文档库 最新最全的文档下载
当前位置:文档库 › 单片机程序设计流程解析

单片机程序设计流程解析

单片机程序设计流程解析
单片机程序设计流程解析

单片机实验报告

院系:计算机科学学院专业:智能科学与技术年级: 2012 学号:2012213865 姓名:冉靖 指导教师:王文涛 2014年 6月1日

一. 以下是端口的各个寄存器的使用方式: 1.方向寄存器:PxDIR:Bit=1,输出模式;Bit=0,输入模式。 2.输入寄存器:PxIN,Bit=1,输入高电平;Bit=0,输入低电平。 3.输出寄存器:PxOUT,Bit=1,输出高电平;Bit=0,输出低电平。 4.上下拉电阻使能寄存器:PxREN,Bit=1,使能;Bit=0,禁用。 5.功能选择寄存器:PxSEL,Bit=0,选择为I/O端口;Bit=1,选择为外设功能。6.驱动强度寄存器:PxDS,Bit=0,低驱动强度;Bit=1,高驱动强度。 7.中断使能寄存器:PxIE,Bit=1,允许中断;Bit=0,禁止中断。 8.中断触发沿寄存器:PxIES,Bit=1,下降沿置位,Bit=0:上升沿置位。 9.中断标志寄存器:PxIFG,Bit=0:没有中断请求;Bit=1:有中断请求。 二.实验相关电路图: 1 MSP430F6638 P4 口功能框图: 主板上右下角S1~S5按键与MSP430F6638 P4.0~P4.4口连接: 2按键模块原理图: 我们需要设置两个相关的寄存器:P4OUT和P4DIR。其中P4DIR为方向寄存器,P4OUT 为数据输出寄存器。 主板上右下角LED1~LED5指示灯与MSP430F6638 P4.5~P4.7、P5.7、P8.0连接:

3 LED指示灯模块原理图: P4IN和P4OUT分别是输入数据和输出数据寄存器,PDIR为方向寄存器,P4REN 为使能寄存器: #define P4IN (PBIN_H) /* Port 4 Input */ #define P4OUT (PBOUT_H) /* Port 4 Output */ #define P4DIR(PBDIR_H) /* Port 4 Direction */ #define P4REN (PBREN_H) /* Port 4 Resistor Enable */ 三实验分析 1 编程思路: 关闭看门狗定时器后,对P4.0 的输出方式、输出模式和使能方式初始化,然后进行查询判断,最后对P4.0 的电平高低分别作处理来控制LED 灯。 程序流程图: 2 关键代码分析: #include void main(void) { WDTCTL = WDTPW + WDTHOLD; // 关闭看门狗 P4DIR |= BIT5; // 设置4.5口为输出模式 P4OUT |= BIT0; // 选中P4.0为输出方式 P4REN |= BIT0; // P4.0使能 while (1) // Test P1.4 { if (P4IN & BIT0) //如果P4.0为1则执行,这是查询方式按下去后是低,否则为高

51单片机密码锁制作的程序和流程图

51单片码锁制作的程序和流程图(很详细) 一、基本组成: 单片机小系统+4*4矩阵键盘+1602显示+DC电机 基本电路: 键盘和和显示 键盘接P1口,液晶的电源的开、关通过P2.7口控制 电机(控制口P2.4) 二、基本功能描述: 1.验证密码、修改密码 a)锁的初始密码是123456(密码最长为10位,最短为1位)。 2.恢复初始密码 a)系统可以恢复初始密码,否则一旦忘记密码而又不能恢复初始密码,该锁就永远打不开。但是又不能让用户自行修改密码,否则其他人也可以恢复该初始密码,使得锁的安全性大大下降。

3.使系统进入低功耗状态 a)在实际使用中,锁只有在开门时才被使用。因而在大多数的时间里,应该让锁进入休眠状态、以降低功耗,这使系统进入掉电状态,可以大大降低系统功耗。 b)同时将LCD背光灯关闭 4.DC电机模拟开锁动作。 a)DC电机启动时解除开锁把手的锁定,允许通过把手开锁。DC电机不直接开锁,使得DC电机的功率不用太大,系统的组成和维护将变得简单,功耗也降了下来。 三、密码锁特点说明: 1.0 输入将被以字符形式输入,最长为10位。 超过10位时系统将自动截取前10位、但不作密码长度溢出提示。 2.0 开锁10秒后不允许更改密码、并提示修改超时_进入初始态,需要重新输入密码方可再次修改密码。 3.0 系统未使用存储器存储密码故掉电后密码自动恢复为初始密码。 4.0 若2分钟无任何操作,系统自动进入省电模式运行,同时关闭液晶显示,以节省电力。 5.0 输入密码正确后、电机允许开锁时间为5秒, 5秒后需要再次输入密码才可以再次开锁。 6.0 修改密码键和恢复初始密码键最好置于室。 这是Proteus仿真结果: 输入密码123456: 显示结果: 密码正确时电机启动、电机将持续5秒:

