文档库 最新最全的文档下载
当前位置:文档库 › 第11讲容斥原理

第11讲容斥原理

第11讲容斥原理
第11讲容斥原理

第11讲容斥原理

知识要点:

一、两量重叠问题

在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个

数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的

元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B

=+-(其中符号

“”

读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”

的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,

B表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影面积.图示如下:A

表示小圆部分,B 表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影

面积.

A B

、的并集A B的元素的个数,可分以下两

步进行:第一步:分别计算集合A B

、的元素个数,然后加起来,即先求A B

+(意思是把A B

的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,

即减去C A B

=(意思是“排除”了重复计算的元素个数).

二、三量重叠问题

A类、B 类与C类元素个数的总和A

=类元素的个数B

+类元素个数C

+类元素个数-既

是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个

数+同时是A类、B类、C类的元素个数.用符号表示为:

A B C A B C A B B C A C

=++---+.图示如下:

模块一、两量重叠问题

1.实验小学四年级二班,参加语文兴趣小组的有28

人,参加数学

兴趣小组的有29人,有12人两个小组都参加.这个班有多少人

参加了语文或数学兴趣小组?

2.芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢

琴和只学画画的分别有多少人?

3.某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都

参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?

4.四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两

项比赛都参加了.一班有多少人两项比赛都没有参加?

5.实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都

能表演的有7人.这个表演队共有多少人能登台表演歌舞?

6.某次英语考试由两部分组成,结果全班有12人得满分,第

一部分有25人做对,第二部分有19人有错,问两部分都有

错的有多少人?

7.对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,

两项都不会的有9人.这个班一共有多少人?

1.先包含——A B

+

重叠部分A B计算了2次,多加了1次;

2.再排除——A B A B

+-

把多加了1次的重叠部分A B减去.

图中小圆表示A的元素的个数,中圆表示B的元素的个数,

大圆表示C的元素的个数.

1.先包含:A B C

++

重叠部分A B、B C、C A重叠了2次,多加了1次.

2.再排除:A B C A B B C A C

++---

重叠部分A B C重叠了3次,但是在进行A B C

++-

A B B C A C

--计算时都被减掉了.

3.再包含:A B C A B B C A C A B C

++---+.

两部

分全

对的

两部分都有错的

只做

对第

二部

分的

只做

对第

一部

分的

两项都不会的

B

A

8. 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人

两项比赛都参加了,这个班参加棋类比赛的共有多少人?

9. 在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既

没采樱桃又没采杏的有6人,问:只采了杏的有多少人?

10. 甲、乙、丙三个小组学雷锋,为学校擦玻璃,其中68块玻璃不是甲组擦的,52块玻

璃不是乙组擦的,且甲组与乙组一共擦了60块玻璃.那么,甲、乙、丙三个小组各擦了多少块玻璃?

11. 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年

级的,五、六年级共展出25幅画,其他年级的画共有多少幅?

12. 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?

13. 科技活动小组有55人.在一次制作飞机模型和制作舰艇模型的定时科技活动比赛中,

老师到时清点发现:制作好一架飞机模型的同学有40人,制作好一艘舰艇的同学有32人.每个同学都至少完成了一项制作.问两项制作都完成的同学有多少人?

14. 有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问

既懂英语又懂俄语的有多少人?

15. 一次数学测验,甲答错题目总数的14

,乙答错3道题,两人都答错的题目是题目总数

的16

.求甲、乙都答对的题目数.

模块二、三量重叠问题

16. 某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球

又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?

17. 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中

有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?

18. 四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参

加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.

19. 五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然

兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.(6级)

两项比赛都参加的只参

加军棋比赛的

只参加象棋比赛的B A

丙乙甲B A 两门都不在

95分以上的

数学

95分

以上

的语文95

分以上

两门95分

以上的A

B

20.光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛

的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?

21.新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳

舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________人.

22.五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人

参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的

3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人

数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,

求参加朗诵小组的人数.

23.六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育

的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?

24.在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了

汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:⑴三种都带了的有几人?⑵只带了一种的有几个?

25.盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、

雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.26.全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目

没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,⑴数学成绩优秀的有几个学生?⑵有几个人既会游泳,又会滑冰?

27.五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,

若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.

28.五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参

加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?

29.在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比

只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?

