥掺和料。 2.2 用含钛高炉渣制备光催化材料。

炉渣处置与应用

垃圾焚烧发电炉渣处置与应用 ●垃圾焚烧灰渣的现状 目前,随着政府对生活垃圾处理减量化、无害化和资源化的加强管理,生活垃圾处理已经成为城市管理和公共服务的重要组成部分,根据中国国情和相关技术,生活垃圾焚烧处理无疑成为目前最好的垃圾处理方式。焚烧灰渣是城市垃圾焚烧过程中一种必然的副产物,如何处理好灰渣,是当前生活垃圾焚烧处理的一大问题。 垃圾焚烧产生的灰渣包括从焚烧炉的底灰(Bottom Ash,BA),由烟气净化产生的空气污染控制残渣(Air Pollution Control Residues,APCR)两种。主要是不可燃的无机物以及部分未燃尽的可燃有机物。根据垃圾组成的不同,灰渣的数量一般为垃圾焚烧前总重量的5%-20%。灰渣特别是飞灰中含有一定量的有害物质,若重金属未经处理直接排放,将会污染土壤和地下水,对环境造成危害。另一方面,由于灰渣中含有一定数量的铁、铜、锌、铬等重金属物质,有回收利用价值,故又可作为一种资源开发利用。因此,焚烧灰渣既有它的污染性,又有其资源特性。焚烧灰渣的处理是城市垃圾焚烧工艺的一个必不可少的组成部分。 ●炉渣 1.炉渣的组成 底灰(即炉渣)是灰渣的主要部分,呈黑褐色,大约占灰渣总质量的80%-90%。炉渣含水率10.5%~19.0%,热灼减率1.4%~3.5%,低热灼减率反映出其良好的焚烧效果。底灰是由熔渣、玻璃、陶瓷类物

质碎片、铁和其他金属、及其他一些不可燃物质,以及没有燃烧完全的有机物所组成的不均匀混合物。大颗粒炉渣(>20mm)以陶瓷/砖块和铁为主,两种物质的质量百分比随着粒径的减小而减小;小颗粒炉渣(<20mm)则主要为熔渣和玻璃其含量随着粒径的减小而增多,这主要是由于这些物质的物理性质和在炉排中移动时所受的撞击力不同而造成的。 因焚烧 1t生活垃圾约产生 200~250kg 炉渣,以日处理量为1200t的重庆同兴垃圾焚烧发电2厂为例,1年约产生8~11万t 左右的炉渣。 2.炉渣的分拣工艺 炉渣中铁的总含量在5%~8%,目前国内的炉渣分拣主要是分拣炉渣中的铁。 炉排中燃尽的炉渣掉落到除渣机中,通过水的降温,液压式除渣机将冷却后的炉渣沥干后送入皮带输送机,在皮带输送机的转换端头加装多级除铁器,利用磁铁将金属铁分拣出来,为进一步提高分拣效果,工厂中一般在炉渣输送过程中配置振动装置和破碎装置,加大分拣力度。 3.炉渣的资源化利用 3.1炉渣的性质 炉渣粒径分布主要集中在 2~ 50mm的范围内(占61.1%~77.2%),基本符合道路建材(骨料、级配碎石或级配砾石等)的级配要求。炉渣溶解盐量较低,仅为 0.8%~1.0%,因此炉渣处理处置时因溶解盐污染地下水的可能性较小。炉渣pH 缓冲能力较强,初始 pH 值(蒸馏水浸出,液固比为5:1)在11.5以上,能有效抑制重金属的浸出[2]。

