文档库 最新最全的文档下载
当前位置:文档库 › 实际问题中的数学模型

实际问题中的数学模型

实际问题中的数学模型
实际问题中的数学模型

实际问题中的数学模型

命题点1 构造二次函数模型

例1 某城市对一种售价为每件160元的商品征收附加税,税率为R %(即每销售100元征税R 元),若每年销售量为?

???30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( )

A .[4,8]

B .[6,10]

C .[4%,8%]

D .[6%,10%]

答案 A

解 根据题意,要使附加税不少于128万

元,需?

???30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8, 即R ∈[4,8].

命题点2 构造指数函数、对数函数模型 例2 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要

保留原面积的14

,已知到今年为止,森林剩余面积为原来的22

. (1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

解 (1)设每年砍伐面积的百分比为x (0

则a (1-x )10=12a ,即(1-x )10=12

, 解得x =110112??. ???

- (2)设经过m 年剩余面积为原来的22

, 则a (1-x )m =22a ,即1

10211=22m ???? ? ?????

, 即m 10=12

,解得m =5. 故到今年为止,该森林已砍伐了5年.

若本例的条件不变,试计算:

今后最多还能砍伐多少年?

解 设从今年开始,以后砍了n 年, 则n 年后剩余面积为

22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24

310211,22n ???? ? ?????

≥即n 10≤32,解得n ≤15. 故今后最多还能砍伐15年. 命题点3 构造“对勾函数”模型

例3 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为____.

答案 5 解 根据图像求得y =-(x -6)2+11,

∴年平均利润y x

=12-????x +25x , ∵x +25x

≥10,当且仅当x =5时等号成立. ∴要使平均利润最大,客车营运年数为5.

(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高

度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =____米.

答案 2 3 解 由题意可得BC =18x -x 2(2≤x <6), ∴y =18x +3x 2

≥218x ×3x 2=6 3. 当且仅当18x =3x 2

(2≤x <6),即x =23时等号成立.

命题点4 构造分段函数模型

例4 共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h (x )

=?????

400x -12x 2,0400,

其中x 是新样式单车的月产量(单位:辆),利润=总收益-总成本.

(1)试将自行车厂的利润y (单位:元)表示为关于月产量x 的函数;

(2)当月产量为多少辆时自行车厂的利润最大?最大利润是多少?

解 (1)依题设知,总成本为(20 000+100x )元,

则y =

错误!

(2)当0

(x -300)2+25 000,

故当x =300时,y max =25 000;

当x >400时,y =60 000-100x 是减函数, 故y <60 000-100×400=20 000.

所以当月产量为300辆时,自行车厂的利润最大,最大利润为25 000元.

素养提升 数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学

知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题.函数模型的建立主要是理清变量间的关系,将它们用数学语言表示.

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A、B,C、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A、B 离地距离之和, ()g θ为C、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=?,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =?<而()()()0h f g πππ=?>,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 x+y+z=10;

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

数学建模是使用数学模型解决实际问题

数学建模是使用数学模型解决实际问题。 对数学的要求其实不高。 我上大一的时候,连高等数学都没学就去参赛,就能得奖。 可见数学是必需的,但最重要的是文字表达能力 回答者:抉择415 - 童生一级 3-13 14:48 数学模型 数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 数学建模 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下: 1、实际问题通过抽象、简化、假设,确定变量、参数; 2、建立数学模型并数学、数值地求解、确定参数; 3、用实际问题的实测数据等来检验该数学模型; 4、符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。 数学模型的分类: 1、按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。 2、按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

2009年数学建模优秀论文[1]

眼科病床的合理安排 摘要 医院病床的合理安排是病人和医院共同关注的问题。本文对医院病床的分配进行分析,使用层次分析法找出模型的判定因素,通过对医院已制定的模型的判断,找出了原模型的优劣,并使用线性规划制定出合理的模型,通过模型的结果推断出第三问的答案,若该住院部周六、周日不安排手术,则改变模型的约束条件,使其判断之后的手术时间是否要做出相应的调整。考虑到便于医院进行管理,提出运用排队论的方法求解出病床比例分配模型。 关键词:层次分析法线性规划排队论 一、问题重述 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等待住院等,往往需要排队等待接受某种服务。 我们考虑某医院眼科病床的合理安排的数学建模问题。 该医院眼科门诊每天开放,住院部共有病床79张。该医院眼科手术主要分四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了2008年7月13日至2008年9月11日这段时间里各类病人的情况。 白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术,此类病人的术前准备时间只需1、2天。做两只眼的病人比做一只眼的要多一些,大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。 外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排手术。 其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3天内就可以接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。 该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急