单片机流程图

单片机总流程图

主函数程序 #include<> #include<> #define uchar unsigned char #define uint unsigned int #define OSC_FREQ #define __10ms (65536 - OSC_FREQ/(/9970)) #define COM8255 XBYTE[0XFFF3] #define PA8255 XBYTE[0XFFF0] #define PB8255 XBYTE[0XFFF1] #define PC8255 XBYTE[0XFFF2] uchar code tab[]={0xFC,0x60,0xDA,0xF2,0x66,0xB6,0xBE,0xE0,0xFE,0xF6}; uchar code dis_HELLO[]={0x89,0x86,0xc7,0xc7}; uchar code dis_op51[]={0xc0,0x8c,0x92,0xf9}; uchar code dis_code[]={0xcf,0xa4,0xcf,0xa4}; uchar ucCnt_10ms=99; uchar i=0; uchar J=0; uchar n=0; uchar led1; uchar led2; sbit P2_4=P2^4; sbit P3_7=P3^7; sbit P1_0=P1^0; sbit P1_1=P1^1; sbit P1_2=P1^2; void Disp_op51 (); void Disp_HELLO(); void Set_Init_Xint(); void Set_Init_Timer(); void Disp_t(); void DelayX1ms(uint count); void Disp_8255(); void main() { for(;;) { Set_Init_Xint(); Set_Init_Timer(); Disp_8255(); //ucCnt_10ms =99; //ucLed1 = 6;

51单片机密码锁制作的程序和流程图

51单片机密码锁制作的程序和流程图(很详细) 一、基本组成: 单片机小系统+4*4矩阵键盘+1602显示+DC电机 基本电路: 键盘和和显示 键盘接P1口,液晶的电源的开、关通过P2.7口控制 电机(控制口P2.4) 二、基本功能描述: 1.验证密码、修改密码 a)锁的初始密码是123456(密码最长为10位,最短为1位)。 2.恢复初始密码 a)系统可以恢复初始密码,否则一旦忘记密码而又不能恢复初始密码,该锁就永远打不开。但是又不能让用户自行修改密码,否则其他人也可以恢复该初始密码,使得锁的安全性大大下降。

3.使系统进入低功耗状态 a)在实际使用中,锁只有在开门时才被使用。因而在大多数的时间里,应该让锁进入休眠状态、以降低功耗,这使系统进入掉电状态,可以大大降低系统功耗。 b)同时将LCD背光灯关闭 4.DC电机模拟开锁动作。 a)DC电机启动时解除开锁把手的锁定,允许通过把手开锁。DC电机不直接开锁,使得DC电机的功率不用太大,系统的组成和维护将变得简单,功耗也降了下来。 三、密码锁特点说明: 1.0 输入将被以字符形式输入,最长为10位。 超过10位时系统将自动截取前10位、但不作密码长度溢出提示。 2.0 开锁10秒后不允许更改密码、并提示修改超时_进入初始态,需要重新输入密码方可再次修改密码。 3.0 系统未使用存储器存储密码故掉电后密码自动恢复为初始密码。 4.0 若2分钟内无任何操作,系统自动进入省电模式运行,同时关闭液晶显示,以节省电力。 5.0 输入密码正确后、电机允许开锁时间为5秒, 5秒后需要再次输入密码才可以再次开锁。 6.0 修改密码键和恢复初始密码键最好置于室内。 这是Proteus仿真结果: 输入密码123456: 显示结果: 密码正确时电机启动、电机将持续5秒:

单片机实验一

软件实验部分 实验一 Keil uVision2 开发环境入门 一、实验目的 1、初步熟悉Keil uVision2开发环境的使用; 2、了解C51语言程序设计和调试方法。 二、实验内容 1、应用给定程序联系使用Keil uVision2软件 2、对指定数据块赋值 三、实验流程图 1、输入以下程序: 全速运行实验程序,观察相关单元中数据的变化和单步运行的方法 2、对指定数据块赋值 (1)对指定单元进行清零操作 (2)对外部RAM中2000H开始的单元进行赋值,赋值数据为0~16.并对相关单元进行观察。 四、实验步骤 (一)存储块清零 1、打开Keil uVision2开发环境; 2、新建一个文件:File→New; 3、根据清零实验要求输入代码如下: xdata unsigned char Buffer[256] _at_ 0x3000; void main() {

unsigned int index; unsigned char xdata * ptr; ptr = &Buffer; // 起始地址 for (index = 0; index <= 255; index++) { *ptr++ = 0; // 清0, 地址加一 } } 4、保存文件名为“Text1.c”并为其建一个工程; Project→New Project→AT89s51→确定→右键Source Group 1→Add Files to Group ” Source Group 1”→将“Text1.c”选中加入工程即可。 5、编译→改错→直到编译通过没有错误; 6、仿真程序:按钮→按钮→屏幕下方会出现Address工具栏→Address栏中输入 如右图→通过改变表中地址对应的内容,这 三个按钮运行程序,查看内容是否被清零。 (二)对指定数据块赋值 1、建立工程和新建文件同(一)中类似 2、自己编程 仿真结果如下图:(仿真步骤与(一)类似)

