文档库 最新最全的文档下载
当前位置:文档库 › 盾构机推力计算

盾构机推力计算

盾构机推力计算
盾构机推力计算

7.8.2盾构机的推力和扭矩计算

盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。

7.8.2.1在软土中掘进时盾构机的推力和扭矩的计算

地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。选取可能出现的最不利受力情况埋深断面进行计算。根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e 时,可直接取全部上覆土体自重作为上覆土地层压力。

盾构机所受压力:

P

e =γh+ P 0

P 01= P e + G/DL

P 1=P e ×λ

P 2=(P+γ.D) λ

式中:λh γ为土容重,γG 为盾构机重,D 为盾构机外径,D=6.25 m ; L 为盾构机长度,L=8.32 m ; P 0为地面上置荷载,P 0=2 t/m 2; P 01为盾构机底部的均布压力;P 1为盾构机拱顶处的侧向水土压力;P 2为盾构机底部的侧向水土压力;P e =1.94×12.8+2=26.83 t/m 2 P 01=26.83+340/(6.25×8.32)=33.37t/m 2 P 1=26.83×0.47=14.89t/m 2

P 2 =(26.83+1.94×6.25)×0.47=18.3t/m 2

7.8.2.1.1盾构推力计算

盾构的推力主要由以下五部分组成:

54321F F F F F F ++++=

式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力

F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力

F5为后方台车的阻力

πμ.)(4

121011DL P P P P F e +++= 3.0=μμ数,计算时取:土与钢之间的摩擦系式中:

t F 23.11443.032.825.63.1889.1437.3383.264

11=???+++?=π)( )

(d P D F 224π= 为水平土压力式中:d P ,)(2

D h P d +

=λγ m D h 93.15228.68.122=+=+ 2/52.1493.1594.147.0m t P d =??=

t F 48.44552.1428.64/22=?=)(π

(C D F 234/π= 式中:C 为土的粘结力,C=4.5t/m 2

t F 06.1385.425.6423=??=)(π

c c W F μ=4

式中:W C 、μC 为两环管片的重量

(计算时假定有两环管片的重量作用在盾尾内,当管片容重为2.5t/m3,管片宽度按1.5m 计时,每环管片的重量为24.12t ),两环管片的重量为48.24t 考虑。μC =0.3

t F 47.143.024.484=?=

θμθcos sin 5h g h G G F +?=

式中:G h 为盾尾台车的重量,G h ≈160t ;

θ为坡度,tg θ=0.025

μg 为滚动摩阻,μg =0.05

t F 00.12116005.0025.01605=??+?≈

盾构总推力:t F 24.175400.1247.1406.13848.44523.1144=++++=

7.8.2.1.2盾构的扭矩计算

盾构配备的扭矩主要由以下九部分组成。在进行刀盘扭矩计算时:

987654321M M M M M M M M M M ++++++++=

式中:M 1为刀具的切削扭矩;M 2为刀盘自重产生的旋转力矩

M 3为刀盘的推力荷载产生的旋转扭矩;M 4为密封装置产生的摩擦力矩

M 5为刀盘前表面上的摩擦力矩 ;M 6为刀盘圆周面上的摩擦力矩

M 7为刀盘背面的摩擦力矩 ;M 8为刀盘开口槽的剪切力矩

M 9为刀盘土腔室内的搅动力矩

a .刀具的切削扭矩M 1

?=0

01R Chrdr M )(2120m a x 1R h C M Γ= 式中:C г:土的抗剪应力,

C г=C+P d ×tg φ=4.5+14.52×tg20°=9.78t/m 2

h max :刀盘每转的最大切削深度,h max =8cm/转

R 0:最外圈刀具的半径,R 0=3.14m

m t M ?=???=-83.3)14.310878.9(2

1221 b .刀盘自重产生的旋转力矩M 2

M 2=GR μg

式中:G :刀盘自重,计算时取刀盘的自重为G=55t

R :轴承的接触半径,计算时取为R=2.6m

μg :滚动摩擦系数,计算时取为μg =0.004

M 2=55×2.6×0.004=0.57t ﹒m

c .刀盘的推力荷载产生的旋转扭矩M 3

M 3=W p R g μz W p =απR c 2P d

式中:W p :推力荷载 ;α:刀盘封闭系数,α=0.70

R g :轴承推力滚子接触半径,R g =1.25m

;R c :刀盘半径,R c =3.14 μz :滚动摩擦系数,μz =0.004 ;P d :水平土压力,P d =14.52t/m 2

W p =0.70π×3.142×14.52=312.83t ;M 3=312.83×1.25×0.004=1.56 t ﹒m d .密封装置产生的摩擦力矩M 4

M 4=2πμm F (n 1R m12+n 2R m22)

式中:μm :密封与钢之间的摩擦系数,μm =0.2;F :密封的推力,F=0.15t/m n 1 、n 2 :密封数,n 1=3 n 2=3;R m1、R m2:密封的安装半径,R m1=1.84m R m2=2.26m ;M 4= 2π×0.2×0.15×(3×1.842+3×2.262)=4.80 t ·m

e .刀盘前表面上的摩擦力矩M 5

)(3

235d P P R M απμ= 式中:α:刀盘开口率,α=0.30;μP :土层与刀盘之间的摩擦系数,μP =0.15 R :刀盘半径,R=3.14m

m t M ?=???=96.41)52.1414.315.030.0(3

235π f .刀盘圆周面上的摩擦力矩M 6

M 6=2πR 2BP Z μP

式中:R :刀盘半径,R=3.14m ;B :刀盘宽度,B=0.775m

P Z :刀盘圆周土压力

P Z =(P e +P 01+P 1+P 2)/4=(26.83+33.37+14.89+18.3)/4=23.35t/m 2

M 6=2π×3.142×0.775×23.35×0.15=167.09t ·m

g .刀盘背面的摩擦力矩M 7

M 7=2/3[(1-α)πR 3μP ×0.8P d ]

M 7=2/3(0.70×π×3.143×0.15×0.8×14.52)=78.33t ·m

h .刀盘开口槽的剪切力矩M 8

απτ383

2R C M ?= 式中:C τ:土的抗剪应力,因碴土饱和含水,故抗剪强度降低,可近似地 取C=0.01Mpa=1 t/m 2,φ=5°;C τ=C+P d ×tg φ=1+14.52×tg5=2.27 t/m 2 m t M ?=????=88.4530.014.327.23

238π i .刀盘土腔室内的搅动力矩M 9

M 9=2π(R 12-R 22)LC τ

式中:d 1 :刀盘支撑梁外径,d 1=4.8m ; d 2 :刀盘支撑梁内径,d 2=3.84 m L :支撑梁长度, L=0.8 m

M 9=2π(2.4 2-1.922)×0.8×2.06=21.46 t ·m

刀盘扭矩M 为M 1~M 9之和

M=3.83+0.57+1.56+4.80+41.96+167.09+78.33+45.88+21.46

=365.48t ·m

7.8.2.2在硬岩中掘进时盾构机的推力和扭矩的计算

地质参数按照<9>层选取,<9>层为岩石微风化带.