攀枝花高钛型高炉渣综合利用现状

攀枝花高钛型高炉渣综合利用现状 攀西地区蕴藏着极其丰富的钒钛磁铁矿,其中含有钛、铁、钒、铬等10多种重要战略资源。攀枝花长期以来致力于其有价元素的回收利用,由于钒钛磁铁矿的独特性,现有技术和生产工艺只能回收利用其中的铁、钒、钛资源,而钛资源的利用率只有近15%,原矿中大约50%的钛进入了铁精矿,在随后的高炉冶炼过程中流入高炉渣中,形成了攀枝花特有的高钛型高炉渣。攀枝花市于2001年成立了专业处置高钛型高炉渣的攀枝花市环业冶金渣开发有限责任公司。至今,产业化开发利用仅限于低附加值的建材产品,而高附加值的提钛综合开发由于技术、经济等原因,尚未实现产业化。 一、攀枝花高钛型高炉渣是放错位置的资源 (一)攀枝花高钛型高炉渣资源特性 攀枝花高钛型高炉渣化学成分复杂。主要含有二氧化钛22~25%,二氧化硅22~26%,三氧化二铝16~19%,三氧化二铁0.22~0.44%,氧化钙22~29%和氧化镁7~9%。影响高钛型高炉渣不能综合利用渣中钛资源的主要原因有两个:一是渣中的钛分散在钙钛矿、富钛透辉石、攀钛透辉石、尖晶石和碳氮化钛等多种含钛矿物相中,嵌布关系复杂,其中50%的钛集中在钙钛矿中;二是分散在高炉渣中的含钛矿物相晶粒非常细小,平均只有10微米左右,采用常规选矿技术分离回收钛非常困难。 (二)高钛型高炉渣开发利用经济效益巨大 高炉渣因存量大、有益元素丰富、含钛量高等特点而极具开发利用价值。攀枝花高炉渣已累计堆积了约5000万吨,目前每年仍以近400多万吨的速度递增。按5000万吨高炉渣存量计算,其中积累的二氧化钛就高达1000万吨左右,而且每年还有约80多万吨的新增量。如果能有效提取高炉渣中二氧化钛替代日益减少的金红石钛资源,将为我国钛工业的发展开辟新的原料来源。 高炉渣中还含有大量镓、铬、锰、钪、铝、铁等有价元素,这是一笔可观的二次资源。 (三)高钛型高炉渣开发利用环境效益良好 长期堆放、存量巨大的高炉渣已经带来了严重的环境问题。攀钢已经在东渣场及西渣场堆放了约4000多万吨高炉渣,1993年投入使用的巴关河渣场,1996年起便成了攀钢排弃冶金渣的唯一场所,造成了环境污染,影响了长江上游的生态环境。 因此,攀枝花高钛型高炉渣综合开发利用对于减少我市冶金废渣带来的环境污染,实现人与资源、人与环境和谐共处,促进社会经济的可持续发展具有重大意义和深远影响。 二、攀枝花高钛型高炉渣综合利用研究及产业化情况 从上世纪七十年代开始,围绕高炉渣提钛利用和非提钛利用,先后开展了大量的研究和实践探索,取得了许多成果,部分已实现产业化。 (一)高钛型高炉渣提钛开发利用研究 主要进行了三大方面的研究:一是复合提取高炉渣中的钛资源;二是从渣中提取硫酸法钛白粉原料;三是从渣中提取氯化法钛白粉和海绵钛原料。具体研究情况为: 1、高温碳化—低温氯化制取四氯化钛—残渣制水泥工艺研究。“七五”、“八五”期间,攀研院进行了高钛型高炉渣电炉在1300℃~1600℃的范围内熔融还原碳化制取碳化渣,在282℃~714℃的范围内氯化制取四氯化钛,以及氯化残渣制水泥的实验室研究、扩大试验研究和高温碳化的工业性试验研究。该工艺流程短、分离效率高,可兼顾提钛与渣的综合利用,有产业化前景。 2、用硫酸法提取二氧化钛及氧化钪研究。“八五”期间,攀研院、湖南稀土金属材料研究所、中南工业大学、冶金建设研究院对从攀钢高炉渣中提钛、钪等元素进行了联合攻关,完成实验室小试后进行了扩大试验。其主要方法是用硫酸浸取高炉渣,经过水解、萃取、沉