微机原理与单片机实验报告

北京联合大学信息学院实验报告 课程名称:微型计算机原理学号: 姓名: 2012 年 6 月 9 日

目录 实验1 EMU8086模拟器的使用 (3) 实验2 数据传送指令的使用 (5) 实验3 多位十六进制加法运算实验 (9) 实验5 循环程序实验 (11) 实验6 由1 到100 求和实验 (13) 实验7 求表中正数_负数_0 的个数实验 (14) 实验8 数据排列实验(冒泡排序) (16) 实验9 系统功能调用(大小写转换) (18) 实验10 阶乘(递归运算) (20) 实验11 ProteusIO工程文件的建立 (21) 实验12 IO口读写实验(245、373) (22) 实验13 8255 接口实验 (24) 实验14 声光报警 (25) 实验总结 (28)

实验1 EMU8086模拟器的使用 一实验要求 利用EMU8086模拟器环境,完成创建源程序文件,运行调试,实验结果的查看二实验目的: 熟悉EMU8086实验环境 三EMU8086环境: 1 模拟器编辑窗口 2 模拟器调试窗口

四实验内容 实验内容1:新建文件。 运行emu8086 1. 新建文件:单击“新建”按钮,选择COM模板,在模拟器编辑窗口中输入如下程序代码: MOV AX, 1020H MOV BX, 2030H MOV AX, BX ADD AX, BX MOV [BX], AX MOV [2032H], AX HLT 2. 编译:单击“编译”按钮,对程序段进行编译; 3. 保存:编译通过,单击“完成”按钮,将其以文件名“EXP1”保存在本地磁盘上。 4. 仿真:单击“仿真”按钮,打开模拟器调试窗口和源文件窗口。 5.在模拟器调试窗口中的寄存器组区,查看数据寄存器AX,BX,CX,DX;段寄存器CS,ES,SS,DS;指令指针寄存器IP;指针寄存器SP,BP;变址寄存器SI,DI;标志寄存器的值。 6.单击“单步前”按钮,单步执行程序,并观察每次单步执行后,相关寄存器值的变化。 7.单击“重载”按钮,将程序重载,并调整指令运行步进时延为400毫秒,单击“全速”按钮,运行程序, 8.程序运行之后,在程序调试窗口中,选择[view]/[memory],查看模拟器环境中,内存单元0700:0100开始的连续10个单元的内容 9.将“存储器”中的地址改为0700:2030,查看开始的四个字节的内容,并思考其内容与程序

单片机实验模版

单片机实验模版 本科实验报告 课程名称:单片机综合设计学院(系): 专业:电子 班级: 学号: 学生姓名: 2018 年月日

实验项目列表 注意:独立完成预习报告和实验操作。 专业:班级:学号: 学生签字: 联系:

《单片机原理及应用实验》报告填写要求依照《大连理工大学本科实验报告规范(试行)》提出的各项要求,现规定《单片机原理及应用实验》报告填写要求如下: 一、每次实验前必须完成预习报告。注意:预习报告中的回答问题必须手写,且由 学生本人签名。第一次实验时,课前将预习报告与《实验项目列表》一同交给 实验老师。每次实验时,课前提交预习报告,没有完成预习报告者不得进行实 验。 二、每一个实验项目均须撰写一份实验报告,最后按顺序装订、上交。 三、实验报告内容: 1、实验目的和要求:写明实验的目的和任务要求; 2、实验原理和内容:与实验内容相关的算法描述、程序的结构类型,与实验相关的 接口模块功能描述。 3、算法流程:使用流程图对算法进行描述。流程图应当逻辑正确、简单清晰。流程 图能够采纳打印或手工绘制。 4、使用protel等工具绘制实验系统电路图(也可手工绘制)。系统电路图应正确、 工整。系统电路中应包含单片机以及单片机工作时所必需的外围相关器件(晶 体、上电复位电路等); 5、程序清单:程序清单一律采纳打印的方式,源程序文件的格式要整齐、规范(语 句的标号、指令及注释应在不同列中)。在程序的关键语句上加注释。相关子程 序要在凝视中进行功能说明; 6、实验结果与分析:明确地写出最后结果(是否实现设计要求等),对实验中所遇 到的问题以及解决的方法加以描述; 7、实验体会、建议:通过实验所体会的收成。针对实验内容、教学方法、考核方法 等提出需要解决的问题,提出改进建议; 8、全部文字叙述内容要求简明扼要,思路清晰、用词规范; 9、要紧仪器设备:记录要紧仪器的名称、型号(包括实验运行软件名称)等 10、实验时刻:报告中应标明实验的日期(年、月、日;星期;组号)。 四、要求实验报告字迹工整,文字简练,数据齐全,图表规范,运算正确,分析充分、具体、定量。