盘形单刃滚刀的参数如下:

直径 d=43.2cm(17英寸),R=21.6cm

刃角 α=60°

每转切深 h=1 cm

刀盘直径 D=6.28m

盘形滚刀刀间距, B m =2htg φ/2

式中:φ为岩石的自然破碎角,查表选取φ=155°

B m =2×1×tg155/2=9.5cm ≈10cm

7.8.2.2.1盾构推力的计算

硬岩具有完全自稳能力。在硬岩中掘进时,盾构机的拱顶、两侧、底部所受的压力均很小,对盾构机的推进影响不大,盾构机的推力主要消耗在滚刀贯入岩石所需要的推力上,所以可以近似的把滚刀贯入岩石的力看成盾构机的推力,其它在选取盾构机推力的富裕量时进行统筹考虑。

根据力平衡原理和能量守恒原理计算盘形滚刀的滚压推力,每个盘形滚刀的推力

F 总=mF 力

式中: F 力为单个滚刀贯入岩石所需要的力

m 为刀盘上安装的盘形滚刀(单刃)的数量

2

2)35()5.13424.15.0φθtg h Rh h r R K F i i d -=(压力 式中:K d 为岩石的滚压系数,查表取K d =0.55

R 压为岩石的抗压强度,R 压=62.3Mpa=623kg/cm 2

r i 为盘形滚刀的刃角半径;r i =8cm

θi 为盘形滚刀的半刃角;θi =30°

φ为岩石的自然破碎角,φ=155°

t tg F 64.242

155116.2121)3530()5.1862355.03424.15.0=-????????=(力 m= D /(2×B m )

式中:D 为刀盘的外径,D= 6.28m

B m 为滚刀的刀间距,B m =10cm

m = 6.28/(2×10×10-2)=31

本盾构机设计双刃滚刀19把,合计单刃滚刀38把,满足需要。

盾构机的总推力:F 总=mF 力=38×24.64=936.32t

7.8.2.2.2盾构扭矩的计算

硬岩掘进的扭矩主要由以下三部分组成:

321T T T T ++=

式中:T 1为刀盘滚动阻力矩计算

T 2为石碴提升所需要的扭矩

T 3为克服刀盘自重所需要的扭矩

a .刀盘滚动阻力矩计算T 1

∑==m

i i m m FB T 11

式中:F 为盘形滚刀的滚动力

力P h

R h F -=243ξ 式中:ξ为与被滚压岩石自由面条件和形状有关的换算系数,ξ=0.8

P 力=F 压=24.64

h 为每转切深,h =1cm

R 为盘形滚刀的半径,R=6.21 mm

27.264.241

6.21218.043=?-???=F B m 为盘形滚刀刀间距,B m =10cm=0.1m

m t m T i i ?=??=∑=99.2041.027.242

11

b .石碴提升所需要的扭矩T 2

T 2=q πR 2h μ1R

式中:q 为石碴容重,q=2.59t/m 3

R=3.14 m

H=1 mm/n

μ1为刀盘系数,μ1=0.70

T2=2.59×π×3.142×0.01×0.70×3.14=1.75t

c.克服刀盘自重所需要的扭矩T3

T3=W1μ1R

式中:W1为刀盘自重,W1=55 t

μ1=0.70

R=3.14m

T3=55×0.70×3.14=120.51t·m

硬岩掘进所需要的力矩T= 204.99+1.75 +120.51= 327.25t·m

7.8.2.3推力和扭矩的选取及验证

软土中掘进:推力F=1754.24t,扭矩T=365.48t·m

硬岩中掘进:推力F=936.32t,扭矩T=327.25 t·m

由于盾构在施工中经常需要纠偏、转向,因此盾构的推力实际上要比计算出来的大,按照经验数据,盾构实际配备的推力为计算值的1.5倍。

5.1=

?

5.1

=

1754

?

=

t

F36

F

.

.

2631

24

按照《Mechanised Shield Tunnelling》一书(作者:Bernhard Maidl;Martin Herrenknecht;Lothar Anheuser等)介绍的经验公式进行验算

()

?

F2

D

kN

式中:α为经验系数,按下图取500~1200

D 为盾构外径,D =6.25 m

~

500

1200

)

=

.6

?

=

(2=

46875

F5.

kN

t

25

4687

19530

~

~

1953

本盾构机设计总推力为3421t,既大于理论计算值,又处于经验计算值之间,说明盾构机的推力是足够的。

论计算及经验计算的要求。

7.8.3刀盘的驱动功率

a .刀盘驱动所需功率:

9550

n T P c ?=' 式中:T c 为刀盘驱动的最大扭矩;T c =530 t ·m

n 为刀盘最大扭矩时的转速

与盾构机设计的最大扭矩相对应的转速为1 r/m ,则刀盘执行机构实际功率为:

kW P 97.5549550

1105304=??=' b. 液压马达所需总功率:

kW P P m 91.65285

.097.554==='η

其中:ηm 为马达效率,ηm =0.85

m 为液压马达数量,m=8

每个马达功率为:

kW 61.818

652.91P m ===m P c. 驱动电机的总功率:

kW P

P d z 7259.0/91.652===η

其中:ηd 为电机效率,ηd =0.9

本盾构机刀盘电机配备的功率为945kW ,在满足上述计算要求的情况下,仍有较大富裕,以应付掘进过程中不明因素的影响。

7.8.4盾构推进所需功率

盾构机最大推进功率P T 可按:

P T =F ·V

式中:F---总推力,F=3421t

V---最大推进速度,V=8cm/min

P T =3421×10×8×10-2/60=45.6kW

本盾构机的推进功率取值为55kW ,可满足上述要求。

7.8.5螺旋输送机参数的确定

a .输送量Q

理论出土量Q L 可按:

max 2

4V D Q L ???=πα

式中:D 为盾构的开挖直径,D=6.28m

V max 为盾构的开挖速度,V max =8cm/min ×60=4.8m/h

α为土的松动系数取为,α=1.5

/h m 4.2218.4428.65.132

=???=πL Q

本盾构机的螺旋输送机的输送能力为400m 3/h ,可满足计算要求。 b .螺旋输送机驱动功率

螺旋输送机所需功率:

)(367

0H L w Q P L L +??=γ 式中:w 0为物料阻力系数,取3.2

γ为土的容重,取1.94t/ m 3

L 、H 为螺旋输送机的水平长度和高度

初定螺旋输送机的长度为10m ,倾角为23°则:

L=10×cos23°=9.205 m H=10×sin23°=3.907 m 所以,kW P L 55.70)907.3205.92.3(36794.1400=+??= 电机所需功率:kW P k P L

18875

.055.702≈?==总η 本盾构机螺旋输送机驱动电机功率315 kW ,可以满足上述计算要求。

7.8.7皮带输送机的参数确定

皮带输送机的输送量应与螺旋输送机的输送量相匹配,按450 m 3/h 确定皮带输送机的参数进行计算。

a. 确定带宽B

V K K K Q

B v d β≥

式中:Q 为皮带输送机的输送量取450m 3/h

K d 为端面系数,查表K d =355

K v 为速度系数,查表 K v =0.96

K β为倾角系数,查表K β=1

V 为带速,V=2.5m/s

mm B 7275

.2196.0355450=???≥ 取标准带宽,B=800mm

b .皮带输送机的功率计算

皮带输送机的功率即为电动滚筒的功率,电动滚筒的功率N 可按: η

0N K N q

式中:K q 为满载驱动系数,K q =1.0~1.4,取K q =1.4

η为效率,取η=0.88

N 0为电动滚筒的轴功率: ()f h z h k K H Q Q L K V L K N ??-??+??=00273.00

式中:K q 为空载运行功率系数,查表K q =0.0165

L h 为运行长度,L h =45m

K z 为水平满载运行功率系数,查表K z =10.89×10-5

V 为带速,V=2.5m/s

H 为倾斜高度,H=0.5m

查表取K f =2.8

()kW N 65.98.25.045000273.0450451089.105.2450165.050=???-???+??=-

kW N 35.1588

.065.94.1=?≥ 本盾构机皮带输送机配备功率为30kW ,满足上述计算要求。

冷库冷风机及机组匹配计算

冷库冷风机及机组匹配计算 和顺制冷作为国内领先的冷库品牌企业,一直专注于制冷行业,尤其是冷库的各个应用领域。今天就由和顺制冷小编来给大家介绍冷库冷风机及机组匹配计算的相关知识。 冷藏库匹配: 一、选配冷风机,每立方米按W0=75W/m3;计算 1、若V(冷库容积)<30 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.2 2、若30m3;≤V<100 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1 3、若V≥100 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0 4 若为单个冷藏库时,则乘系数B=1.1 。最终冷风机选配按W=A*B*W0(W为冷风机热负荷) 二、选配机组,每立方米按Q0=65W/ m3;计算 1、若V(冷库容积)<30 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.2 2、若30 m3;≤V<100 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1 3、若V≥100 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0 4、若为单个冷藏库时,则乘系数B=1.1 最终机组选配按Q=A*B*Q0(Q为机组制冷能力) ,机组及冷风机匹配按-10oC蒸发温度计算。 冷冻库匹配: 一、选配冷风机,每立方米按W0=70W/ m3;计算 1 、若V(冷库容积)<30 m3;,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1. 2 2、若30 m3;≤V<100 m3;开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1 3 若V≥100 m3 3、开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0 4 、若为单个冷冻库时,则乘系数B=1.1 最终冷风机选配按W=A*B*W0(W为冷风机热负荷) 三、当冷库与低温柜共用机组时,机组及冷风机匹配按-35oC蒸发温度计算。当冷库与低温柜分开时,机组及冷风机匹配按-30oC蒸发温度计算加工间负荷匹配 一、选配冷风机,每立方米按W0=110W/ m3;计算 1、若V(加工间容积)<50 m3;,则乘系数A=1.1 2、若V≥50 m3;则乘系数A=1.0 最终冷风机选配按W=A*W0(W为冷风机热负荷) 二、选配机组,每立方米按Q0=55W m3;计算 1、若V(加工间容积)<50 m3;,则乘系数A=1.1 2、若V≥50 m3;,则乘系数A=1.0 最终机组选配按Q=A*Q0(Q为机组制冷能力) 三、当加工间与中温柜共用机组时,机组及冷风机匹配按-10oC蒸发温度计算。当加工间与中温柜分开时,机组及冷风机匹配按0oC蒸发温度计算提示:只适合小型冷库.大型冷库可用EXCEL计算.