①有人摘了山莓;

②有人同时摘了三种水果;

③有人只摘了山莓;

④有人摘了李子和草莓,而没有摘山莓;

⑤有人只摘了草莓.

30.某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、

跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?

李子

草莓

山莓

F

G

E D

C

B

A

科学51人

文艺56人

17

15

4

体育55人

x

模块三、图形中的重叠问题

31. 长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根

铁条有多长?

32. 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这

根铁条有多长?

33. 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?

34. 如图,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是

一个边长为4厘米的正方形,求这个组合图形的面积.

35. 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠

的部分是一个边长4厘米的正方形,求这个组合图形的面积.

36. 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是

10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?

37. 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影

部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?

38. 如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在

一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、

B 、

C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?

模块四、容斥原理在数论问题中的应用

39. 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?

40. 在自然数1100~中,能被3或5中任一个整除的数有多少个?

41. 在前100个自然数中,能被2或3整除的数有多少个?

42. 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

43. 求在1至100的自然数中能被3或7整除的数的个数.

44. 以105为分母的最简真分数共有多少个?它们的和为多少? 45. 分母是385的最简真分数有多少个?并求这些真分数的和.

46. 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有 个.

47. 在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?

48. 50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次

报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名

?

图3

2厘米4

图3

C B A

10

49.有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,

2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?

50.写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次

开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?

51.在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖

品的规则如下:那么游艺会为该项活动准备的奖品铅笔共有多少支?

(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;

(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.

52.在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分

成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成________段.

53.一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔

3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.

54.一根1.8米长的木棍,从左端开始每隔2厘米画一个刻度,涂完后再从左端开始每隔3

厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍?

模块五、容斥原理中的最值问题

55.将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域

中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?56.如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成

红色,那么在这个五角星上红色点最少有多少个?

57.某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,

这个班至少有多少学生这三项运动都会?

58.某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛

的有20人,每人最多参加两科,那么参加两科的最多有人.

59.60人中有2

3

的人会打乒乓球,3

4

的人会打羽毛球,4

5

的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?

60.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签

名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?

61.甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,

按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个

?

62.在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,

乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?恰好被1个人浇过的花最多有多少盆?

63.甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,

那么3人都浇过的花最少有多少盆

?

第31讲容斥原理

第31讲容斥原理 例题与方法 例1 在1~100的自然数中,不能被3也不能被5整除的数有多少个? 例2 某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人? 例3 100名学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂两种外语的有多少人? 例4 在1~143这143个自然数中,与143互质的自然数共有多少个? 例5 某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、19人、20人。语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。这个班最多能有多少人? 思考与练习 1.某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。问:两样都不爱好的有多少人? 2.分母是105的最简真分数共有多少个? 3.一个家电维修站有80%工人精通修彩电,有70%的人精通修空调,10%的人两项不熟悉。问:两项都精通的人占白分之几? 4.在1~100的自然数中,既不能被5整除也不能被9整除的数的和是多少? 5.在1~200的自然数中,能被2整除,或能被3整除,或能被5整除的数共有多少个? 6.在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人,最多有多少人? 7.64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。三种杂志都订的有多少人? 8.有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中既懂英语懂俄语的有多少人?

第二十讲 容斥原理讲解学习

第二十讲容斥原理

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题]

[例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈: 其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但: 30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