《铜冶炼炉渣回收铜》国家标准

《铜冶炼炉渣回收铜》国家标准 编制说明 铜陵有色金属集团控股有限公司 2010年8月

《铜冶炼炉渣回收铜》国家标准编制说明 1、任务来源 根据中色协综字[2010]015号文件,关于下达2009年第二批有色金属国家、行业标准制(修)订项目计划通知,《铜冶炼炉渣回收铜》由铜陵有色金属集团控股有限公司负责起草,参加起草单位大冶有色金属集团控股有限公司。负责起草单位接到通知后立即成立标准编制小组。经过半年的相关准备,制定出本讨论稿。 2、铜冶炼炉渣回收铜产品简介 目前国内铜冶炼所采用的主要是熔炼和吹炼二道炼铜工艺,以往第一道工艺所产生的熔炼渣由于含铜量较低基本上作为废料丢弃,也有部分作为建筑行业添加剂销售。第二道工艺所产生的吹炼渣由于含铜量相对较高,有的厂家返回上道工序使用,有的采用选矿富集再利用。 由于近年来铜价较高,不少厂家对含铜量较低熔炼渣在投入和产出比进行了测算;同时,随着选矿回收技术的提高,各冶炼厂纷纷上马选矿厂回收熔炼渣中铜金属。 无论是熔炼渣还是吹炼渣所回收的铜,与井下和地表开采的铜矿物所选的铜精矿相比除含硫品位较低和粒度较细外,其性质基本相同,各冶炼厂都是把该产品与铜精矿配料使用。 3、标准编制前期工作 在编制标准期间,首先,进行了相关信息和资料的搜集。标准编制小组于今年6月至7月,先后前往云南铜业公司、大冶有色金属控

股公司、江西铜业公司、金川有色金属公司、中条山有色金属集团公司、祥光铜业公司、铜陵有色稀贵金属公司、铜陵有色金口岭矿业公司、铜陵有色天马山矿业公司进行实地考察调研,收集了大量的相关数据和资料,并取样进行了分析。 通过调研,基本掌握国内铜冶炼炉渣回收铜的生产和需求厂家的情况,覆盖面达到90%以上,应当说具有广泛的代表性。具体收集和分析的相关数据见附表。 4、标准编制原则 4.1本标准格式按照GB/T1.1-2009最新版本要求编写。 4.2本标准参考YS/T 318-2007《铜精矿》标准进行编写。 4.3本标准编制遵循“先进性、实用性、统一性、规范性”的原则,使标准制定具有可操作性。 4.4本标准充分考虑了使用单位的意见和建议。 5、标准中主要内容确定 5.1关于标准名称 标准的名称有三个可采用:“铜冶炼炉渣回收铜”、“铜冶炼炉渣回收铜精矿”、“铜冶炼炉渣渣精矿”,我们建议采用“铜冶炼炉渣回收铜”作为该产品的标准名称。该产品名称确定是为了区别于井下或地表开采铜矿物所选的铜精矿,来源于铜冶炼中。 5.2关于产品分类 根据调研所收集和取样分析的资料,按照精矿含铜品位高低不同确定为三个品级,三级品含铜品位不小于15%,一级品含铜品位不小

炉渣废物处理与应用

炉渣废物处理与应用 关键词:炉渣城市生活垃圾炉渣的处理与综合利用 摘要:焚烧法处理城市生活垃圾的特点是减量化效果显著,体积可减少90%,但仍有20%~30%的质量留在了焚烧灰渣中。焚烧灰渣主要包括飞灰和炉渣,飞灰因其可浸出重金属含量高,且含有二噁英等有机污染物,属于危险废物。炉渣是灰渣的主要部分,占80%左右,在我国是属于没有毒性的一般废物,可直接进行填埋或作建筑材料加以利用。随着垃圾焚烧工艺在我国应用越来越广泛和对污染控制的愈加严格,焚烧炉渣内重金属的活性及在资源化利用过程中的环境安全性应引起足够重视。近年来,我国在垃圾焚烧处理方面已积累了一定的经验,对焚烧工艺和焚烧过程产生的二次污染物也做了大量的研究工作. 正文:炉渣与飞灰这两种焚烧灰渣,不仅在数量上差别很大,而且性质也有显著差异,炉渣中可浸出的重金属的量明显低于飞灰,且在标准范围之内。因此,城市生活垃圾焚烧炉渣不在欧盟委员会规定的有害废物之列,而城市生活垃圾焚烧飞灰被欧盟委员会列为19.01.03号和19.01.07号废物(R.bI么efizetal.,2000)。日本1992年修订《废物处置和公共清扫法》规定新建的垃圾焚烧炉须分别收集飞灰和炉渣(KyUng一JinHong,加oo)。生活垃圾焚烧飞灰在比利时也被认为是有害物质(.P、傲nHeerk,2000)。因此,应该将炉渣从飞灰中分离出来以便于利用炉渣和处理飞灰;将余热回收灰和控制空气污染残余物一起来管理。目前,英国、德国、法国、荷兰、丹麦、