单片机中断实验报告

人的一生要疯狂一次,无论是为一个人,一段情,一段旅途,或一个梦想 ------- 屠呦呦 实验三定时器中断实验 一、实验目的 1、掌握51单片机定时器基本知识; 2、掌握定时器的基本编程方法; 3、学会使用定时器中断。 二、实验内容 1、利用定时器设计一个秒表,计数范围为0—59,并在数码管实时显示。 三、实验设备 PC 机一台、单片机实验箱 主要器件:AT89C52、7SEG-BCD、 四、实验步骤 1、使用Proteus设计仿真原理图; 2、使用Keil设计程序; 3、联合调试仿真。 五、实验流程图 六、实验程序与结果 #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1;

void timer1_init() { TMOD=0x10;//将定时器1设置为工作方式1 TH1=(65536-6000)/256;//定时器每加一时间为1/fsoc,定时时间为1/500 //(1/500)s/(1/3000000)s=6000 TL1=(65536-6000)%256;//fsoc=3000000,所以装入16位定时器中值为65536-6000 EA=1; ET1=1; TR1=1; } void main() { timer1_init(); while(1); } void timer1() interrupt 3 { TH1=(65536-6000)/256;//每次进入中断,重装初值TL1=(65536-6000)%256; F=~F;//每次进入中断P1.1口取反 } #include #define uint unsigned int #define uchar unsigned char sbit F=P2^1; void timer0_init() {TMOD=0x01;//将定时器0设置为工作方式1 TH0=(65536-83)/256;//定时器每加一时间为1/fsoc,定时时间为2Khz,既500us //500us/6us=83.3333 TL0=(65536-83)%256;//fsoc=6000000,所以装入16位定时器中值为65536-83 EA=1; ET0=1; TR0=1; }void main() { timer0_init(); while(1); } void timer0() interrupt 1 { TH0=(65536-83)/256;//每次进入中断,重装初值 TL0=(65536-83)%256; F=~F;//每次进入中断P1.1口取反,表示定时时间到 } #include // 包含51单片机寄存器定义的头文件 #define seg_data P1 #define seg_data2 P3 #define uint unsigned int sbit D1=P2^0; //将D1位定义为P2.0引脚 uint counter=0; unsigned int unit=0,decade=0,avs=0;//time=0;

《单片机系统设计》实验报告

短学期实验报告 (单片机系统设计) 题目: 专业: 指导教师: 学生姓名: 学号: 完成时间: 成绩:

基于单片机的交流电压表设计 目录 1系统的设计要求 (2) 2系统的硬件要求 (2) 2.1真有效值转换电路的分析 (2) 2.2放大电路的设计 (3) 2.3A/D转换电路的设计 (3) 2.4单片机电路的分析 (4) 2.5显示电路 (4) 3 软件设计 (5) 3.1 软件的总流程图 (5) 3.2 初始化定义与定时器初始化流程图 (5) 3.3 A/D转换流程图 (6) 3.4 数据处理流程图 (6) 3.5 数据显示流程图 (7) 4 调试 (7) 4.1 调试准备 (7) 4.2 关键点调试 (7) 4.3 测试结果 (8) 4.4 误差分析 (8) 5结束语 (8) 5.1 总结 (9) 5.2 展望 (9) 附录1 总原理图 (10) 附录2 程序 (10) 附录3 实物图 (14)

基于单片机的交流电压表设计 ****学院 ****专业 姓名 指导老师:******* 1 设计要求 (1)运用单片机实现真有效值的检测和显示。 (2)数据采集使用中断方式,显示内容为有效值与峰值交替进行。 2 硬件设计 本系统是完成一个真有效值的测量和显示,利用AD737将交流电转换成交流电压的有效值,用ADC0804实现模数转换,再通过单片机用数码管来显示。系统原理框图如图2-1所示。系统框图由真有效值转换电路、放大电路、A/D 转换电路、单片机电路、数码管显示电路五部分。 图2-1 原理框图 2.1 真有效值转换电路 真有效值转换电路主要是利用AD737芯片来实现真有效值直流变换的,即将输入的交流信号转换成直流信号的有效值,其原理图如图2-2所示。 图2-2 真有效值转换电路 由于AD737最大输入电压为200mV, 所以需要接两个二极管来限制输入电压,起到限幅的作用。如图中D1、D2,由IN4148构成,电容C6是耦合电容,电阻R1是限流电阻。 2.2 放大电路设计 放大电路主要是利用运放uA741来进行放大,电路原理图如图2-3所示。 A/D 转换 单片机 电路 显示 电路 转换 电路 交流 信号 放大 电路

单片机实验答案

前言 由于单片机具有高可靠性、超小型、低价格、容易产品化等特点,在仪器仪表智能化、实时工业控制、实时数据采集、智能终端、通信设备、导航系统、家用电器等控制应用领域,具有十分广泛的用途。目前在国内单片机应用中,MCS-51系列单片机仍然是一种主流单片机。为配合《单片机应用技术》课程的教学,使学生尽快了解、掌握89C51单片机的使用,特编写了这本上机指导书(基础篇)。 《单片机》是一门实践性很强的课程,提高教学质量的一个重要环节是上机实习和训练,无论是学习汇编语言程序设计,还是学习接口电路和外设与计算机的连接,或者软硬兼施地研制单片机应用系统,不通过加强动手是不能获得预期效果的。本实验指导书提供了9个实验的指导性材料,实验还有一些思考题,可以根据课时的安排和教学要求进行取舍。为了达到某些实验的目的,书中提供的参考程序与实际应用中的程序会有些差别,所以不一定是最优的。 由于时间紧迫,加上编者学识有限,如有不妥之处,欢迎读者批评指正。 编者