第八讲-组合数学

第八讲 组合数学 组合数学是中学数学竞赛的“重头戏”,具有形式多样,内容广泛的特点.本讲主要围绕组合计数,组合恒等式及组合最值展开 例1.圆周上有800个点,依顺时针方向标号为1,2,…,800它们将圆周分成800个间隙.今选定某一点染成红色,然后按如下规则,逐次染红其余的一些点:若第k 号点染成了红色,则可依顺时针方向转过k 个间隙,将所到达的点染成红色,试求圆周上最多可以得到多少个红点? 解:易见,第k 号点能被染红的充要条件是 ?j ∈N *?{0},使得a 0?2j ≡k (mod800),1≤k ≤800 ① 这里a 0是最初染的点的号码,为求最大值,不妨令a 0=1.即2j ≡k (mod25×52). 当j=0,1,2,3,4时,k 分别为1,2,4,8,16,又由于2模25的阶20)2(25=δ,因此,当j ≥5时 2j+20-2j =2j (220-1)≡0(mod 800), 而对?k<20,k ∈N *,及j ≥5,j ∈N *,由于25+(2k -1),所以 2j+k -2j =2j (2k -1)不为800的倍数. 所以,共存在5+20=25个k ,满足①式。 注:本题解法不止一种,但利用些同余理论,可使解法简洁许多. 例2.集合X 的覆盖是指X 的一族互不相同的非空子集A 1、A 2、…、A k ,它们的并集A 1∪A 2∪…∪A k =X ,现有集合X={1,2,…,n},若不考虑A 1, A 2,…, A k 的顺序,试求X 的覆盖有多少个? 解:首先,X 的非空子集共有2n -1个,它们共组成了n 2 1 2--1个非空子集族.其次, 这些子集族中,不合某一元素i 的非空子集组成的非空子集族有( ) n 121 21---个;不含两 个元素的子集组成的族有( ) n 2 2 1 21---个;依次类推,则由容斥原理,X 的覆盖共有 ()() --+--------)12 ()12 ()12 (1 22 1 21 1 221n n n n n =())12()1(1 2 1 ---=-∑n n j n j j 个. 注:有些组合计数问题直接计数较难,但从反面考虑简洁明了.

初一数学竞赛系列讲座容斥原理

初一数学竞赛系列讲座 容斥原理 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

初一数学竞赛系列讲座(15) 容斥原理 一、 知识要点 1、容斥原理 在计数时,常常遇到这样的情况,作合并运算时会把重复的部分多算,需要减去;作排除运算时会把重复部分多减,需要加上,这就是容斥原理。它的基本形式是: 记A 、B 是两个集合,属于集合A 的东西有A 个,属于集合B 的东西有B 个,既属于集合A 又属于集合B 的东西记为B A ,有B A 个;属于集合A 或属于集合B 的东西记为B A ,有B A 个,则有:B A =A +B -B A 容斥原理可以用一个直观的图形来解释。 如图, 左圆表示集合A ,右圆表示集合B ,两圆的公共部分表示B A ,两圆合起来的部分表示B A , 由图可知:B A =A +B -B A 容斥原理又被称作包含排除原理或逐步淘汰原则。 二、 例题精讲 例1 在1到200的整数中,既不能被2整除,又不能被3整除的整数有多少个 分析:根据容斥原理,应是200减去能被2整除的整数个数,减去能被3整除的整数个数,还要加上既能被2整除又能被3整除,即能被6整除的整数个数。 解:在1到200的整数中,能被2整除的整数个数为:2?1,2?2,…,2?100,共100个; 在1到200的整数中,能被3整除的整数个数为:3?1,3?2,…,3?66,共66个; 在1到200的整数中,既能被2整除又能被3整除,即能被6整除的整数个数为: 6?1, 6?2,…,6?33,共33个; 所以,在1到200的整数中,既不能被2整除,又不能被3整除的整数个数为:

升第八讲容斥原理之重叠问题

第八讲:容斥原理之重叠问题 导入 文氏图■■■■■■■■■■■■■■■ 文氏图,也叫维恩图”是由英国著名数学家Venn发明的. 维恩(公元1834 年8月4日「公元1923 年4月4日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.■他作出一系列 ? 简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原 理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz )已系统地运用过这类逻辑图,但今天这种逻辑图仍称作维恩图”另外, 维 恩在概率论和逻辑学方面也有很大贡献,他的著作一一《机会逻辑》和《符号逻辑》,在19 世纪末20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能一一制作机器.他曾制作过一部板球发球机, 当澳洲板球队在1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有7个人爱喝茶,10个人爱喝咖啡,那能不能就说办公室里有17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱 喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算2 次,计算人数的时候要把这一部分减去才行. 比如,如果有3个人既爱喝茶又爱喝咖啡,那总的人数就应该是7 + 10 - 3 = 14 人.