《汽轮机原理》习题及答案

《汽轮机原理》 一、单项选择题 6.在其他条件不变的情况下,余速利用系数增加,级的轮周效率η u 【 A 】 A. 增大 B. 降低 C. 不变 D. 无法确定 9.在多级汽轮机中重热系数越大,说明【 A 】 A. 各级的损失越大 B. 机械损失越大 C. 轴封漏汽损失越大 D. 排汽阻力损失越大 1.并列运行的机组,同步器的作用是【 C 】A. 改变机组的转速 B. 改变调节系统油压 C. 改变汽轮机功率 D. 减小机组振动 5.多级汽轮机相对内效率降低的不可能原因是(D)。A.余速利用系数降低 B.级内损失增大 C.进排汽损失增大 D.重热系数降低 19.关于喷嘴临界流量,在喷嘴出口面积一定的情况下,请判断下列说法哪个正确:【 C 】 A.喷嘴临界流量只与喷嘴初参数有关B.喷嘴临界流量只与喷嘴终参数有关 C.喷嘴临界流量与喷嘴压力比有关D. 喷嘴临界流量既与喷嘴初参数有关,也与喷嘴终参数有关 13.冲动级动叶入口压力为P 1,出口压力为P 2 ,则P 1 和P 2 有______关系。【 B 】 A. P 1<P 2 B. P 1 >P 2 C. P 1 =P 2 D. P 1 =0.5P 2 6.汽轮机的进汽节流损失使得蒸汽入口焓【 C 】A. 增大B. 减小C. 保持不变 D. 以上变化都有可能 14.对于汽轮机的动态特性,下列哪些说法是正确的?【 D 】 A. 转速调节过程中,动态最大转速可以大于危急保安器动作转速 B. 调节系统迟缓的存在,使动态超调量减小 C. 速度变动率δ越小,过渡时间越短 D. 机组功率越大,甩负荷后超速的可能性越大 27.在反动级中,下列哪种说法正确【 C 】A. 蒸汽在喷嘴中理想焓降为零 B. 蒸汽在动叶中理想焓降为零 C. 蒸汽在喷嘴与动叶中的理想焓降相等 D. 蒸汽在喷嘴的理想焓降小于动叶的理想焓降 25.在各自最佳速比下,轮周效率最高的级是【 D 】A. 纯冲动级B.带反动度的冲动级 C.复速级D.反动级 26.蒸汽在喷嘴斜切部分膨胀的条件是【 A 】A. 喷嘴后压力小于临界压力 B. 喷嘴后压力等于临界压力 C. 喷嘴后压力大于临界压力 D. 喷嘴后压力大于喷嘴前压力 12.下列哪个说法是正确的【 C 】A. 喷嘴流量总是随喷嘴出口速度的增大而增大; B. 喷嘴流量不随喷嘴出口速度的增大而增大; C. 喷嘴流量可能随喷嘴出口速度的增大而增大,也可能保持不变; D. 以上说法都不对 8.评价汽轮机热功转换效率的指标为【 C 】A. 循环热效率 B. 汽耗率 C. 汽轮机相对内效率 D. 汽轮机绝对内效率 13.在其它条件不变的情况下,冷却水量越大,则【 A 】A. 凝汽器的真空度越高B. 凝汽器的真空度越低 C. 机组的效率越高 D. 机组的发电量越多 4.两台额定功率相同的并网运行机组A, B所带的负荷相同,机组A的速度变动率小于机组B的速度变动率, 当电网周波下降时,两台机组一次调频后所带功率为P A 和P B ,则【 C 】

报告-轴向水推力计算

1 轴向水推力的计算 表1

如图1所示,混流可逆式水 轮机转轮轴向水推力F w (方向向下为正)的构成可描述[1]为: F w =F 1-F 2-F 3-F 4 F 1=F 11+F 12+F 13+F 14 F 2=F 21+F 22+F 23 F 3=F 31+F 32 F 4=F 41+F 42 式中:F 1—转轮上冠上表面所受轴向水推力,向下为正;F 2—转轮下环外表面所受轴向水推力,向上为正;F 3—转轮进、出口所受轴向水推力,向上为正;F 4—转轮内腔流道表面所受轴向水推力及转轮在水中浮力,向上为正;F 11— 上止漏环外侧高压腔上冠上表面 所受轴向水推力;F 12—上止漏环齿 槽处上冠上表面所受轴向水推力;F 13—上止漏环内侧低压腔上冠上表面所受轴向水推力;F 14—主轴密封腔内法兰盘上表面所受轴向水推力;F 21—下止漏环外侧高压腔下环外表面所受轴向水推力;F 22—下止漏环齿槽处下环外表面所受轴向水推力;F 23—下止漏环内侧低压腔下环外表面所受轴向水推力;F 31—转轮进口断面所受轴向水推力;F 32—转轮出口断面所受轴向水推力;F 41—转轮内腔流道(包括叶片)表面所受轴向水推力;F 42—转轮在水中浮力。 轴向水推力的计算采用两种方法。F3和F4采用ANSYS CFX 软件数值模拟计算得到,而转轮上冠和下环水体计算域由于尺寸太小,采用数值模拟方法无法准确计算出结果,所以F1和F2采用解析计算方法得到。 1.1 转轮轴向水推力的解析计算 (1) F 11,F 13,F 14和F 21,F 23的求解 转轮上冠上表面或下环外表面所受轴向水推力的公式[1]如下: F ij =π p 0?ρ2 πK 0nr 030 2 r 22?r 12 +ρ πK 0n 30 2r 24?r 14 4 式中:F ij —所求轴向水推力(即F 11,F 13,F 14和F 21,F 23)(N);r 0,p 0—已知 点处的半径(m)和静压力(Pa);ρ—水的密度(kg/m 3);n —转轮转速(RPM);r 1,r 2—对应腔体内、边界处的半径(m);K 0—圆周速度系数,一般取0.5。 (2) F 12和F 22的求解 转轮上、下止漏环齿槽处的轴向水推力公式[1]如下: F ij =π p 1?p 2?p 121r 1 r 22?r 12 +2π r 23?r 13 p 2?p 1 21 式中:F ij —所求轴向水推力(即F 12,F 22)(N);r 1,r 2—上、下止漏环内外侧的半径(m);p 1、p 2—上、下止漏环内外侧的静压力(Pa)。 1.2 转轮轴向水推力的数值模拟计算 水轮机的计算区域由蜗壳、固定导叶、活动导叶、转轮和尾水管等组成。三维建模软件采用Siemens PLM Software 公司出品的UG NX 8.0 ,为更接近真实 图 1

盾构机推力计算

盾构机的推力和扭矩计算 盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。 在软土中掘进时盾构机的推力和扭矩的计算 地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。选取可能出现的最不利受力情况埋深断面进行计算。根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e时,可直接取全部上覆土体自重作为上覆土地层压力。 盾构机所受压力: P e = 丫h+ P o P0i= P e + G/DL P i=F e xx R=(P+ 丫.D)入 式中:入为水平侧压力系数,入= h为上覆土厚度,h= 丫 为土容重,丫= t/m 3 G为盾构机重,G=340 t D为盾构机外径,D= m ; L为盾构机长度,L= m ; P 0为地面上置何载, P o=2 t/m 2; P oi为盾构机底部的均布压力;P i为盾构机拱顶处的侧向水土压力;P2为盾构机底部的侧向水土压力;P e=X +2= t/m 2 2 2 P oi=+34O/ (x) =m P i=x =m 2 P2 =+ xx =m 盾构推力计算 盾构的推力主要由以下五部分组成: F F i F2 F3 F4 F5 式中:F i为盾构外壳与土体之间的摩擦力;F2为刀盘上的水平推力引起的推力F3为切土所需要的推力;F4为盾尾与管片之间的摩阻力 F5为后方台车的阻力 1