加拿大以及日本等国大部分的生活垃圾焚烧厂,其炉渣和飞灰都是分别收集、处理和处置的:而在美国,炉渣和飞灰是混合收集、处理和处置的,因此被称作混合灰渣。我国《生活垃圾焚烧污染控制标准》(GB18485一2001)明确规定“焚烧炉渣与除尘设备收集的焚烧飞灰应分别收集、贮存和运输,焚烧炉渣按一般固体物处理,焚烧飞灰应按危险废物处理”。生活垃圾焚烧炉渣的处理是一个重要的环境生态问题。我国,炉渣属于一般废物,可直接填埋或作建材利用。但是,由于焚烧的垃圾组成复杂,炉渣中可能含有多种重金属、无机盐类物质,如铅、锡、铬、锌、铜、汞、镍、硒、砷等,在炉渣填埋或利用过程中有害成分会浸出而污染环境(0.Hjelm,ar1996)。因为包括土壤酸性、酸雨、充满COZ的水等都会把不可溶的重金属氢氧化物转化成为易溶的碳酸盐,甚至是含水碳酸盐。Dugenest等人(1999)的研究发现焚烧炉渣的TCLP浸出毒性测试中Pb、Cd超出有害废弃物限定标准。Pb、Zn、Cu的浸出成为炉渣资源化利用的潜在威胁(J.M.Chimenosetal,2000)。欧盟标准委员会第12920条法规规定城市生活垃圾焚烧灰渣如果不进行前处理,将不能填埋或资源化利用(H.A.确nderSlootetal.,2001)。欧美等发达国家早己开始采用卫生填埋方式来处理焚烧炉渣,以避免其中含有的可溶有害成分进入土壤。然而,由于卫生填埋的维护费用极高,这样进而增加了整个焚烧过程的费用,因此这种方法在我国现阶段是不可行的。炉渣引起的环境污染问题是其不能直接填埋的主要原因。另外,填埋场地急剧减少的客观现实也限制了焚烧炉渣的填埋处理。焚烧炉渣成分复杂,且含

