文档库 最新最全的文档下载
当前位置:文档库 › 条件均值估计和贝叶斯假设检测

条件均值估计和贝叶斯假设检测

条件均值估计和贝叶斯假设检测
条件均值估计和贝叶斯假设检测

贝叶斯定理

贝叶斯定理 (重定向自后验概率) 贝叶斯定理(Bayes theorem),是概率论中的一个结果,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。 作为一个规范的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,概率如何被赋值,有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯定理。本文深度讨论了这些争论。 贝叶斯定理的陈述 贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。

其中P(A|B)是在B发生的情况下A发生的可能性。 在贝叶斯定理中,每个名词都有约定俗成的名称: 按这些术语,Bayes定理可表述为: 后验概率= (相似度* 先验概率)/标准化常量 也就是说,后验概率与先验概率和相似度的乘积成正比。 另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为: 后验概率= 标准相似度* 先验概率 从条件概率推导贝叶斯定理 根据条件概率的定义 . 在事件B发生的条件下事件A发生的概率是

同样地, 在事件A发生的条件下事件B发生的概率 整理与合并这两个方程式, 我们可以找到 这个引理有时称作概率乘法规则.上式两边同除以P(B), 若P(B)是非零的, 我们可以得到贝叶斯定理: 二中择一的形式 贝叶斯定理通常可以再写成下面的形式: 在更一般化的情况,假设{A i}是事件集合里的部份集合,对于任意的A i,贝叶斯定理可用下式表示:

基于贝叶斯网络的数据挖掘技术_陈秀琼

第21卷第2期V ol 121N o 12 三明高等专科学校学报JOURNA L OF S ANMI NG C O LLEGE 2004年6月 Jun 12004 收稿日期:2004204226 作者简介:陈秀琼(1969-),女,福建尤溪人,三明高等专科学校计算机科学系讲师。 基于贝叶斯网络的数据挖掘技术 陈秀琼 (三明高等专科学校计算机科学系,福建三明 365004) 摘 要:从海量数据中挖掘有用的信息为高层的决策支持和分析预测服务,已成为网络时代人们对信息系统提出的新的需求,但我们发现数据处理和数据的提炼技术是匮乏的。起源于贝叶斯统计学的贝叶斯网络以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习方法等特性表示了客体的概率分布和因果联系,成为当前数据挖掘众多方法中最为引人注目的焦点之一。本文首先对贝叶斯网络、贝叶斯网络推理和贝叶斯网络学习进行综合性的阐述,然后讨论其在数据挖掘中的应用和优势。 关键词:贝叶斯网络;贝叶斯推理;贝叶斯学习;数据挖掘 中图分类号:O211 文献标识码:A 文章编号:1671-1343(2004)02-0047-06 随着计算机网络和存储技术的迅猛发展,数据传播和积累的速度不断提高,我们迫切需要强有力的数据挖掘工具从海量数据中挖掘有用的信息,为高层的决策支持和分析预测服务。起源于贝叶斯统计学的贝叶斯网络以其独特的不确定性知识表达形式、丰富的概率表达能力、综合先验知识的增量学习方法等特性表示了客体的概率分布和因果联系,利用其模型进行数据挖掘能从数据库中挖掘出多层、多点的因果概念联系,推理出客观世界客体间存在的普遍联系,因此成为当前数据挖掘众多方法中最引人注目的焦点之一[1]。 1 贝叶斯网络 图1 贝叶斯网络结构示例 贝叶斯网络(Bayesian netw ork ),又叫概率因果网络、信任网络、知识图等,是一种有向无环图[2]。一个贝叶斯网络由两个部分构成: (1)具有k 个节点的有向无环图G (如图1)。图中的节点代表随机变量,节点间的有向边代表了节点间的相互关联关系。节点变量可以是任何问题的抽象,如测试值、观测现象、意见征询等。通常认为有向边表达了一种因果关系,故贝叶斯网络有时叫做因果网络(causal netw ork )。重要的是,有向图蕴涵了条件独立性假设,贝叶斯网络规 定图中的每个节点V i 条件独立于由V i 的父节点给定的非V i 后代节点构成的任何节点子 集,即如果用A (V i )表示非V i 后代节点构成的任何节点子集,用∏(V i )表示V i 的直接双