F l 一(P e P01 P P2)DL . 4 式中::土与钢之间的摩擦系数,计算时取0.3 1 F1(26.83 33.37 14.89 18.3) 6.25 8.32 0.3 1144.23t 4 F2 ,4(D2P d) 式中:P d为水平土压力,P d( h D) 2 D 6.28 h 12.8 15.93m 2 2 2 F d 0.47 1.94 15.93 14.52t/m F2/ 4(6.282 14.52) 445.48t F3/4(D2C) 式中:C为土的粘结力,c=m F3 (6.252 4.5) 138.06t 4 F4 W c c 式中:VC、卩c为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为m3管片宽度按计时,每环管片的重量为),两环管片的重量为考虑。卩C= F448.24 0.3 14.47t F5 G h sin g G h cos 式中:G h为盾尾台车的重量,G~ 160t; B为坡度,tg 9 = 卩g为滚动摩阻,卩g= F5160 0.025 0.05 160 1 12.00t 盾构总推力:F 1144.23 445.48 138.06 14.47 12.00 1754.24t 盾构的扭矩计算

盾构掘进主要参数计算方式

目录 1、纵坡 (1) 2、土压平衡盾构施工土压力的设置方法 (1) 2.1深埋隧道土压计算 (3) 2.2浅埋隧道的土压计算 (3) 2.2.1主动土压力与被动土压力 (3) 2.2.2主动土压力与被动土压力计算: (4) 2.3地下水压力计算 (4) 2.4案例题 (5) 2.4.1施工实例1 (5) 2.4.2施工实例2 (7) 3、盾构推力计算 (9) 4、盾构的扭矩计算 (9) 1、纵坡 隧道纵坡:隧道底板两点间数值距离除以水平距离 如图所示:隧道纵坡=(200-100)/500=2‰ 注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0% 2、土压平衡盾构施工土压力的设置方法 根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:

a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋); b、根据判断的隧道类型初步计算出地层的竖向压力; c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力; d、根据隧道所处的地层以及施工状态,确定地层水压力; e、根据不同的施工环境、施工条件及施工经验,考虑0.010~0.020Mpa 的压力值作为调整值来修正施工土压力; f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为: σ初步设定=σ水平侧向力+σ水压力+σ调整 式中, σ初步设定-初步确定的盾构土仓土压力; σ水平侧向力-水平侧向力; σ水压力-地层水压力; σ调整--修正施工土压力。 g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中; h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

关于支墩推力的计算

关于室外直埋管固定墩选择的计算 室外直埋保温管热胀冷缩补偿工艺中,《施-S-04-02市政管线设计说明5.3附件》要求:敷设在市政管沟内的热水管每隔75米设复式拉杆式轴向型不锈钢波纹补偿器;组团内热水管道在地下室外边沿设不锈钢球形伸缩器;其工作压力应与所在管道工作压力一致。其它部位热水管道采用“门”形补偿器和管道敷设的自然弯曲吸收管道的自然变形。 直埋管道的“门”形补偿器设置时需同时配合设置固定支架、固定墩,可据各直埋管的规格,计算各单管推力后,依据《05R410 热水管道直埋敷设》确定固定墩尺寸。下面以“不锈钢无缝管57*3”为例,进行单管推力计算。 根据《CJJ /T81-98城镇直埋供热管道工程技术规程》附录E 确定,单管推力以max H=F l N +计算。 其中:max F ——轴线方向每米管道的摩擦力(N/m ); N ——管道工作循环最高温度下,锚固段内的轴向力(N/m ); 一、 抗外压稳定临界压力P cr (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, 1.70.25612t P cr s r δ=() 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ;

s δ——钢材屈服点,Mpa ;查《水电站压力钢管设计规范 DL t5141-2001》中表6.1.4-1可知,s δ=235 Mpa 。 故:323563.0225.5 1.70.25612MPa P cr ?==?()() 二、 径向均布外压力标准值ok P (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, K P P c cr ok = 其中:K c ——抗外压安全稳定系数,1.8; 则:P ok =35.01(Mpa ) 三、 钢管管壁环向应力t σ(Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, ok P r t t σ?=- 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ; P ok ——径向均布外压力标准值。 故:ok P r 35.0125.5297.61MPa t 3t σ??=- =-=-() 四、 钢管轴向推力(N ) 依据《CJJ /T81-98城镇直埋供热管道工程技术规程》, ()610t N aE t t A 10N νσ=--?????() 其中:a ——钢管的线性膨胀系数(m/m ·℃),查“常用钢材的弹性模量和线性膨胀系数表”可知,a=612.210-?(m/m ·℃); E ——钢材的弹性模量(Mpa ),查“常用钢材的弹性模量

盾构机推力计算

Φ6250复合盾构机的推力和扭矩计算 盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。 一、在软土中掘进时盾构机的推力和扭矩的计算 地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。选取可能出现的最不利受力情况埋深断面进行计算。根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e 时,可直接取全部上覆土体自重作为上覆土地层压力。 盾构机所受压力: P e =γh+ P 0 P 01= P e + G/DL P 1=P e ×λ P 2=(P+γ.D) λ 式中:λh γ为土容重,γG 为盾构机重,D 为盾构机外径,D=6.25 m ; L 为盾构机长度,L=8.32 m ; P 0为地面上置荷载,P 0=2 t/m 2; P 01为盾构机底部的均布压力;P 1为盾构机拱顶处的侧向水土压力;P 2为盾构机底部的侧向水土压力;P e =1.94×12.8+2=26.83 t/m 2 P 01=26.83+340/(6.25×8.32)=33.37t/m 2 P 1=26.83×0.47=14.89t/m 2 P 2 =(26.83+1.94×6.25)×0.47=18.3t/m 2 1、盾构推力计算 盾构的推力主要由以下五部分组成: 54321F F F F F F ++++= 式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力 F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力 F5为后方台车的阻力 πμ.)(4 121011DL P P P P F e +++=