第十讲 容斥原理小学五年级奥数

點算的奧秘:容斥原理基本公式 「容斥原理」(Principle of Inclusion and Exclusion)(亦作「排容原理」)是「點算組合學」中的一條重要原理。但凡略為複雜、包含多種限制條件的點算問題,都要用到這條原理。現在首先從一個點算問題說起。 例題1:設某班每名學生都要選修至少一種外語,其中選修英語的學生人數為25,選修法語的學生人數為18,選修德語的學生人數為20,同時選修英語和法語的學生人數為8,同時選修英語和德語的學生人數為13 ,同時選修法語和德語的學生人數為6,而同時選修上述三種外語的學生人數則為3,問該班共有多少名學生? 答1:我們可以把上述問題表達為下圖: 其中紅色、綠色和藍色圓圈分別代表選修英語、法語和德語的學生。根據三個圓圈之間的交叉關係,可把上圖分為七個區域,分別標以A至G七個字母。如果我們用這七個字母分別代表各字母所在區域的學生人數,那麼根據題意,我們有以下七條等式:(1) A+D+E+G = 25;(2) B+D+F+G = 18;(3) C+E+F+G = 20;(4) D+G = 8; (5) E+G = 13;(6) F+G = 6;(7) G = 3。現在我們要求的是A+B+C+D+E+F+G。如何利用以上資料求得答案? 把頭三條等式加起來,我們得到A+B+C+2D+2E+2F+3G = 63。可是這結果包含了多餘的D、E、F和G,必須設法把多餘的部分減去。由於等式(4)-(6)各有一個D、E和F,若從上述結果減去這三條等式,便可以把多餘的D、E和 F減去,得A+B+C+D+E+F = 36。可是這麼一來,本來重覆重現的G卻變被完全減去了,所以最後還得把等式(7)加上去,得最終結果為A+B+C+D+E+F+G = 39,即該班共有39名學生。□ 在以上例題中,給定的資料是三個集合的元素個數以及這些集合之間的交集的元素個數。在該題的解答中,我們交替加上及減去這些給定的資料。如果我們用 S 1、S 2 和S 3 分別代表選修英語、法語和德語學生的集合,那麼我們要求的答案就 是|S 1∪ S 2 ∪ S 3 |,而該題的解答則可以重新表達為

4升5-8第八讲:容斥原理之重叠问题

第八讲:容斥原理之重叠问题 一、导入 文氏图 文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的. 维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员. 维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前, 莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作——《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉. 除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次. 什么是容斥原理? 这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少, 比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠. 比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行. 比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 ? 3 = 14 人.

第二十讲容斥基本知识

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A 类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题] [例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈:

其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人? 2、六年级共有96人,两种刊物每人至少订其中一种,有2 3的人订《少年报》,有1 2 的 人订《数学报》,两种刊物都订的有多少人? 3、森林中住着很多动物,据说狮子大王派仙鹤去统计鸟的种数,蝙蝠跑去说:“我有翅膀,我算鸟类。”仙鹤把蝙蝠统计进去了,结果得出森林中共有80种鸟类,狮子大王又派大象去统计兽类的种数,蝙蝠又跑去说:“我没有羽毛,我应该算兽类。”大家又把蝙蝠算为兽类,统计出森林中共有70种兽类。最后狮子大王问:森林中共有鸟类和兽类多少种?狐狸军师听了仙鹤和大象的统计结果,向狮子大王报告:“森林中鸟类与兽类共计150种。”

第6讲 容斥原理

第六讲 容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A |表示有限集A 的元素的个数。在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成 |A ∪B |=|A |+|B |–|A ∩B |。 我们称这一公式为包含与排除原理,简称为容斥原理。 包含与排除原理|告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素个数,可以分一下两步进行: 第一步:分别计算集合A 、B 的元素个数,然后加起来。即先求|A |+|B |(意思是把A 、B 的一切元素都“包含”进来,加在一起); 第二步“从上面的和中减去交集的元素的个数,即减去|A ∩B |(意思是“排除”了重复计算的元素的个数)。 例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少? 解:设I ={1、2、3、…、19、20},A ={I 中2的倍数},B ={I 中3的倍数}。 显然题目中要求计算并集A ∪B 的元素个数,即求|A ∪B |。 我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。 A ∩ B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3, 根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。 此题可以直观地用图表示如下: 例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人? 解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生}, 由题意知|A |=25,|B |=21。 A ∪ B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。 A ∩B ={数学、语文都在90分以上的学生}, 由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |, 所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。 答:两科都在90分以上的有8人。 画图分析一下: 15 9320 18 16141210 8 642B A