实验须知 1. 实验前必须阅读教科书的有关部分和本实验指导书,了解实验目的、内容、步骤,做好实验前的准备工作,编写好实验中要求自编或修改的程序;完成实验前要求完成的准备工作后方可以上机实验,否则不得上机操作。 2. 各种电源的电压和极性不能接错,严禁带电接线和接插元器件。通电前须经过指导教师检查认可后方能通电。 3. 不准随意拨弄各种与实验无关的旋钮和开关,凡与本次实验无关的任何设备都禁止动用和摸弄,注意安全。 4. 严禁用手触摸实验系统印制电路板和元器件的引脚,防止静电击穿芯片。 5. 实验中若损坏仪器或元器件,应及时向指导教师报告,听候处理。 6. 在实验室内保持安静和卫生,不得随意走动和喧哗,集中精力完成实验。 7. 实验完成后,关掉电源,及时整理实验台桌面,保持环境整洁。 8. 按规定认真完成实验报告,对实验中出现的现象进行分析,在规定的时间内交上实验报告。 9. 凡实验或实验报告未能按规定完成的学生,不能参加本课程的考试或考查。

单片机6个必做实验程序

第一部分软件实验 实验一二进制到BCD码转换 一、实验目的 1、掌握简单的数值转换算法 2、基本了解数值的各种表达方法 二、实验说明 单片机中的数值有各种表达方式,这是单片机的基础。掌握各种数制之间的转换是一种基本功。我们将给定的一个二进制数,转换成二十进制(BCD)码。将累加器A的值拆为三个BCD码,并存入RESULT开始的三个单元,例程A 赋值#123。 三、实验内容及步骤 1、启动计算机,打开伟福仿真软件,进入仿真环境。首先进行仿真器的设置,选择使用伟福软件模拟器。 2、打开TH2.ASM源程序进行编译,编译无误后,全速运行程序,打开数据窗口(DATA),点击暂停按钮,观察地址30H、31H、32H的数据变化,30H更新为01,31H更新为02,32H更新为03。用键盘输入改变地址30H、31H、32H 的值,点击复位按钮后,可再次运行程序,观察其实验效果。修改源程序中给累加器A的赋值,重复实验,观察实验效果。 3、打开CPU窗口,选择单步或跟踪执行方式运行程序,观察CPU窗口各寄存器的变化,可以看到程序执行的过程,加深对实验的了解。 四、流程图及源程序 1.源程序 RESULT EQU 30H ORG 0000H LJMP START BINTOBCD:

MOV B,#100 DIV AB MOV RESULT,A ;除以100得百位数 MOV A,B MOV B,#10 DIV AB MOV RESULT+1,A ;余数除以10得十位数 MOV RESULT+2,B ;余数为个位数 RET START: MOV SP,#40H MOV A,#123 CALL BINTOBCD LJMP $ END 2.流程图

单片机实验——秒表--(详细步骤)

简易秒表制作 1子情境内容:制作简易秒表,利用按键构成键盘实现秒表的启动、停止与复位,利用LED数码管显示时间。 2 子情境目标: (1)通过简易秒表的制作,进一步熟悉LED数码管与单片机的接口电路(2)学习定时/计数器、中断技术的综合运用并会使用简易键盘 3 知识点链接 独立式按键的使用:图5-49为按键与单片机的连接图。 机械式按键再按下或释放时,由于机械弹性作用的影响,通常伴随有一定时间的触点机械抖动,然后其触点才稳定下来。其抖动过程如图5-50所示,抖动时间的长短与开关的机械特性有关,一般为5~10ms。 在触点抖动期间检测按键的通与断状态,可能导致判断出错。即按键一次按下或释放被错误地认为是多次操作,这种情况是不允许出现的。为了克服按键触点机械抖动所致的检测误判,必须采取去抖动措施,可从硬件、软件两方面予以考虑。本子情境中采用软件去抖。 图按键与单片机连接图图按键被按下时电压的变化 4 任务步骤 4.1 步骤一:PROTEUS电路设计,简易秒表的原理图如图5-51所示。 1、选取元器件 ①单片机:AT89C51 ②两位共阴极蓝色数码管:7SEG-MPX2-CC-BLUE ③排阻:RESPACK-8 ④按钮:BUTTON 2、放置元器件、放置电源和地、连线、元器件属性设置 简易秒表的原理图如图5-51所示,整个电路设计操作都在ISIS平台中进

行。与子情景3相似,故不详述。 图简易秒表的原理图4.2 步骤二:源程序设计与目标代码文件生成(1)程序流程图

主程序

图5-52 秒表流程图 (2)源程序设计 #include #define uint unsigned int #define uchar unsigned char sbit key1=P3^0; //定义"启动"按钮 sbit key2=P3^1; //定义"停止"按钮 sbit key3=P3^2; //定义"复位"按钮 uchar temp,aa,shi,ge; uchar code table[]={ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; //共阴极数码管编码 void display(uchar shi,uchar ge); //声明显示子函数 void delay(uint z); //声明延时子函数 void init(); //声明初始化函数 void main() { init(); //调用初始化子程序 while(1) { if(key1==0) //检测"启动"按钮是否按下 { delay(10); //延时去抖动 if(key1==0) //再次检测"启动"按钮是否按下 { while(!key1); //松手检测,若按键没有释放,key1始终为 0,那么!key1始终为1,程序就一直停在此 while语句处 TR0=1; //启动定时器开始工作