3.0=μμ数,计算时取:土与钢之间的摩擦系式中: t F 23.11443.032.825.63.1889.1437.3383.264 11=???+++?=π)( ) (d P D F 224π= 为水平土压力式中:d P ,)(2 D h P d + =λγ m D h 93.15228.68.122=+=+ 2/52.1493.1594.147.0m t P d =??= t F 48.44552.1428.64/22=?=)(π ) (C D F 234/π= 式中:C 为土的粘结力,C=4.5t/m 2 t F 06.1385.425.6423=??=)(π c c W F μ=4 式中:W C 、μC 为两环管片的重量 (计算时假定有两环管片的重量作用在盾尾内,当管片容重为2.5t/m 3,管片宽度按1.5m 计时,每环管片的重量为24.12t ),两环管片的重量为48.24t 考虑。μC =0.3 t F 47.143.024.484=?= θμθcos sin 5h g h G G F +?= 式中:G h 为盾尾台车的重量,G h ≈160t ; θ为坡度,tg θ=0.025 μg 为滚动摩阻,μg =0.05 t F 00.12116005.0025.01605=??+?≈ 盾构总推力:t F 24.175400.1247.1406.13848.44523.1144=++++= 7.8.2.1.2盾构的扭矩计算 盾构配备的扭矩主要由以下九部分组成。在进行刀盘扭矩计算时: 987654321M M M M M M M M M M ++++++++= 式中:M 1为刀具的切削扭矩;M 2为刀盘自重产生的旋转力矩

支架受力分析

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下:

绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;

汽轮机计算题

汽轮机原理练习题 1.1 已知喷管进口蒸汽压力P0=8.4MPa,温度t0=490℃,初速 C0=50m/s;喷管后压力P1=5.8MPa。试求: ①喷管前滞止焓、滞止压力; ②若速度系数为0.97,喷管出口理想速度与实际速度; ③当P1降为临界压力时的临界速度。 1.2 已知喷管前蒸汽参数为P0=8.824MPa,温度t0=500℃;喷管后压力P1=3.431MPa,蒸汽流量30kg/s,流量系数μn=0.96,问应采用何种喷管?并求喷管出口面积(若采用缩放喷管还应计算喷管喉部面积)。 1.3 一个具有斜切部分的渐缩喷管前的蒸汽压力P0=1.078MPa,温度t0=280℃,初速C0=90m/s,求此喷管的临界压力和临界速度。当喷管出口P1=0.49MPa时,求喷管出口速度和汽流偏转角,喷管出口角α1=15o。若此喷管的临界流量Gc=13.89kg/s,求P1=0.392MPa,及P1=0.70MPa时该喷管的流量。 1.4 某汽轮机级前参数P0=10MPa,x0=0.93。级后压力P2=4MPa,进入该级的初速动能δhc0=8kJ/kg,问最小反动度应为多少方能保证喷管斜切部分中汽流不发生膨胀?设汽流在喷管中为理想流动。 1.5 汽轮机某级的入口参数为P0=3.4MPa,温度t0=435℃,该级反动度Ωm=0.38,级后P2= 2.2MPa,该级采用渐缩喷管,其出口面积A n=52cm2。试计算:

①通过喷管的实际流量; ②若级后压力降为1.12 MPa,反动度降为0.3,通过喷管的流量又为多少? 1.6 某级级前参数P0= 2.0MPa,温度t0=350℃,级后P2=1.5MPa,反动度Ωm=0.15,速比x1=0.53,出汽角α0=14o,β2=β1-6o,φ=0.97,入口动能为0,试求: ①解出并画出该级的速度三角形; ②轮周有效焓降和轮周效率。 1.7 试进行冲动级的热力计算。 已知汽轮机转速n=3000rpm,流过该级的蒸汽量G=60T/h,级平均直径d m=1.44m,级理想焓降Δh t=125.6kJ/kg,入口初速C0=91.5m/s,级前汽压P0=0.0981MPa,干度x0=0.99,反动度Ωm=0.2,出汽角α1=19o。试求: ①进行喷管热力计算,确定喷管通流面积和高度; ②进行动叶热力计算,确定动叶通流面积和高度; ③画出该级的速度三角形; ④内功率,内效率; ⑤画出级的热力过程线。 2.1 试求蒸汽初参数P0=8.83MPa,温度t0=500℃及背压 P c=1.08MPa时的背压式汽轮机的重热系数α。该机共有九级,调节级汽室压力P2=4.9MPa,调节级内效率η=0.67,八个压力级具有相同的

冷风机设计计算

第二章冷空气参数计算 人工制冷是指借助于制冷装置,以消耗机械能或电磁能、热能、太阳能的呢过形式的能量为代价,把热量从低温系统向高温系统转移而得到低温,并维持这个低温。目前常用的制冷方式有蒸汽压缩式制冷、蒸汽吸收式制冷、蒸汽喷射式制冷、吸附式制冷、电热制冷、磁制冷、涡流管制冷和热声制冷等,其中最为常用的是蒸汽压缩式制冷。蒸汽压缩式制冷是利用气体的节流效应,通过绝热膨胀来制冷的。 蒸汽压缩式制冷由分为单机蒸汽压缩式制冷循环和多级蒸汽压缩式制冷循环及其许多发展形式,这里为了研究方便,采用最简单的单级蒸气压缩式制冷循环。单机压缩式制冷循环系统主要由压缩机、冷凝器、膨胀阀和蒸发器四大部件组成,如下图所示。对制冷剂蒸汽只进行一次压缩,故称为单机蒸汽压缩。整个 循环过程主要由压缩过程、冷凝过程、节流过程以及蒸发过程四个过程组成,每个过程在不同的部件中完成,制冷剂在每个过程中的状态又各不相同。 对于冷风机的设计计算,要对循环的主要参数进行设计计算,并主要关注与蒸发器相关的循环参数。 在冷风机的设计过程中,首先要根据所给条件计算出冷空气参数,冷空气参

数是冷风机设计计算的基础和依据,其计算结果直接影响冷风机的选型和设计,因此其计算要求较高的精度,具有重要的意义。冷空气计算主要是依据相关经验公式和查表所得进行的。计算的内容可大概分为回风参数和送风参数,回风参数是冷风机蒸发器的进口空气参数,送风参数是冷风机的出口空气参数也即要进入室内的空气参数;计算主要涉及冷空气的焓值、含湿量、密度、粘度、饱和蒸汽压等。 2.1制冷循环相关计算 2.11已知条件: 已知:回风干球温度:0℃ 回风相对湿度:90% 送风干球温度:-3℃ 送风相对湿度:95% 大气压: 10132Pa 制冷量: 5.4kw 制冷剂: R22 2.12相关计算: 1.查表得R22的汽化潜热为210.55kJ/kg 2.制冷剂循环量: 代入数据计算得,制冷剂循环量为115.412kg/h 2.2冷空气参数计算 1.热力学温度: T=t+273.15 回风温度:273.15 送风温度:270.15 2.水蒸气饱和压力: 2195768 .2)1(4287.0)1(50475.1lg 028.5)1(79574.10lg 10 1010 10) 1(76955.452969.840 00--??+-??+?--?=- ?-? --T T b T T T T P T T P 其中,P :水蒸气饱和压力 P b :大气压力 T :冷空气温度 T 0:绝对零度