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

第五章贝叶斯估计

第五章贝叶斯统计 5.1 简介 到目前为止,我们已经知道了大量的不同的概率模型,并且我们前面已经讨论了如何用它们去拟合数据等等。前面我们讨论了如何利用各种先验知识,计算MAP参数来估计θ=argmax p(θ|D)。同样的,对于某种特定的请况,我们讨论了如何计算后验的全概率p(θ|D)和后验的预测概率密度p(x|D)。当然在以后的章节我们会讨论一般请况下的算法。 5.2 总结后验分布 后验分布总结关于未知变量θ的一切数值。在这一部分,我们讨论简单的数,这些数是可以通过一个概率分布得到的,比如通过一个后验概率分布得到的数。与全面联接相比,这些统计汇总常常是比较容易理解和可视化。 5.2.1最大后验估计 通过计算后验的均值、中值、或者模型可以轻松地得到未知参数的点估计。在5.7节,我们将讨 论如何利用决策理论从这些模型中做出选择。典型的后验概率均值或者中值是估计真实值的恰当选择,并且后验边缘分布向量最适合离散数值。然而,由于简化了优化问题,算法更加高效,后验概率模型,又名最大后验概率估计成为最受欢迎的模型。另外,通过对先验知识的取对数来正 则化后,最大后验概率可能被非贝叶斯方法解释(详情参考6.5节)。 最大后验概率估计模型在计算方面该方法虽然很诱人,但是他有很多缺点,下面简答介绍一下。在这一章我们将更加全面的学习贝叶斯方法。 图5.1(a)由双峰演示得到的非典型分布的双峰分布,其中瘦高蓝色竖线代表均值,因为他接近 大概率,所以对分布有个比较好的概括。(b)由伽马绘图演示生成偏态分布,它与均值模型完全不同。 5.2.1.1 无法衡量不确定性 最大后验估计的最大的缺点是对后验分布的均值或者中值的任何点估计都不能够提供一个不确定性的衡量方法。在许多应用中,知道给定估计值的置信度非常重要。我们在5.22节将讨论给出后验估计置信度的衡量方法。 5.2.1.2 深耕最大后验估计可能产生过拟合

贝叶斯定理在定位与跟踪上应用参考

2.1贝叶斯定理 贝叶斯定理是关于随机事件A和B的条件概率的一则定理。 贝叶斯定理公式:P(A|B)=P(B|A)*P(A)/P(B) (2.1.1) 上面的公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A) (2.1.2) 这里,P(A|B)是在B发生的情况下A发生的可能性。 在贝叶斯定理中,每个名词定义如下: P(A)是A的先验概率。之所以称为"先验"是因为它不考虑任何B方面的因素。 P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。 P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。 P(B)是B的先验概率。 2.2贝叶斯估计 2.2.1 贝叶斯估计的基本原理。 A.贝叶斯估计的4个步骤 ?假设 ?将待估计的参数看作符合某种先验概率分布的随机变量 ?估计方式 ?通过观察样本,将先验概率密度通过贝叶斯规则转化为后验概率密度。 B.概率密度估计的两种基本方法 方法1:参数估计(parametric methods) 根据对问题的一般性的认识,假设随机变量服从 某种分布,分布函数的参数通过训练数据来估计。 如:ML 估计,Bayesian估计。 方法2:非参数估计(nonparametric methods): 不用模型,而只利用训练数据本身对概率密度做 估计。 C.贝叶斯估计应用及其框图 贝叶斯估计应用在很多领域,在概率、数理统计学中以贝叶斯姓氏命名的有贝叶斯公式、贝叶斯风险、贝叶斯决策函数、贝叶斯决策规则、贝叶斯估计量、贝叶斯方法、贝叶斯统计等等. 贝叶斯统计学派把任意一个未知参数都看成随机变量,应用一个概率分布去描述它的未知状况,该分布称为先验分布。 图 2.1 贝叶斯估计应用框图