培养数学建模能力解决实际应用问题

培养数学建模能力解决实际应用问题 内容提要:数学应用问题 是有实际意义或有生活实际背景的数学问题,着眼于应用所学的数学知识解决生活、生产中的实际问题。初中学生普遍对应用问题感到有困难,如何让学生掌握有 效的方法来解决应用问题,这是每一位初中数学教师都在考虑的问题。培养与提高学 生的数学建模能力是解决初中数学应用问题的重要方法,也有利于培养学生的数学应 用意识、创新意识以及分析和解决实际问题的能力,实现数学“源自于生活、用之于 生活”的目的。 关键词:初中数学;应用问题;数学建模能力 一、数学建模与实际应用问题 数学问题来源于生活,又应用于生活。《义务教育数学新课程标准(修改稿)》十分强调数学与现实生活的联系,在《新课标》的“基本理念与设计思路”中特别指出:“要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、寻求结果、体验解决问题的过程”。“从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;用符号表示数量关系和变化规律,是建立模型的过程;求出模型的结果、并讨论结果的意义,是求解模型的过程。这些内容有助于学生初步形成模型思想,提高学习兴趣和应用意识。” 做为初中数学教师,我们经常可以发现:许多学生在解决计算、解方程、求函数解析式等“纯数学”问题时得心应手,但一遇到应用题、实际问题时却抓耳挠腮,

不知从何入手了。教师与家长在查找问题原因时往往将之归结为学生做题时灵活性不够、生活常识欠缺,甚至认为主要是学生“太笨”。笔者认为:学生在解决实际应用问题时出现困难,数学建模能力的缺失应该是很大的原因。 那么什么是数学建模?数学建模(Mathematical Modelling)就是把把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。 数学建模的常规流程是:创设问题情境,通过实例引导学生探索,建立数学模型,进行数学处理,解决实际问题。 其流程图为: 简而言之,我们可以通过培养与提高学生的数学建模能力来达到解决初中数学应用问题的目的。 二、建构数学模型的实践 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。如何提高学生的数学建模能力来解决实际应用问题,这是每一位数学教师在教学过程中都应考虑的问题。笔者认为首先要做好初中阶段数学建模思想在教学过程中的贯彻与落实,笔者是从以下几个方面来实践的。 建模 解释

全国大学生数学建模竞赛论文写作要求

全国大学生数学建模竞赛论文写作要求 题目:明确题目意思 一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果 二、关键字:3-5个 三.问题重述。略 四.模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意 五.模型的建立 (1)基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求完整,正确,简明 (2)简化模型 1)要明确说明:简化思想,依据 2)简化后模型,尽可能完整给出 (3)模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法, 就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异 数模创新可出现在 ▲建模中,模型本身,简化的好方法、好策略等, ▲模型求解中 ▲结果表示、分析、检验,模型检验 ▲推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。 六.模型求解 (1)需要建立数学命题时: 命题叙述要符合数学命题的表述规范, 尽可能论证严密。 (2)需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称 (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5.结果分析、检验;模型检验及模型修正;结果表示 (1)最终数值结果的正确性或合理性是第一位的; (2)对数值结果或模拟结果进行必要的检验。 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; (5)结果表示:要集中,一目了然,直观,便于比较分析 ▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好 (6)必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 七.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 7.参考文献 八.附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