容斥原理讲解

容斥原理 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重 复,这种计数的方法称为容斥原理。 例、一次期末考试,某班有15人数学得满分,有12人 语文得满分,并且有4人语、数都是满分,那么这个班 至少有一门得满分的同学有多少人? 结论:(公式一) 如果被计数的事物有A、B两类,那么: (A类和B类)事物个数= A个数+ B个数—既是A类又是B类的事物个数。 A∪B=A+B-A∩B 例题1、某班学生每人家里至少有空调和 电脑两种电器中的一种,已知家中有空调 的有41人,有电脑的有34人,二者都有 的有27人,这个班有学生多少人? 例题2、一个班有45名学生,订阅《小学生数学报》 的有15人,订阅《今日少年报》的有10人, 两种报纸都订阅的有6人。 (1)订阅报纸的总人数是多少? (2)两种报纸都没订阅的有多少人? 例题3、在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 例、某校5(1)班,每人在暑假里都参加体育训练队, 其中参加足球队的有25人,参加排球队的有22人, 参加游泳队的有34人,足球、排球都参加的有12人, 足球、游泳都参加的有18人,排球、游泳都参加 的有14人,三项都参加的有8人,这个班有多少人?

那么根据题意,我们有以下七条等式: (1)A+D+E+G =25; (2) B+D+F+G =34; (3) C+E+F+G = 22; (4) D+G =18; (5) E+G =12; (6) F+G =14; (7) G = 8。 现在我们要求的是A+B+C+D+E+F+G=? 把头三条等式加起来,我们得到: A+B+C+2D+2E+2F+3G = 81 结果包含了多余的D、E、F和G,必须设法把多余的部分减去。 由于等式(4) (5) (6)各有一个D、E和F, 减去这三条等式,便可以把多余的D、E和 F减去, 得A+B+C+D+E+F = 37。可是这么一来, 本来重复重现的G却变被完全减去了,所以最后还得把等式(7)加上去, 得最终结果为A+B+C+D+E+F+G = 45,即该班共有45名学生。 结论(公式二) 如果被计数的事物有A、B、C三类,那么,A类和B类和C类事物个数= A类事物个数+ B类事物个数+C类事物个数—既是A类又是B类的事物个数—既是A类又是C类的事物个数—既是B类又是C类的事物个数+既是A类又是B类而且是C类的事物个数。 A∪B∪C=A+B+C-A∩B-A∩C-B∩C+ A∩ B∩C 例题4、设某班每名学生都要选修至少一种外语,其中选修英语的学生人数为25,选修法语的学生人数为18,选修德语的学生人数为20,同时选修英语和法语的学生人数为8,同时选修英语和德语的学生人数为13 ,同时选修法语和德语的学生人数为6,而同时选修上述三种外语的学生人数则为3,问该班共有多少名学生? 例题5、在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水, 4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店?

第八讲容斥原理

第八讲容斥原理 在一些计数问题中,经常遇到有关集合元素个数的计算。我们用|A|表示有限集A的元素个数。在并集的讨论中,已经知道,求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成 |A∪B|=|A|+|B|-|A∩B| 我们称这一公式为包含与排除原理,简称容斥原理。 包含与排除原理告诉我们,要计算两个集合A、B的并集A∪B的元素的个数,可分以下两步进行: 第一步分别计算集合A、B的元素个数,然后加起来,即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起); 第二步从上面的和中减去交集的元素个数,即减去|A∩B|(意思是“排除”了重复计算的元素个数)。 例1 求不超过20的正整数中是2的数倍或3的倍数的数共有多少个。分析与解:设I={1,2,3,…,19,20},A={I中2的倍数},B={I 中3的倍数}。 显然,题目要求计算并集|A∪B|的元素个数,即求|A∪B|。 易知, A={2,4,6,…,18,20}, 共有10个元素,即|A|=10, B={3,6,9,12,15,18}, 共有6个元素,即|B|=6。 A∩B={I中既是2的倍数又是3的倍数} ={6,12,18} 共有3个元素,即|A∩B|=3,所以 |A∪B|=|A|+|B|-|A∩B| =10+6-3=13 答:所求的数共有13个。 此题可直观地图示如下: 图8-1中,A表示不超过20的正整数中2的倍数的集合。B表示不超过20的正整数中3的倍数的集合。在不超过20的正整数中既是2的倍数又是3的倍数的数有6,12,18,即A∩B中的数。 例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90以上有38人。问两科都在90分以上的有多少人?(1985年初一迎春杯数学竞赛试题) 解:设A={数学成绩90分以上的学生), B={语文成绩90分以上的学生}。