教你如何用C写单片机程序

教你如何用C++写单片机程序 关键词:C++ 面向对象单片机 从大一就开始学习单片机,学51,A VR编程都使用C语言的风格,即面向过程,只要能画出程序流程图,程序基本就born了。我热衷于编程,尤其是C++,当时想有没有一天,C++的类和对象也能出现在单片机中? 历经世事沧桑,事到如今,我终于有机会,和大家一起学习使用真正面向对象的C++来控制单片机。目前单片机编译器大部分只支持C语言,C++还不够普及,但我们有理由相信,有着更先进的面向对象的理念,有更加平易近人的类和继承,C++必将取代C,成为单片机程序的主流。试看将来环球单片机,必是C++的世界! 下面大家跟着我来一起学习怎么用C++给单片机编程序!本文要求大家玩过A VR单片机,有过C语言编程经验,而且要对VC6.0开发环境有一定了解。 必备软件:VC6.0(用于编辑源程序),WinA VR(用于生成Makefile,支持A VR系列单片机),Proteus(用于仿真调试)。 首先,你的电脑上要装有VC6.0,进入后选菜单【file】---【new】新建工程,如图1选择Makefile工程,输入工程名称,路径,点确定。 图1_新建工程 一路OK建好工程,界面如图2。这个工程是专门写makefile脚本的,你如果学A VR单片机使用avr-gcc那应该对makefile有一定了解,如果想多了解一点详见974566.html?wtp=tt (呵呵,百度百科)。 你还需要安装WINA VR,这是个免费软件,网上很多资源,这个软件很容易安装,一路Next 就可以啦!为了使用方便,我的WINAVR安装到了C盘根目录下的WINA VR文件夹。安装好后,可以直接用它来编辑源代码,今天我就不讲它的使用方法了,只讲怎么生成makefile。自我感觉用熟悉的VC6.0环境编写程序心情很愉快,大家还是跟我一起来,打造舒服的编辑环境!建好工程编译成功的界面如图2所示。 图2_工程界面 建好的工程里可以写C++代码了,下面是我要以图3的电路图写一个控制LED亮灭的程序。这个用C很easy,是吧?用Proteus仿真大家应该都会我就不罗嗦了,效果可以看本期附带的视频。 图3_电路图 在工程界面中,点【file】---【new】,选“C++ Source File”,如图4所示,在file一栏中输main点OK,注意一定是main,不要写错,一会就知道为什么了。然后进入编辑页面,我们就可以用C++编写源代码了,呵呵,程序如下,是个非常简单的类LED,短短几行程序展现了一个全新的面貌:没有了C语言的那些函数堆,取而代之的是高效美观的类和对象。 图4_新建文件 源代码: #include class LED { public: LED() { DDRB|=0x01;

51单片机实验指导书

51系列单片机原理与应用实验

目录 实验一交通灯控制实验 (4) 实验二现实人体视觉暂留特性测试实验 (7) 实验三实施时钟制作实验 (9) 实验四简易电子琴制作实验 (10) 实验五EEPROM应用—数字密码锁 (13) 实验六综合实验:教学板自检程序设计 (15) 实验七数据采集—火灾报警装置的软硬件设计 (17) 附录一实验教学板 (17) 附录二实验用软件使用说明 (18)

实验须知 一、预习要求 1.实验前认真阅读实验指导书的相关内容,明确实验目的和实验任务。 2.实验前应做好预习报告,在报告中,要求画出所设计的实验电路原理图、程序流程图,编写好程序,并对程序加以注释,还要拟订好实验步骤。 二、实验要求 1.按实验中心安排的时间到指定实验室上实验课,不要迟到、缺席。有特殊原因不能在原安排时间来实验时,须提前一天通知实验中心负责教师。 2.认真完成每次实验的各项任务,实验结果要请指导教师检查。教师对实验内容提问,并对完成者进行记录。 3.爱护设备,保持清洁,不得在实验室内大声喧哗,不要将食物带入实验室,不擅自更换设备。 4.在实验箱(板)通电状态下,不要用手随意触摸电路板上除按键和开关以外的芯片等其它元器件。,严禁带电操作,即所有接线、改线和拆线操作均应在不带电的状态下进行。 5.实验中若发生异常情况应立即切断电源,并向指导教师报告,检查原因,避免再次发生类似情况。 6.实验完毕,请整理好实验设备后再离开实验室。 三、实验报告要求 实验报告必须使用实验报告专用纸,书写要工整、清楚,并在下一次实验时交给指导教师。实验报告应包括以下内容: 1.实验名称、实验人姓名、学号、班级、同组人姓名。 2.实验目的、任务(内容)。 3.各任务程序流程图、自编程序清单,对程序须给出适量注释(例如:变量和

单片机设计程序流程图

设计题1: 按下SW1电机全速运行,电机输出端P2.6输出高峰 按下SW2电机半速运行,电机输出端P2.6输出低峰 设计题2;四路抢答器 说明:按下复位键后没有显示,开始抢答,根据P3口的输入值,显示对应的数字