数学建模论文示例精选版

数学建模论文示例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

“空瓶换汽水”问题探讨 摘要:“空瓶换汽水”问题是一个比较经典的趣味数学问题,曾以“空瓶换啤酒”“废电池换新电池”“费电珠换新电珠”等形式出现在前苏联、德国和中国各种数学竞赛题目中。这个问题的探讨与解决,对于我们在日常生活中如何使开支与效益达到最优化等问题,具有一定的指导意义。 关键词:瓶数空瓶不含瓶单价推论 日常生活中,我们经常遇到过空瓶换汽水问题。喝完了凉爽的汽水还能用空瓶换汽水继续喝,那简直是炎炎夏日里的一种享受。如果没有经历过,那么以下这几道数学题你应该似曾相识。 【问题一】 某品牌汽水可以用3个空瓶再换回1瓶汽水,某人买回10瓶汽水,则他最多可以喝到多少瓶汽水 【解析一】 “用3个空瓶再换回1瓶汽水”,假设汽水一瓶3元,则空瓶相应的1元,而真正的汽水就只值2元,“某人买回10瓶汽水”意味着花去人民币 3*10=30元, 故而“最多可以喝到?30/2=15瓶。 【问题二】 5个空瓶可以换1瓶汽水,某班同学喝了161瓶汽水,其中有一些是用喝剩下来的空瓶换的,那么他们至少要买汽水多少瓶? 【解析二】 同理“5个空瓶可以换1瓶汽水”由题意,假设1瓶汽水5元,空瓶则1元,真正的汽水只值4元,“某班同学喝了161瓶汽水”则一共真正汽水的钱是:161*4元; 而买整个汽水(真正的汽水加空瓶)需要5元,所以“他们至少要买汽水多少瓶”则等于( 161*4)/5=(161/5)*4=(32*4)...余1,此时就可算出32*4+1=129瓶。 笔者对类似的题目的思考与研究,得到以下推论: 1,汽水的瓶数=总共的钱/汽水(不含瓶)的钱; 2,至少要买汽水多少瓶=总花去的钱/汽水的单价+余数。 这些推论是否正确呢是否可以解决此类问题呢我们不妨拿类似的问题验证一下。 【问题三】 超市规定每3个空汽水瓶可以换一瓶汽水,小李有12个空汽水瓶,最多可以换几瓶汽水A.4瓶B.5瓶C.6瓶D.7瓶 【解答三】 由题意可知,空汽水瓶的价钱是1元,汽水加瓶是3元,所以“小李有12个空汽水瓶”等于小李有12元钱,问题是“最多可以换几瓶汽水”,就是小李

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目 (2010-09-28 21:58:01) 标签: 分类:专业教学 数学建模 应用数学模型 教育 一、数学建模的涵 (一)数学建模的概念 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。使用数学语言描述的事物就称为数学模型,这个建立数学模型的全过程就称为数学建模。(二)应用数学模型 应用数学去解决各类实际问题,把错综复杂的实际问题简化、抽象为合理的数学结构。通过调查、收集数据资料,观察和研究实际对象的固有特征和在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。需要诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包如 Mathematica,Matlab,Lingo,Spss,Mapple的使用,甚至排版软件等知识的基础。

(三)数学建模的特点 数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点;数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。(四)数学建模的指导思想 数学建模的指导思想就是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。 (五)数学建模的意义 数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。 1.培养创新意识和创造能力; 2.训练快速获取信息和资料的能力; 3.锻炼快速了解和掌握新知识的技能; 4.培养团队合作意识和团队合作精神; 5.增强写作技能和排版技术;

用数学模型思想方法解决实际问题

用数学模型思想方法解决 初中数学实际应用问题 关键词: 数学模型难点策略 随着新课改的进步落实,素质教育全方位、深层次推进,数学学科要求学生具有较高的数学素质、数学意识和较强的数学应用能力。而数学实际应用问题具有这种考查功能。它不仅具有题材贴近生活,题型功能丰富,涉及知识面广等特点,而且其应用性、创造性及开放性的特征明显。新课标把探索培养学生应用数学知识和数学思想方法解决实际问题的能力已落实到各种版本的数学实验教材中去了。今天社会对数学教学提出更高要求,不仅要求培养出一批数学家,更要求培养出一大批善于应用数学知识和数学思想方法解决实际问题的各类人才。初中阶段是探索和培养各类数学人才的黄金时段,而把实际问题转化为数学问题又是绝大多数初中学生的难题,如果在教学中我们有意识地运用数学模型思想帮助学生克服和解决这一难题,那么学生就会摆脱实际应用问题的思想束缚,释放出学习和解决实际应用问题的强大动力,激活创造新思维的火花。 把实际问题转化为一个数学问题,通常称为数学模型。数学模型不同于一般的模型,它是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。建立数学模型的过程称为数学建模。它主要有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解。对初中学生来说,最关键最困惑的是第一步。 一、初中学生解决实际应用问题的难点 1.1、缺乏解决实际问题的信心 与纯数学问题相比,数学实际问题的文字叙述更加语言化,更加贴近现实生活,题目也比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对一大堆非形式化的材料,许多学生常感到很茫然,不知如何下手,产生惧怕数学应用题的心理。具体表现在:在信息的吸收过程中,受应用题中提供信息的次序,过多的干扰语句的影响,许多学生读不懂题意只好放弃;在信息加工过程中,受学生自身阅读分析能力以及数学基础知识掌握程度的影响,许多学生缺乏把握应用题的整体数学结构,并对全立体结构的信息作分层面的线性剖析的能力。即使能读懂题意,也无法解题;在信息提炼过程中,受学生数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来,缺乏把实际问题转换成数学问题的转译能力。 数学建模问题是用数学知识和数学分法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及到各种心理活动,心理学研究表明,良好的心理品质是创造性劳动的动力因素和基本条件,它主要包括以下要素:自觉的创新意识;强烈的好奇心和求知欲;积极稳定的情感;顽强的毅力和独立的个性;强烈而明确的价值观;有效的组织知识。许多学生由于不具备以上良好的心理品质因而对解决实际问题缺乏应有的信心。 1.2、对实际问题中一些名词术语感到生疏 由于数学应用题中往往有许多其他知识领域的名词术语,而学生从小到大一直生长在学校,与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、移动电话的收费标准等概念,这些概念的基本意思都没搞懂。如果涉及到这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。例如:从2001年2月21日起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算)。上星期天,一位同学调查了A、B、C、D、E五位同学某天打本地网营业区内电话