基于贝叶斯推理的数据融合

基于贝叶斯推理的数据融合 1 贝叶斯推理的基本原理 (1) 2 数据融合中的贝叶斯推理 (2) 3 贝叶斯推理方法的优缺点 (3) 1 贝叶斯推理的基本原理 贝叶斯推理是英国学者Thomas Bayes 于1763年提出的,两个世纪以来,它越发展现出广阔的应用前景。贝叶斯推理的基本原理是随着测量的到来,将给定假设的先验密度更新为后验密度。贝叶斯推理与经典推理的不同之处,除对似然函数进行变换外,还可以用于多假设情况。 贝叶斯推理的基本原理是:给定一个前面的似然估计后,若又增加一个证据(测量),则可以对前面的(关于目标属性的)似然估计加以更新。也就是说,随着测量值的到来,可以将给定假设的先验密度更新为后验密度。贝叶斯推理的另一个特点是它适合于多假设情况。 假设12,,...,n A A A 表示n 个互不相容的穷举假设(即存在具有属性i 的一个目标)为一个事件(或事实,观测等),贝叶斯公式的形式为: 1()() ()()()i i i n j j j P B A P A P A B P B A P A ==∑ (1) 且 ()1n i i P A =∑ 11()()(,)()n n i i i i i P B A P A P B A P B ====∑∑ ()i P A 表示事件12,,...,n A A A 出现的可能性大小,为假设1A 为真的先验概率,这是实验前就已知道的事实。()i P A B 为给定证据B (目标i 存在)条件下,假设1A 为真的后布密度。

2 数据融合中的贝叶斯推理 贝叶斯推理方法可以对多传感器测量数据进行融合,以计算出给定假设为真的后验概率。设有n 个传感器,它们可能是不同类的,他们共同对一个目标进行探测。再设目标有m 个属性需要进行识别,即有m 个假设或命题1,2,...,i A m =。贝叶斯融合算法在实现上分多级进行。在传感器一级,将测量数据依其获取的信息特征与要识别的目标属性联系进行分类,最终给出关于目标属性的一个说明12,,...,n B B B ,它依赖于测量数据和传感器分类法。第二步是计算每个传感器的说明(证据)在各假设为真条件下的似然函数。第三步是依据贝叶斯公司计算多测量证据下各个假设为真的后验概率。最后一步是判定逻辑,以产生属性判定结论,过程如图1所示 传感器1传感器2传感器n P(B1/Aj ) P(B2/Aj)P(Bn/Aj ) 组合贝叶斯公式贝叶斯统计接侧判断逻辑极大后验给定门限的 极大后验等 B1B2B3融合结果 图1 基于贝叶斯推理的数据融合 在第三步中,计算目标身份的融合概率应分两步。首先,计算出假设i A 条件下,n 个证据联合似然函数,当各传感器独立探测时,12,,...,n B B B 相互独立,该联合似然函数为 1212(,,...,)()()...()n j j j n j P B B B A P B A P B A P B A = (2) 然后,应用Bayes 公式得到n 个证据条件下,假设的后验概率k A 121212(,,...,)() (,,...,)(,,...,)n j j j n n P B B B A P A P A B B B P B B B = (3) 第四步一般是采用极大后验判定逻辑,直接选取或判定门限选取具有最大后验联合概率的目

贝叶斯估计方法学习感想及看法

关于贝叶斯估计方法学习感想及看法 经过半学期的课程学习,终于在参数估计这部分内容的学习上有了个终结。参数估计方面的学习主要分了经典学派的理论和贝叶斯学派的理论。在参数估计上经典学派运用的是矩法和极大似然估计,贝叶斯学派用的当然就是Bayes 估计。经典学派的学习在本科学习比较多,而Bayes 方法对我来说算是个新知识,在此只对Bayes 统计方法做个小结,然而由于知识有限性,只能粗略地从讲义中对Bayes 估计总结点观点出来。 贝叶斯统计中除了运用经典学派的总体信息和样本信息外,还用到了先验信息,其中的两个基本概念是先验分布和后验分布。 1,先验分布,总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于总体分布参数总体分布参数θ的任何统计推断问题中,除了使用样本所提供的信息外,还必须规定一个先验分布,它是在进行统计推断时不可缺少的一个要素。他们认为先验分布不必有客观的依据,可以部分地或完全地基于主观信念。 2,后验分布。根据样本分布和未知参数的先验分布,可以用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及本分布。可以看出Bayes 统计模型的特点是将参数θ视为随机变量,并具有先验分布H(θ)。Bayes 统计学派与经典学派的分歧主要是在关于参数的 认识上的分歧,经典学派视经典学派视θ为未知常数;而Bayes 学派视θ为随机变量且具有先验分布为随机变量且具有先验分布。两个学派分歧的根源在于对于概率的理解。经典学派视概率为事件大量重复实验频率的稳定值;而Bayes 学派赞成主观概率,将事件的概率理解为认识主体对事件发生的相信程度。个人认为将θ视为随机变量且具有先验分布具有实际意义,这也算Bayes 学派在二百年时间不断发展的一个前提。 然后用数学计算的观点来看看Bayes 估计: 一切估计的目的是要对未知参数θ作统计推断。在没有样本信息时,我们只能依据先验分布对θ作出推断。在有了样本观察值1(,,)n X x x = 之后,我们应依据(,)h X θ对θ作出推断。若把(,)h X θ作如下分解: ()(,)|()h X X m X θπθ= 其中()m X 是X 的边际概率函数: ??ΘΘ ==,)()|(),()(θθπθθθd X p d X h X m 它与θ无关,或者说)(X m 中不含θ的任何信息因此能用来对θ作出推断的仅是条件分布)|(X θπ,它的计算公式是:)|(X θπ=(,)h X θ/()m X 。 贝叶斯统计学关键是首先要想方设法先去寻求θ的先验分布h (θ),先验分布的确定方法有客观法,主观概率法,同等无知原则,共轭分布方法,Jeffreys