材料力学轴向拉压题目答案详解

2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内 的应力。设两根横梁皆为刚体。 解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象 由平衡方程知 0===A B B R Y X (3)以杆BD 由平衡方程求得 KN N N N Y KN N N m C 200 10 01001101 0212 11==--===?-?=∑∑ (4)杆内的应力为 1

MPa A N MPa A N 7.6320 41020127104101023 2222 3111=???== =???==πσπσ 2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。铝杆EF 的l 1=1m , A 1=500mm 2,E 1=70GPa 。钢杆AC 的l 2=1.5m ,A 2=300mm 2,E 2=200GPa 。若载荷作用点G 的垂直位移不得超过2.5mm 。试求P 的数值。 解:(1)由平衡条件求出EF 和AC 杆的内力 P N N N P N N AC EF AC 4 3 32 2112===== (2)求G 处的位移 2 2221111212243)ΔΔ23 (21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G + =+=+== (3)由题意 kN P P P A E Pl A E Pl mm l G 1125.2300 102001500500107010009212143435.23 3222111≤∴≤???+????=??+??≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm 的圆截面 杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。

各种制冷量单位的换算及冷库冷量计算

各种制冷量单位的换算关系如下: 1. 1 kcal/h (大卡/小时) =1.163W,1 W =0.8598 kcal/h; 2. 1 Btu/h (英热单位/小时) =0.2931W,1 W = 3.412 Btu/h; 3. 1 USRT (美国冷吨) =3.517 kW,1 kW =0.28434 USRT; 4. 1 kcal/h =3.968 Btu/h,1 Btu/h =0.252 kcal/h; 5. 1 USRT =3024 kcal/h,10000 kcal/h =3.3069 USRT; 6. 1匹=2.5 kW(用于风冷机组),1匹=3 kW(用于水冷机组) 说明: 1. “匹”用于动力单位时,用Hp(英制匹)或Ps(公制匹)表示,也称“马力”,1 Hp (英制匹) =0.7457 kW,1 Ps (公制匹) =0.735 kW; 2. 中小型空调制冷机组的制冷量常用“匹”表示,大型空调制冷机组的制冷量常用“冷吨(美国冷吨)”表示。 [ 冷库冷量计算] 一、冷藏冷库匹配的冷风机: 每立方米负荷按W0=75W/m3计算。 1 若V(冷库容积)<30m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.2; 2 若30m3≤V<100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1; 3 若V≥100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0; 4 若为单个冷藏库时,则乘系数B=1.1 最终冷库冷风机选配按W=A*B*W0(W为冷风机负荷); 5 冷库制冷机组及冷风机匹配按-10oC蒸发温度计算。 二、冷冻冷库匹配的冷风机: 每立方米负荷按W0=70W/m3计算。 1 若V(冷库容积)<30m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.2; 2 若30m3≤V<100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.1; 3 若V≥100m3,开门次数较频繁的冷库,如鲜肉库,则乘系数A=1.0; 4 若为单个冷冻库时,则乘系数B=1.1 最终冷库冷风机选配按W=A*B*W0(W为冷风机负荷) 5 当冷库与低温柜共用制冷机组时,机组及冷风机匹配按-35oC蒸发温度计算。当冷库与低温柜分开时,冷库制冷机组及冷风机匹配按-30oC蒸发温度计算。

支架受力分析

支架受力分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为:

F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下: 绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;2、通过选择更大规格的型钢来试验,直到满

汽轮机作业

绪论 1.按工作原理分,汽轮机的分类。 2.按热力特性分,汽轮机的分类。 3.某国产汽轮机的型号为N300-16.7/537/537,说明该汽轮机的主要特点。 第一章 1、熟悉并掌握蒸汽在喷嘴和动叶通道中的流动过程、蒸汽在喷嘴和动叶入口、出口处各参数的计算公式。 2、如何计算喷嘴与动叶出口的汽流速度,喷嘴损失与动叶损失的大小如何确定? 速度系数的大小与哪些因素有关? 3、什么是级的的反动度?根据反动度的大小,级可分为哪几种?各有什么特点? 3、何为喷嘴的临界状态?临界速度与流动损失的大小有关吗?喷嘴的压比与喷嘴的流量有何关系?何为彭台门系数,如何计算喷嘴的实际流量?流量系数在过热区和饱和区一样吗? 4、斜切部分的作用是什么?何为极限膨胀压力? 5.推导轮周效率的各种表达式,证明 解释级的轮周功率的物理意义;何为余速利用系数,分析余速利用系数对下级入口状态的影响。 6.速比、最佳速比及假想速比的定义 7.纯冲动级、反动级和复速级各自的最佳速比,余速利用对最佳速比的影响,速比与级的作功能力的关系 8.级内损失由哪几种?解释每种损失产生的主要原因。 9.为什么反动级的漏汽损失比冲动级大? 10.为什么级的相对内效率是衡量级的能量转化完善程度的最终指标? 11、试述可控涡流型的优缺点。 12、试述扭叶片级的工作原理。 13、使用直叶片时主要产生那些附加损失。 14、理想等环流流型有什么特性。 15. 某汽轮机一个中间级的理想滞止焓降为 级的平均反动度 ,动叶的平均直径为1.44m ,级的流 量为 ,下级的余速利用系数为0.9,汽轮机的转速 (1). 计算并画出级的速度三角形; (2). 计算级的轮周损失、轮周功率和轮周效率; (3). 在h-s 图上画出整级的热力过程线,并标注各焓降和损失 119α?=0.97?=0.937ψ=215ββ?=-0.2m Ω=3000r/min