四年级容斥原理

四年级名校第四讲容斥原理 教学目标: 1掌握容斥原理的基本解题方法。 2能简单的画出容斥原理的图。 3培养学生的逻辑思维能力。 教学重点 用画图的方法去解容斥原理。 教学难点 在做较复杂的容斥原理的题的时,如何用画图的方法去解答。 教学过程: 导入: 在我们日常生活中经常会碰到重复的时候,比如我们的爱好。像老师既喜欢做数学题也喜欢看小说。但是可能有些人就只喜欢做数学题,也可能只喜欢看小说,或者又喜欢看小说又喜欢看电视。引导学生说说自己的爱好。其实这个东西也包含了我们数学中的知识。今天我们就来学习与之有关的容斥原理。(出示课题) 新授: 例1两个面积是16平方厘米的正方形摆在桌面上,他们盖住的面积有32平方厘米吗?如果充电的部分是4平方厘米,则他们盖住的面积是多少平方厘米? T:这2个正方形的面积和是2个16平方厘米就是32厘米,但是中间有盖住的部分,那么他们的总面积可能有32厘米么?因为有盖住的部分所以不可能。 T:接下来我们再来看下面的问题,如果盖住的部分是4平方厘米。我们来看一看盖住的部分是4平方厘米,是哪一部分是4平方厘米。我们来看一看如果我把2个正方形的面积总和都算出来这个重复的部分的4平方厘米我算了几次?2次。 T:事实上如果我们要计算盖住的面积那么我们重复的部分算几次就够了呢?1次,多算了依次怎么办?减掉就可以了。16+16-4=28(平方厘米) 练习:演练一 例2实验小学四(1)班同学参加语文和数学兴趣小组,参加语文兴趣小组的有25人,参加数学兴趣小组的有34人,其中有15人两个小组都参加。这个班共有多少人参加了语文或数学兴趣小组? T:我们来观察一下题目,这里面有没有例1时重复的部分呢?有,就是2个兴趣小组都参加的人。 T:那我们是不是可以画一个跟例差不多的图呢?中间的部分就是重叠的处分,我们可以反着画。那么就是重复的部分就是15人。参加数学跟语文兴趣小组的将2个都参加的人重复算了2次,减去一次就可以了。 练习:演练二 例3全班同学共有45人,老师说:“语文作业做完的同学请举手。”结果有30人举手,老师又问:“数学作业做完了同学请举手。”又有20人举手。老师又问:“语文数学一门作业都没完整的请举手。”结果没人举手,有多少同学两门功课都做完? T:我们来看看将老师提问2次举手的人数加起来,20+30=50(人)但是我们全班同学只有45人,为什么会多呢?因为我们把2个作业都做了个同学算了2次。 T:那么我们来看一看多算了几个同学呢?50-45=5(人)这5个人就是2门都完成了的。

5年级-14-容斥原理-难版

第14讲 容斥问题 知识梳理 森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有80种鸟类。狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有60种兽类。最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类140种。”这个统计正确吗? 同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是139种。”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。 容斥原理1 如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数。 即A∪B = A+B - A∩B 容斥原理2 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A 类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A

类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 即A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C 典型例题 容斥原理1 【例1】★一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类和B类元素个数”的总和。 15+12-4=23 【小试牛刀】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,其中11人两个频道都看过。两个频道都没看过的有多少人? 【解析】100-(62+34-11)=15 【例2】★一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人? 【解析】两项比赛都参加的学生人数,就是参加跑步人数、参加跳高人数重复的部分,排除掉重复部分,所得的就是全体参赛人数,也就是全班学生人数。 40-(48-37)=29人。 【小试牛刀】五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。两种报纸都订的有多少人? 【解析】用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