全概率公式贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 ,B2....两两互斥,即 B i∩ B j= ,i≠j , i,j=1,2,....,且P(B i)>0,i=1,2,....; ∪B2∪....=Ω ,则称事件组 B1,B2,...是样本空间Ω的一个划分 设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件

基于贝叶斯网络的各种抽样方法比较

摘要: 本文主要介绍了贝叶斯网的基本概念以及重要性抽样方法的基本理论和概率推理, 重点介绍了两种重要的抽样方法, 即逻辑抽样方法和似然加权法, 并且比较了它们的优缺点 关键词: 贝叶斯网 抽样法 无偏估计 1.引言 英国学者T.贝叶斯1763年在《论有关机遇问题的求解》中提出一种归纳推理的理论, 后被一些统计学者发展为一种系统的统计推断方法, 称为贝叶斯方法.采用这种方法作统计推断所得的全部结果, 构成贝叶斯统计的内容.认为贝叶斯方法是唯一合理的统计推断方法的统计学者, 组成数理统计学中的贝叶斯学派, 其形成可追溯到 20世纪 30 年代.到50~60年代, 已发展为一个有影响的学派.Zhang 和Poole 首先提出了变量消元法, 其原理自关于不定序动态规划的研究(Bertele and Brioschi,1972).相近的工作包括D`Ambrosio (1991)、Shachter (1994)、Shenoy (1992)等人的研究.近期关于变量消元法的研究可参见有关文献【1】由于变量消元法不考虑步骤共享, 故引进了团树传播法, 如Hugin 方法.在实际应用中, 网络节点往往是众多的, 精确推理算法是不适用的, 因而近似推理有了进一步的发展. 重要性抽样法(Rubinstein, 1981)是蒙特尔洛积分中降低方差的一种手段, Henrion (1988)提出了逻辑抽样, 它是最简单也是最先被用于贝叶斯网近似推理的重要性抽样算法. Fung 和Chang (1989)、Shachter 和Peot (1989)同时提出了似然加权算法. Shachter 和Peot (1989)还提出了自重要性抽样和启发式重要性抽样算法. Fung 和Favero (1994)提出了逆序抽样(backward sam-pling ), 它也是重要性抽样的一个特例. Cheng 和Druzdzel (2000)提出了自适应重要性抽样算法, 同时也给出了重要性抽样算法的通用框架, 这就是各种抽样方法的发展状况. 本文就近似推理阐述了两种重要的抽样方法即逻辑抽样方法和似然加权法, 并比较了它们的优缺点. 2. 基本概念 2.1 贝叶斯网络的基本概念 贝叶斯网络是一种概率网络, 用来表示变量之间的依赖关系, 是带有概率分布标注的有向无环图, 能够图形化地表示一组变量间的联合概率分布函数. 贝叶斯网络模型结构由随机变量(可以是离散或连续)集组成的网络节点, 具有因果关系的网络节点对的有向边集合和用条件概率分布表示节点之间的影响等组成.其中节点表示了随机变量, 是对过程、事件、状态等实体的某些特征的描述; 边则表示变量间的概率依赖关系.起因的假设和结果的数据均用节点表示, 各变量之间的因果关系由节点之间的有向边表示, 一个变量影响到另一个变量的程度用数字编码形式描述.因此贝叶斯网络可以将现实世界的各种状态或变量画成各种比例, 进行建模. 2.2重要性抽样法基本理论 设()f X 是一组变量X 在其定义域n X R Ω?上的可积函数.考虑积分 ()()X I f X d X Ω= ? (2.2.1)