全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2019年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求提交以

全国大学生数学建模竞赛论文模板

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填 写): 我们的参赛报名号为(如果赛区设置报名号的 话): 所属学校(请填写完整的全 名): 参赛队员 (打印并签名) : 1. 2.

3. 指导教师或指导教师组负责人 (打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号): 2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用):

全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号): 论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。

摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。 一、问题的重述 数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。 此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。 这部分的内容是将原问题进行整理,将已知和问题明确化即可。 注意: 在写这部分的内容时,绝对不可照抄原题!

构建数学模型 解决生活中的实际问题

构建数学模型解决生活中的实际问题 青州市王府街道刘井小学邢文谦 每次听课对我的课堂教学都有一个新的提升,今天我听了本校教师刘老师的“相遇问题”这节课,我有一种新的感觉是老师引导的太到位了,从学生的生活实际出发,创设与学生的日常生活紧密联系的上学情境,且采用动画形式呈现,学生在现实而有趣的情境吸引下,主动发现问题、提出问题,进而提炼生成完整的数学问题、解决问题,帮助学生构建起“相遇问题的情景模型”。通过观课学习和根据自己的教学实践浅谈一下如何帮助学生构建数学模型: 第一,应激发学生学习数学的兴趣。学生在实际的操作过程中,必须考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。只有对实际原形有充分的了解,明确原型的特征,只有做到这一点,才能使学生对实际问题进行简化。从而培养学生对事物的观察和分辨能力,增强学生的数学意识。结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为应用题教学的问题背景,这样既克服了教材的不足,又对问题背景有一个详实的了解,这不但有利于学生对实际问题的简化,而且能提高学生的数学应用意识。 第二,要让学生参与数学模型的建立形成过程。数学模型的建立过程中教师要善于调动学生主动建模的积极性,千万不能对学生的不合理的归纳或不恰当的抽象,以及不合常情的假设加以批评和指责,恰恰相反要抓住他们闪光的地方加以表扬、鼓励,并通过适度的引导和点拨使学生对实际问题的简化更加清楚。 总之,我们要提供实际问题不同层面学生对数模的理解,问题的难易是有层次。例如基本练习,拓展练习和延伸练习。在本节相遇问题的课例中,刘老师通过三个层次的练习:基本练习,拓展练习和延伸练习。让学生将相遇问题的解题策略和解题经验进行迁移,解决生活中简单的实际问题,体会数学与生活的密切联系,获得数学学习的积极情感体验。

数学建模论文范文[1]

利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

数学建模格式排版的若干建议及操作步骤

数学建模格式排版的若干建议及操作步骤 本文依据《全国大学生数学建模竞赛论文格式规范》(全国大学生数学建模竞赛组委会,2016年修订稿)(以下简称《2016版格式规范》)的相关要求编写,若遇到当年度格式规范与《2016版格式规范》有相悖之处,以当年度格式规范为准。 本文当中的相关操作是在Word 2010版下进行的,如果采用的是其他版本的Word 或其他的文字编辑工具,可适当参考。 须强调的是,在《2016版格式规范》的第八条明确指明“本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。”。因此,本文中涉及的排版格式(字号、字体、行距、颜色等)仅供参考,重点是要学会一些排版技巧。 1“承诺书”和“编号专用页” 在《2016版格式规范》第3页的“2016版承诺书”和第4页的“2016版编号专用页”的下方都有特别强调“电子版论文中不得出现此页”,但是纸质版是需要这两页的,所以在编写论文时,不用考虑“承诺书”和“编号专用页”的排版问题,由协会统一打印,在论文装订之前发放给各参赛队。但是,“承诺书”和“编号专用页”也强调“请勿改动此页内容和格式”,因此,为了保证纸质版论文前后排版格式的一致性,在编写论文时,论文中的部分格式尽量保持跟“承诺书”和“编号专用页”一致,如页面设置、正文样式等。 2页面设置 2.1格式规范 在《2016版格式规范》的第一条“论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订”,同时,参考了《2016版格式规范》文档的页面设置,考虑到《2016版格式规范》中强调的排版统一性,因此建议论文的页面设置格式为“A4纸打印,上下左右页边距均为2.5厘米”。