设计题3:双路报警器 说明:正常时SW1为断开状态,SW2为闭合状态。当小偷翻窗入室,会导致SW1闭合或SW2断开时,同时启动声光报警:直流蜂鸣器(BUZZER)通电发声,LED1与LED2交替闪亮,交替时间为0.5秒 设计题4:三人表决器 说明:程序检测按键,三个按键中如果有一个主裁判和任意一个副裁判按下说明有效

设计题5: 设计题:5:单双八拍 说明:A→AB →B →BC→C →CD→D →DA

设计题6:小便池自动抽水 说明:当人靠近小便池时,出水2秒,人离开后,出水5秒(请考虑时间的精度问题)。本题仅要求用一只普通开关SW1来代替人体红外感应开关,有人靠近时SW1接通,人离开时,SW1断开。 设计题7:小便池自动抽水 说明:通过三档旋转开关设定高、中、低三档水位,水位设定好后单片机能按设定水位控制电磁阀注水,达到设定水位后停止注水。

设计题8:自动计数 说明:当自动检测开关SW1检测到有工件通过时,马上闭合,然后断开,利用这一特点实现自动流水线货物(SW1接通次数)计数(00--99)。 设计题9:水塔水位 说明:当水位低于B时,开启水泵电机进行抽水,水池水位慢慢升高,达到预设水位C时,水泵电机停止;放水时,水池水位低于B时,水泵电机又开始启动并抽水(排除机械故障),如此循环。当系统处于进水状态时,要求指示灯D1点亮。

单片机实验程序及流程图

《单片机技术》实验多媒体讲义《单片机技术》实验多媒体讲义《单片机技术》实验多媒体讲义

三.程序清单及程序流程框图 ORG 0000H Array LJMP MAIN MAIN: MOV R0,#30H MOV R2,#10H CLR A A1: MOV @R0,A INC R0 INC A DJNZ R2,A1 MOV R0,#30H MOV R1,#40H MOV R2,#10H A2: MOV A, @R0 MOV @R1,A INC R0 INC R1 DJNZ R2, A2 MOV R1,#40H MOV DPTR ,#4800H MOV R2, #10H A3: MOV A,@R1 MOVX @DPTR ,A INC R1 INC DPTR DJNZ R2,A3 MOV SP,#60H MOV R2,#10H MOV DPTR ,#4800H PUSH DPL PUSH DPH MOV DPTR,#5800H MOV R3,DPL MOV R4,DPH A4: POP DPH POP DPL MOVX A,@DPTR INC DPTR PUSH DPL PUSH DPH MOV DPL,R3

MOV DPH,R4 MOVX @DPTR,A INC DPTR MOV R3,DPL MOV R4,DPH DJNZ R2,A4 MOV R0,#50H MOV DPTR,#5800H MOV R2,#10H A5: MOVX A,@DPTR MOV @R0,A INC R0 INC DPTR DJNZ R2,A5 POP DPH POP DPL HERE: LJMP HERE END

单片机实验报告

单片机原理与接口技术 实验报告 专业:计算机科学与技术班级:090615 学号:090615322 姓名:李苗

实验一(1.2 )p1口输入输出实验 一、实验目的及任务: 学习P1口的使用方法。 二、实验总体设计: P1口是一个准双向口,外接八个发光二极管,连续运行程序,发光二极管循环点亮。 流程图如下: 开始 P1口初始化 设置移位次数为8 累加器置一 点亮一个发光二极管 右移一位 调用延时子程序 循环

三、硬件设计: 四、软件设计: ORG 0000H ;程序入口 AJMP RIGHT ;跳向标号RIGHT处 ORG 0030H ;程序 RIGHT: MOV R0,#08H ;置移位次数 MOV A,#0FFH ;置全1 CLR C ;将Cy清零 RIGHT1: RRC A ;由于进位Cy=0,带进位的循环右移会出现灯的亮灭MOV P1,A ;输出至P1口,控制LED CALL DELAY ;调用延时子程序 DJNZ R0,RIGHT1 ;R0-1,不为0则转移到标号RIGHT1处 AJMP RIGHT ;绝对转移至RIGHT处 ;******************************************************************** ; /*延时子程序*/ ;********************************************************************使用不停的跳转来实现延时,此时延时为10*50*250 DELAY: MOV R5,#10 ;给R5赋值 DELAY1: MOV R6,#50 ;给R6赋值 DELAY2: MOV R7,#250 ;给R7赋值 DJNZ R7,$ ;R7-1,不为0则原地继续执行

34个单片机实例(包括框图和程序)1

1.闪烁灯 1.实验任务 如图4.1.1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为0.2秒。 2.电路原理图 图4.1.1 3.系统板上硬件连线 把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上。 4.程序设计内容 (1).延时程序的设计方法 作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要 求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在 执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程 序是如何设计呢?下面具体介绍其原理:

如图4.1.1所示的石英晶体为12MHz,因此,1个机器周期为1微秒机器周期微秒 MOV R6,#20 2个 2 D1: MOV R7,#248 2个 2 2+2×248=498 20× DJNZ R7,$ 2个2×248 (498 DJNZ R6,D1 2个2×20=40 10002 因此,上面的延时程序时间为10.002ms。 由以上可知,当R6=10、R7=248时,延时5ms,R6=20、R7=248时, 延时10ms,以此为基本的计时单位。如本实验要求0.2秒=200ms,10ms ×R5=200ms,则R5=20,延时子程序如下: DELAY: MOV R5,#20 D1: MOV R6,#20 D2: MOV R7,#248 DJNZ R7,$ DJNZ R6,D2 DJNZ R5,D1 RET (2).输出控制 如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管 的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0 端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。 5.程序框图 如图4.1.2所示

单片机程序流程图及源代码

单片机上机实验报告 【实验一】端口实验,掌握通过端口编程实现数据输出和输入的方法,并观察结果。 实验内容:1)输出实验:假定4个端口全部连接发光二极管,编程实现所有发光二极管同时亮,延迟一定时间(自定)后,又同时灭,如此循环。2)输入:从P0口输入某个数据到累加器A,打开观察窗口观察数据是否进入累加器A。实现方式:通过peripherals实现端口数据观察实验。 程序流程图: 将P0到P3端口先赋值为0,调用延迟后,再赋1,然后循环执行。 源代码: ORG 0000H ;程序入口地址 LJMP MAIN ;跳转到主程序 ORG 0300H ;主程序地址 MAIN: MOV P0,#00H; MOV P1 ,#00H; MOV P2 ,#00H; MOV P3 ,#00H ;P0~P3均赋值为0 ACALL DEL;调用延迟 MOV P0 ,#0FFH; MOV P1 ,#0FFH; MOV P2 ,#0FFH; MOV P3 ,#0FFH;P0~P3均设为1 MOV A,P0;将P0口值赋给累加器 ACALL DEL; AJMP MAIN;跳转到主程序入口 ORG 0200H;延迟程序入口地址

DEL: MOV R5,#04H;寄存器实现延迟, F3: MOV R6,#0FFH;若主频为12MHZ则 F2: MOV R7,#0FFH;延时为256*256*4 F1: DJNZ R7,F1;0.26S,人眼可分辨 DJNZ R6,F2; DJNZ R5,F3; RET;从延迟程序返回 END;结束 3.假设P0口外接一个数码管(共阴),如图,请在数码管上轮流显示数字0~9(采用软件延时)。 程序流程图: 将数码管的真值编码0~9依次赋给P0并调用延迟,然后循环运行程序即可。源代码: ORG 0000H; 程序入口 SJMP MAIN; 跳转到主程序 ORG 0300H; 主程序入口地址 MAIN:MOV P0,#0FCH; 将数码管0的编码赋给P0口 ACALL DELAY; 调用延迟,使数码管亮0持续0.33S MOV P0,#60H; show 1 ACALL DELAY; MOV P0,#0DAH; show 2 ACALL DELAY; MOV P0,#0F2H; show 3 ACALL DELAY; MOV P0,#66H; show 4 ACALL DELAY; MOV P0,#0B6H; show 5 ACALL DELAY; MOVP0,#0BEH; show 6 ACALL DELAY; MOV P0,#0E0H; show 7 ACALL DELAY;

单片机课程设计实验报告

课程设计报告 学号: 1328403028 姓名:张帅华 班级: 13电子信息工程指导老师:邓晶 苏州大学电子信息学院 2016年4月

随着时代的进步和发展,单片机技术已经成为一种比较成熟的技术,普及到我们生活、工作、科研等各个领域。本次课程设计包含四个基于STC89C52单片机的设计,分别是:基于单总线数字式温度传感器DS18b20的数字温度计的设计;基于2K位串行CMOS 的EEPROM AT24C02的数字密码锁的设计;基于SPI 接口实时时钟芯片DS1302的电子日历的设计以及基于无线收发芯片nrf24L01的简单无线通讯系统的设计。 关键词:单片机 DS18B20 AT24C02 DS1302 NRF24L01

摘要 (1) 目录 (2) 第1章基于DS18B20的数字温度计设计 (3) 1.1 设计要求 (3) 1.2 系统组成 (3) 1.3 系统设计 (3) 1.3.1 硬件设计 (3) 1.3.2软件设计 (4) 1.4 设计结果 (6) 第2章基于AT24C02的电子密码锁设计 (7) 2.1 设计要求 (7) 2.2 系统组成 (7) 2.3 系统设计 (8) 2.3.1 硬件设计 (8) 2.3.2 软件设计 (9) 2.4 设计结果 (9) 第3章基于DS1302的电子日历的设计 (11) 3.1 系统功能 (11) 3.2 系统组成 (11) 3.3 系统设计 (11) 3.3.1 硬件设计 (11) 3.3.2 软件设计 (13) 3.4 设计结果 (14) 第4章基于NRF24L01的无线通信系统的设计 (15) 4.1 系统功能 (15) 4.2 系统组成 (15) 4.3 系统设计 (15) 4.3.1 硬件设计 (15) 4.3.2 软件设计 (16) 4.4 设计结果 (16) 总结 (17)

相关文档