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0则在事件B发生的条件下,事件A发生的条件概率(conditional probability) 为: P(A|B)=P(AB)/P(B) (2 )乘法公式 1. 由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2?乘法公式的推广:对于任何正整数n》全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率 (con diti onal probability) 为: P(A|B)=P(AB)/P(B) (2 )乘法公式 1. 由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2. 乘法公式的推广:对于任何正整数n》2,当P(A1A2...A n-1) > 0时,有: P(A 1A2...A n-1A n)=P(A 1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1 , B2,....满足 1. B1, B 2....两两互斥,即B i Q B = ? , i i,j=1 , 2 ,....,且P(B i)>0,i=1,2,....; 2. B1U B2U ....= 傢则称事件组B1,B2,...是样本空间Q的一个划分 设B1,B2,...是样本空间Q的一个划分,A为任一事件,则: A =y 忖》F(W) P(A) 上式即为全概率公式(formula of total probability) 2. 全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

基于贝叶斯的文本分类

南京理工大学经济管理学院 课程作业 课程名称:本文信息处理 作业题目:基于朴素贝叶斯实现文本分类姓名:赵华 学号: 114107000778 成绩:

基于朴素贝叶斯实现文本分类 摘要贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。 关键词社区发现标签传播算法社会网络分析社区结构 1引言 数据挖掘在上个世纪末在数据的智能分析技术上得到了广泛的应用。分类作为数据挖掘中一项非常重要的任务,目前在商业上应用很多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该分类器可以将数据集合中的数据项映射到给定类别中的某一个,从而可以用于后续数据的预测和状态决策。目前,分类方法的研究成果较多,判别方法的好坏可以从三个方面进行:1)预测准确度,对非样本数据的判别准确度;2)计算复杂度,方法实现时对时间和空间的复杂度;3)模式的简洁度,在同样效果情况下,希望决策树小或规则少。 分类是数据分析和机器学习领域的基本问题。没有一个分类方法在对所有数据集上进行分类学习均是最优的。从数据中学习高精度的分类器近年来一直是研究的热点。各种不同的方法都可以用来学习分类器。例如,人工神经元网络[1]、决策树[2]、非参数学习算法[3]等等。与其他精心设计的分类器相比,朴素贝叶斯分类器[4]是学习效率和分类效果较好的分类器之一。 朴素贝叶斯方法,是目前公认的一种简单有效的分类方法,它是一种基于概率的分类方法,被广泛地应用于模式识别、自然语言处理、机器人导航、规划、机器学习以及利用贝叶斯网络技术构建和分析软件系统。 2贝叶斯分类 2.1分类问题综述 对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。 从数学角度来说,分类问题可做如下定义: 已知集合:和,确定映射规则,使得任意有且仅有一个使得成立。(不考虑模 糊数学里的模糊集情况) 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