第11讲容斥原理

第11讲容斥原理 知识要点: 一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个 数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的 元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号 “” 读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且” 的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分, B表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C表示大圆与小圆的公共部分,记为:A B,即阴影 面积. A B 、的并集A B的元素的个数,可分以下两 步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数, 即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题 A类、B 类与C类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既 是A类又是B类的元素个数-既是B类又是C类的元素个数-既是A类又是C类的元素个 数+同时是A类、B类、C类的元素个数.用符号表示为: A B C A B C A B B C A C =++---+.图示如下: 模块一、两量重叠问题 1.实验小学四年级二班,参加语文兴趣小组的有28 人,参加数学 兴趣小组的有29人,有12人两个小组都参加.这个班有多少人 参加了语文或数学兴趣小组? 2.芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢 琴和只学画画的分别有多少人? 3.某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都 参加了.这个班既没参加美术小组也没参加音乐小组的有多少人? 4.四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两 项比赛都参加了.一班有多少人两项比赛都没有参加? 5.实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都 能表演的有7人.这个表演队共有多少人能登台表演歌舞? 6.某次英语考试由两部分组成,结果全班有12人得满分,第 一部分有25人做对,第二部分有19人有错,问两部分都有 错的有多少人? 7.对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人, 两项都不会的有9人.这个班一共有多少人? 1.先包含——A B + 重叠部分A B计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B减去. 图中小圆表示A的元素的个数,中圆表示B的元素的个数, 大圆表示C的元素的个数. 1.先包含:A B C ++ 重叠部分A B、B C、C A重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+. 两部 分全 对的 两部分都有错的 只做 对第 二部 分的 只做 对第 一部 分的 会 打 篮 球 的 会 游 泳 的 两 项 都 会 的 两项都不会的 B A

26第二十六章 容斥原理

第二十六章容斥原理 概念 容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。 即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。 容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与 性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。 例题 1. 五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。两种报纸都订的有多少人? 2.某校教师至少懂得英语和日语中的一种语言。已知有35人懂英语,34人懂日语,两种语言都懂的有21人。这个学校共有多少名教师? 3.学校开展课外活动,共有250人参加。其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。问这250名同学中,象棋组、乒乓球组都不参加的有多少人? 4.实验小学各年级都参加的一次书法比赛中,四年级与五年级共有20人获 Nab Nb Na

奖,在获奖者中有16人不是四年级的,有12人不是五年级的。该校书法比赛获奖的总人数是多少人? 5.在100个外语教师中,懂英语的有75人,懂日语的有45人,其中必然有既懂英语又懂日语的老师。问:只懂英语的老师有多少人? 6.一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。又问:“谁做完数学作业?请举手!”有42人举手。最后问:“谁语文、数学作业都没有做完?”没有人举手。求这个班语文、数学作业都完成的人数。 7.某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对? 8.某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人? 9.在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个? 10.光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅? 11.在1至1000的自然数中,不能被5或7整除的数有______个。

[第3讲]容斥原理

容斥原理属于杯赛中常考的内容。在计数时,必须注意无一重复,无一遗漏。 为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 在一些计数问题中,经常遇到有关集合元素个数的计算。求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成: A ∪B =A +B -A ∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思;符号“∩”读作“交”,相当于中文“且”的意思。),则称这一公式为包含与排除原理,简称容斥原理。 图示如下: A 表示小圆部分, B 表示大圆部分, C 表示大圆与小圆的公共部分,记为:A ∩B ,即阴影面积。 1.先包含——A +B 重叠部分A ∩B 计算了2次,多加了1次; 2.再排除——A +B -A ∩B 把多加了1次的重叠部分A ∩B 减去。 A 类、 B 类与 C 元素个数的总和=A 类元素的个数+B 类元素个数+C 类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数。 用符号表示为: A ∪ B ∪ C =A +B +C -A ∩B -B ∩C -A ∩C +A ∩B ∩C … 例1 (第七届“中环杯”小学生思维能力训练活动初赛四年级)四年级同学参加学校举行的运动会,参加了百米跑、跳高、跳远这三个项目。参加百米跑的有24人,参加跳高的有28人,参加跳远的有26人;既参加百米跑又参加跳高的有12人,既参加跳高又参加跳远的有9人,既参加百米跑又参加跳远的有14人;三项都参加的有5人。四年级同学参加运动会比赛的共有( )人。 容斥原理 知识要点

第35讲 容斥原理

第35讲 容斥原理 一、专题简析: 容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。 容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。 Nab Nb Na 二、精讲精练: 例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。又问:“谁做完数学作业?请举手!”有42人举手。最后问:“谁语文、数学作业都没有做完?”没有人举手。求这个班语文、数学作业都完成学习奥数的优点 1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。 2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。 3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。可以养成坚韧不拔的毅力 4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

的人数。 练习一 1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。其中语文成绩优秀的有65人,数学优秀的有87人。语文、数学都优秀的有多少人? 2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人? 例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对? 练习二

相关文档