构建数学模型解决实际问题

构建数学模型解决实际问题 “能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型解决实际问题基本程序如下: 解题步骤如下: 1、阅读、审题: 要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。 2、建模: 将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。 3、合理求解纯数学问题 4、解释并回答实际问题 一、方程模型 例:小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元。 ⑴设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费) ⑵小刚想在这两种灯中选购一盏: ①当照明时间是多少时,使用两种灯的费用一样多; ②试用特殊值推断: 照明时间在什么范围内,选用白炽灯费用低; 照明时间在什么范围内,选用节能灯费用低; ⑶小刚想在这两种灯中选购两盏

假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。 解:(1)用一盏节能灯的费用是(49+0.0045x)元, 用一盏白炽灯的费用是(18+0.02x)元. (2)①由题意,得49+0.0045x=18+0.02x ,解得x=2000, 所以当照明时间是2000小时时,两种灯的费用一样多. ②取特殊值x=1500小时, 则用一盏节能灯的费用是49+0.0045×1500=55.75(元), 用一盏白炽灯的费用是18+0.02×1500=48(元), 所以当照明时间小于2000小时时,选用白炽灯费用低; 取特殊值x=2500小时, 则用一盏节能灯的费用是49+0.0045×2500=60.25(元), 用一盏白炽灯的费用是18+0.02×2500=68(元), 所以当照明时间超过2000小时时,选用节能灯费用低. (3)分下列三种情况讨论: ①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元; ②如果选用两盏白炽灯,则费用是36+0.02×3000=96元; ③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低. 费用是67+0.0045×2800+0.02×200=83.6元 综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低. 变式1:某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆 后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的 20 3 ,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的5 2 。问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 解:(1)设公司第一次改装了y 辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

北师大版高中数学必修一教案用函数模型解决实际问题

《用函数模型解决实际问题》教学设计用函数模型解决实际问题这部分内容,非常注重贴近实际生活,关注社会热点,要求学生对一些实际例子做出判断、决策,注重培养学生分析问题、解决问题的能力。解决函数建模问题,也就是根据实际问题建立起数学模型来。所谓的数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表达的一种数学结构。函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行。本节内容是安排在学生刚学完函数的相关知识,为学生建立起函数模型奠定基础。 学生虽然对这种函数建模问题并不陌生,但是要建立起正确的函数模型却不是一件容易的事。这种题型题目较长,相关的内容较多,问题不是一眼就可以看出答案,需要建立的函数模型也多种多样,不少还会涉及到求二次函数的最值问题,学生往往是无从下手,对自己失去信心。针对这种情况,我觉得直接让学生一步到位就找出解决问题的途径是很困难,老师在这里就应该发挥自己的主导地位,带领学生由问题入手,逐步分析,自己设计出一个一个的小问题,最后把这些小问题串起来,把题目中的大问题解决。 用函数模型解决实际问题需要建立的函数模型是多种多样的,只有根据题目的要求建立起适当的函数模型,才能成功地解决问题。教师在授课过程中,要注重分类的思想,帮助学生把函数建模问题分成几类,以方便学生形成自己的知识系统。 一.一次函数模型的应用 某同学为了援助失学儿童,每月将自己的零用钱一相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。 (1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图象。 (2)几个月后这位同学可以第一次汇款? 这种题型只要建立起一次函数就可以很快地解决问题,而且学生以前也有接触过,对他们而言这种问题难度不大,主要是让他们对函数建模有个感觉。 二.二次函数模型的应用 建立二次函数模型解决实际问题是整本书中出现得最多的一种方法,这种多用于根据二次函数的性质求出最值,求利润问题也多属于这种类型。 某商店进了一批服装,每件售价为90元,每天售出30件,在一定范围内这批服装的售价每降低1元,每天就多售出1件。请写出利润(元)与售价(元)之间的函数关系,当售价为多少元时,每天的利润最大? 学生首次接触这种类型的题,往往是束手无策,这时教师可引导他们从他们最熟悉的问题做起:利润=单件售价×售出件数,设售价为x,则下面只需要找出售出件数即可,而售出件数又与价钱降低的幅度有关,所以设计下列相关问题让学生去找答案:售价比原定的售价降低了:90-x 售出件数比原来多了:(90-x)×1=90-x 则现在售出件数为:30+(90-x)=120-x 因此,利润y=x(120-x)

相关文档
相关文档 最新文档