基于贝叶斯估计的信息融合方法研究

基于贝叶斯估计的信息融合方法研究 摘 要:为了有效融合多个传感器的测量数据,得到准确的融合结果,本文以置信距离测度作为数据融合的融合度,利用分位图法,通过置信距离矩阵、关系矩阵寻找多传感器的最佳融合数,并以Bayes 估计理论为基础得到多传感器最优融合数据,最后将它与其它方法得到的融合数据进行了比较。 关键词:Bayes 估计;信息融合;分位图;传感器 Study on Information Fusion MethodsBased on Bayes Estimation Abstract :For getting accurate fused data by fusing multi-sensor measurement data, in this PaPer,the confidence distance measure is used to be fusion measure of data fusion.The useful fused data are looked for by confidence distance matrix and relation matrix through using a method of bitmap.The optimal fused data is given by Bayes estimation theory, and optimal fused results obtained by other methods are compared with it. Key words :Bayes estimation; information fusion; bitmap; sensor 1 引言 信息融合是把来自多种或多个传感器的信息和数据进行综合处理,得到更为准确可靠的理论,从而减少在信息处理中可能出现的失误。一个系统中同时使用着多个信息采集传感器,它们既可以是同种类型的,也可以是不同类型的。在实际应用中不同的传感器所测得的同一物体的某特性参数的数据会有偏差。这种偏差一方面来自传感器本身的误差,另一方面来自数据处理过程的数学方法。必须对传感器所测得的数据进行判断,以决定数据是否可信。信息融合的关键是对各个传感器所得数据的真实性进行判别,找出不同传感器数据之间的相互关系,从而决定对哪些传感器的数据进行融合。数据融合的目的在于运用一定的准则和算法,借助现代科技成果,自动对来自各信源的数据呈报进行联合、变换、相关和合成,从中提取质量的战术情报,洞察战场威胁态势,为作战指挥决策提供可靠依据[1]。本文以置信距离测度作为数据融合的融合度,利用置信矩阵、关系矩阵得到多传感器的最佳融合数,以Bayes 估计理论[2,3]为基础得到多传感器最优融合数据。 2 置信距离测度和置信距离矩阵的确定 用多传感器测量同一个指标参数时,设第i 个传感器和第j 个传感器测得的数据为 i X ,j X 。i X ,j X 都服从Gauss 分布,以它们的pdf 曲线作为传感器的特性函数,记成()x f i ,()x f j 。i x ,j x 为i X ,j X 的一次观测值。为了反应观测值i x ,j x 之间偏差的大小,引进 置信距离测度ij d (i ,j =1,2,…,m),ij d 的值称为第i 个传感器与第j 个传感器数据的置信距离测度[4],ij d 的值越小,i ,j 2个传感器的观测值越相近,否则偏差就很大,因此ij d 也称为i ,j 2个传感器的融合度。设 ()A ==?22dx x x f d i x x i ij j i (1) ()B ==?22dx x x f d j x x j ji i j (2) 式中, ()?? ???????????? ??--=2 21exp 21i i i i i x x x x f σσπ (3)

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

条件概率的深化积事件的概率贝叶斯公式

条件概率的深化 积事件的概率、全概率公式、贝叶斯公式 山东省莱芜市第一中学刘志 1.积事件的概率公式 由条件概率定义P(B|A)=P(AB)/P(A),P(A)>0,两边同乘以P(A)可得P(AB)=P(A)P(B|A),由此可得 定理1(积事件的概率)设P(A)>0,则有 P(AB)=P(A)P(B|A) 易知,若P(B)>0,则有 P(AB)=P(B)P(A|B) 乘法定理也可推广到三个事件的情况,例如,设A,B,C为三个事件,且P (AB)>0,则有 P(ABC)=P(C|AB)P(AB)=P(C|AB)P(B|A)P(A) 一般地,设n个事件为A1,A2,…,A n,若P(A1A2…A n-1)>0,则有 P(A1A2…A n)=P(A1)P(A2|A1)P(A3|A1A2)…P(A n|A1A2…A n-1). 事实上,由A1?A1A2?…?A1A2…A n-1,有 P(A1)≥P(A1A2)≥…≥P(A1A2…A n-1)>0 故公式右边的条件概率每一个都有意义,由条件概率定义可知

P (A 1)P (A 2|A 1)P (A 3|A 1A 2)…P (A n |A 1A 2…A n -1) =P (A 1) ) () ()()()()(1212121321121-???n n A A A P A A A P A A P A A A P A P A A P =P (A 1A 2…A n ) 例1. 一批彩电,共100台,其中有10台次品,采用不放回抽样依次抽取3次,每次抽一台,求第3次才抽到合格品的概率. 解 设A i (i =1,2,3)为第i 次抽到合格品的事件,则有 )(321A A A P =)()()(21312A A A P A A P A P =10/100·9/99·90/98≈. 例2. 设盒中有m 只红球,n 只白球,每次从盒中任取一只球,看后放回,再放入k 只与所取颜色相同的球.若在盒中连取四次,试求第一次,第二次取到红球,第三次,第四次取到白球的概率. 解 设R i (i =1,2,3,4)表示第i 次取到红球的事件,i R (i =1,2,3,4)表示第 i 次取到白球的事件.则有 .32) ()()()()(32142131214321k n m k n k n m n k n m k m n m m R R R R P R R R P R R P R P R R R R P +++?++?+++?+== 2.全概率公式 定义,样本空间的划分:设Ω为样本空间,A 1,A 2,…,A n 为Ω的一组事件,若满足 1°A i A j =?, i ≠j ,i ,j =1,2,…,n , 2° n i i A 1 = =Ω,