锅炉炉渣物理热能及回收

造纸企业锅炉炉渣物理热能的回收 循环流化床锅炉,锅炉燃烧后的锅炉炉渣含有大量的物理热能(一般在800~950℃),其物理热损失数值的大小直接关系到锅炉的经济运行性。下面就如何回收这部分高温炉渣的物理热能作一论述。 1 锅炉运行现场分析 锅炉在燃烧运行中排放的高温炉渣(800~950℃)(俗称排放红渣),以底渣形式直接排放,在渣场自然冷却或用水冲洗到室温状态,造成物理热能的损失,同时极大恶化了锅炉运行现场的生产环境;高温炉渣中残留的S和N仍可在炉外自燃释放出大量SO2和NOX,造成大气环境二次污染。 另一方面,由于锅炉采用底渣直接排放形式,直接影响到锅炉料床内料层厚度和炉膛床压的稳定性,当任何一个条件稳定性较差时,会出现大块炉渣沉积现象(俗称炉膛结焦),致使排渣不畅,严重时可堵塞排渣管道,造成锅炉停炉检修。因此防止和避免炉膛结焦,必须保持炉膛内燃煤具有良好的流化条件,即保证锅炉内料层厚度和炉膛床压的稳定。锅炉运行现场较常采用的方法是对放渣时间和放渣数量进行人工控制,这一方法存在许多不确定因素: (1)采用人工控制,要求有多工种人员配合,对工人操作技能要求较高;实际在运行现场,较多工人是以工作经验为基础去进行控制的。工人操作技能的高低直接影响到控制精度的要求。 (2)采用人工控制排渣,必然造成锅炉内料层厚度和炉膛床压的不稳定,影响锅炉的稳定运行,降低锅炉的运行效率。 (3)许多燃煤在人工排渣过程中不能在炉膛内很好地流化燃烧,被以底渣方式排到炉外,发生炉外二次燃烧,产生环境污染,浪费燃煤。 (4)由于炉渣为高温流体,排放过程会产生热水蒸气,同时炉渣内积聚了大量灰分,受热水蒸气影响向四周扩散,恶化了工作现场环境,影响工人身体健康。 (5)由于炉渣的高温流体性,工人现场人工排渣存在较多安全隐患,同时工人的劳动强度大,时常会发生烧伤、烫伤等安全事故,特别在夏天排渣时周围温度可达45℃以上。 2 高温炉渣物理热能回收 该技术采用循环水逆向热交换方式对高温炉渣的物理热能进行回收利用。其原理为高温炉渣在低温循环水作用下,热量被循环水吸收加热形成高温循环水,高温循环水被回收到锅炉除氧器经除氧后进入锅炉,达到热能的循环再利用。该技术具有如下特点: (1)有效降低对锅炉产生同一单位体积蒸汽所需燃煤量,年可节约燃煤成本几十万元以上。

炉渣废物处理与应用

炉渣废物处理与应用 关键词: 炉渣xx生活垃圾炉渣的处理与综合利用 摘要: 焚烧法处理城市生活垃圾的特点是减量化效果显著,体积可减少90%,但仍有20%~30%的质量留在了焚烧灰渣中。焚烧灰渣主要包括飞灰和炉渣,飞灰因其可浸出重金属含量高,且含有二噁英等有机污染物,属于危险废物。炉渣是灰渣的主要部分,占80%左右,在我国是属于没有毒性的一般废物,可直接进行填埋或作建筑材料加以利用。随着垃圾焚烧工艺在我国应用越来越广泛和对污染控制的愈加严格,焚烧炉渣内重金属的活性及在资源化利用过程中的环境安全性应引起足够重视。近年来,我国在垃圾焚烧处理方面已积累了一定的经验,对焚烧工艺和焚烧过程产生的二次污染物也做了大量的研究工作. 正文: 炉渣与飞灰这两种焚烧灰渣,不仅在数量上差别很大,而且性质也有显著差异,炉渣中可浸出的重金属的量明显低于飞灰,且在标准范围之内。因此,城市生活垃圾焚烧炉渣不在欧盟委员会规定的有害废物之列,而城市生活垃圾焚烧飞灰被欧盟委员会列为 19.01.03号和 19.01.07号废物(R.bI么efizetal.,2000)。日本1992年修订《废物处置和公共清扫法》规定新建的垃圾焚烧炉须分别收集飞灰和炉渣(KyUng一JinHong,加oo)。生活垃圾焚烧飞灰在比利时也被认为是有害物质(.P、傲nHeerk,2000)。因此,应该将炉渣从飞灰中分离出来以便于利用炉渣和处理飞灰;将余热回收灰和控制空气污染残余物一起来管理。目前,英国、德国、法国、荷兰、丹麦、加拿大以及日本等国大部分的生活垃圾焚烧厂,其炉渣和飞灰都是分别收集、处理和处置的: 而在美国,炉渣和飞灰是混合收集、处理和处置的,因此被称作混合灰渣。我国《生活垃圾焚烧污染控制标准》(GB18485一2001)明确规定“焚烧炉渣

相关文档