基于贝叶斯网络

基于贝叶斯网络 的大坝病害诊断研究 徐耀张利民贾金生 中国水利水电科学研究院 中国大坝协会 1香港科技大学

研究背景 截止2007年,全国病险水库座占所有水库数目有37000座,占所有水库数目(85000)的43%。(Chen 2007) 病险水库安全水库 上述病险水库大坝一般为三类坝,抗御洪水标准低,或工程有严重安全隐患不能按设计正常运行或工程有严重安全隐患,不能按设计正常运行。需要解决两个问题 需要解决两个问题: 诊断病害,查找原因;提出合适的除险加固措施2 提出合适的除险加固措施。

大坝病害 坝体-基础结构的病害: 渗流病害 渗流病害; 结构病害(变形、稳定等); … 辅助结构的病害: 1)多样性;2)相关性。 溢洪道病害; 涵管病害; … 大坝病害多样性及相关性的特征要求我们对病险大3 坝进行系统全局的病害诊断。

贝叶斯网络 贝叶斯网络定义为一个由若干变量(节点)构成的有其中变量(节点)之间的关系强度用向无环图,其中变量(节点)之间的关系强度用条件概率表达。(Pearl 1988) A 因果关系图 B + ?P(A) & P(B); P(C|A)P(C|B)P(C|A B)概率表 1 2 C ?P(C|A), P(C|B), P(C|A, B).?节点A,B,C代表变量; ?箭头1,2代表因果关系;?定量评价各个原因可能性;敏感性分析找出重要因子;应用 4 ? A,B称为父节点,C称为子节点. ?敏感性分析找出重要因子; ? 动态分析更新结果.

研究目标 建立一个基于贝叶斯网络的病险大坝病建立个基于贝叶斯网络的病险大坝病害诊断系统: 基于数据库的大坝病害的群体性诊断 基于数据库的大坝病害的群体性诊断;某一特定大坝病害的个体化诊断。 某特定大坝病害的个体化诊断。 5

条件概率、全概率、贝叶斯公式

杨鑫的数学课堂条件概率、全概率、贝叶斯公式、 p(A|B)=P(A∩B) P(B) ?p(A∩B)=p(A|B)×p(B) ?p(A∩B)=P(B|A)×P(A) (1) p(A|B)=P(A∩B) P(B) = p(B|A)×P(A) p(B) (2) 先举个例子,小张从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下: p(L1)=0.5,p(L2)=0.3,p(L3)=0.2(3)每天上述三条路不拥堵的概率分别为: p(C1)=0.2,p(C2)=0.4,p(C3)=0.7(4)其实不迟到就是对应着不拥堵,设事件C为到公司不迟到,事件Li为选择第i 条路,则: p(C)=p(L1)×p(C|L1)+p(L2)×p(C|L)+p(L3)×p(C|L3) p(C)=p(L1)×p(C1)+p(L2)×p(C2)+p(L3)×p(C3) p(C)=0.5×0.2+0.3×0.4+0.2×0.7=0.36 (5) 全概率计算公式 p(C)=p(L1)p(C|L1)······p(L n)p(C|L n)= n ∑ i=1 p(L i)p(C|L i)(6) 三、贝叶斯公式 仍旧借用上述的例子,但是问题发生了改变,问题修改为:到达公司未迟到选择第1条路的概率是多少? 0.5这个概率表示的是,选择第一条路的时候并没有靠考虑是不是迟到,只是因为距离公司近才知道选择它的概率,而现在我们是知道未迟到这个结果,是在这个基础上问你选择第一条路的概率,所以并不是直接就可以得出的。 故有: p(L1|C)=p(C|L1)×p(L1) p(C) p(L1|C)=p(C|L1)×p(L1) P(L1)×p(C|L1)+P(L2)×p(C|L2)+P(L3)×p(C|L3) p(L1|C)=0.2×0.5 0.2×0.5+0.3×0.4+0.2×0.7=0.28 (7) 1

相关文档