(完整word版)盾构机推力计算.docx

7.8.2盾构机的推力和扭矩计算 盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。7.8.2.1在软土中掘进时盾构机的推力和扭矩的计算 地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。选取可能出现的最不利受力情况埋深断面进行计算。根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e时,可直接取全部上覆土体自重作为上覆土地层压力。 盾构机所受压力: P e =γ h+ P0 P 01= P e + G/DL P1=P e×λ P2=(P+γ .D) λ 式中:λ为水平侧压力系数,λ=0.47 h 为上覆土厚 度,h=12.8m 为土容重,γ =1.94 t/m3 3 γ G 为盾构机重,G=340 t D 为盾构机外径,D=6.25 m ;L 为盾构机长度,L=8.32 m ;P0 为地 面上置荷载,P0=2 t/m2;P01为盾构机底部的均布压力;P1 为盾构机拱顶处的侧向水土压力;P2为盾构机底部的侧向水土压力;P e=1.94×12.8+2=26.83 t/m2 2 2 P01=26.83+340/(6.25× 8.32)=33.37t/m2P1=26.83×0.47=14.89t/m2 2 P2 =(26.83+1.94×6.25)× 0.47=18.3t/m2 7.8.2.1.1盾构推力计算盾构的推力主要由以下五部分组成: F F1 F2 F3 F4 F5 式中:F1 为盾构外壳与土体之间的摩擦力;F2为刀盘上的水平推力引起的推力F3 为切土所需要的推力;F4为盾尾与管片之间的摩阻力 F5 为后方台车的阻力 1 F1 1(P e P01 P1 P2)DL . 4 式中::土与钢之间的摩擦系数,计算时取0.3 1

汽轮机原理第三章习题

第三章复习思考题 一、填空题 1.多级汽轮机中除级内损失外,还有进汽阻力损失、排汽阻力损失、机械损失和( )损失。 2.对于大容量喷嘴配汽汽轮机,一般只在( )级采用部分进汽。 3.汽轮机的汽耗率与汽轮机的初终参数( )。 4.运行中,常采用( )和绝对电效率来衡量不同参数机组运行经济性的好坏。 5.汽轮机每生产1kwh 电能所需的蒸汽量,称为汽轮机的( )。 6.上一级损失中的一小部分可以在以后各级中得到利用,这种现象称为多级汽轮机的( )。 7.汽轮机运行中,为了克服轴承摩擦阻力、带动调速器、带动( ),都要消耗一部分功率,由此产生机械损失。 8.多级汽轮机中,重热现象产生的前提条件是级内( )。 9.曲径轴封通常应用于单缸汽轮机的( )压段轴封。 10.由于多级汽轮机内存在着重热现象,使整个汽轮机的相对内效率( )于各级的平均相对内效率。 11.单缸汽轮机的( )压段轴封通常采用光轴轴封。 12.汽轮机的绝对内效率可以表示成理想循环热效率和( )效率的乘积。 13.多级汽轮机中,重热系数的很少量增大是在( )效率降低较多的前提下实现的。 14.对于某一确定的汽轮机来说,重热系数越大,则表明汽轮机的各级平均内效率越( )。 15.比较而言,汽轮发电机组的电功率( )于汽轮机的内功率。 二、选择题 1.评价不同类型不同参数汽轮机的运行管理水平,可以采用( )。 (1)热耗率 (2)汽耗率 (3)电功率 (4)汽耗微增率 2.在实际应用中汽耗率的单位常采用( )。 (1)kg/h (2)kg/kw (3)h kw kJ ?/ (4)h kw kg ?/ 3.当蒸汽依次通过各组轴封齿后,保持不变的是( )。 (1)速度 (2)压力 (3)温度 (4)焓 4.在实际应用中,汽轮机热耗率的单位通常采用( )。 (1)kJ/kg (2)kw (3)kJ/kwh (4)kJ/kw 5.当用汽耗率来评价两台汽轮机的运行经济性时,这两台机组应是( )。 (1)同类型 (2)相同初参数、终参数 (3)同类型、同初、终参数 (4)任意机组

滚动轴承轴向力算

滚动轴承所承受的载荷取决于 所支承的轴系部件承担的载荷。右图 为一对角接触球轴承反装支承一个 轴和一个斜齿圆柱齿轮的受力情况。 图中的F re、F te、F ae分别为所支承零 件(齿轮)承受的径向、切向和轴向 载荷,F d1和F d2为两个轴承在径向 载荷F r1和F r2(图中未画出)作用下 所产生的派生轴向力。这里,轴承所 承受的径向载荷F r1和F r2可以依据 两个角接触球轴承反装的受力分析 (径向反力) F re、F te、F ae经静力分析后确定,而轴向载荷F a1和F a2则不完全取决于外载荷F re、F te、F ae,还与轴上所受的派生轴向力F d1和F d2有关。 对于向心推力轴承,由径向载荷F r1和F r2所派生的轴向力F d1和F d2的大小可按下表所列的公式计算。 注:表中Y和e由载荷系数表中查取,Y是对应表中F a/F r>e的Y 值 下图中把派生轴向力的方向与外加轴向载荷F ae的方向一致的轴承标为2,另一端则为1。取轴和与其相配合的轴承内圈为分离体,当达到轴向平衡时,应满足:F ae+F d2=F d1 由于F d1和F d2是按公式计算的,不一定恰好满足上述关系式,这时会出现下列两种情况: 当F ae+F d2>F d1时,则轴有向左窜动的趋势,相当于轴承1被“压紧”,轴承2被“放松”,但实际上轴必须处于平衡位置,所以被“压紧”的轴承1所受的总轴向力F a1必须与F ae+F d2平衡,即 F a1=F ae+F d2 而被“放松”的轴承2只受其本身派生的轴向力F d2,即F a2=F d2。 当F ae+F d2<F d1时,同前理,被“放松”的轴承1只受其本身派生的轴向力F a1, 即F a1=F d1 而被“压紧”的轴承2所受的总轴向力为: F a2=F d1-F ae

盾构机受力计算及始发结构设计

盾构机受力计算及始发结构设计 【内容提要】本文重点从分析盾构机在始发阶段的受力入手,设计盾构机的始发设施(始发托架、反力架)及其固定,提出对盾 构机掘进参数的控制要求。 【关键词】隧道、盾构、始发、始发托架、反力架 前言 随着技术进步、综合国力的增强,盾构法越来越多地被国内地铁界所接受,上海、广州、南京、北京、深圳、天津、西安、成都、沈阳、杭州、青岛等城市都使用这种方法。上海地铁是国内最早采用盾构施工的,且大部分工程都是利用盾构完成的。虽然盾构有许多成功的工程实例,但是使用这种方法也有较大的风险。而且使用盾构,在对洞口进行加固处理的始发阶段出问题的概率很高,即使是非常有经验的承包商也常会发生类似事故。 本文从盾构机在始发阶段的受力入手,设计盾构机的始发设施(始发托架、反力架)及其固定,提出对盾构机掘进参数的控制要求。 1工程地质情况简介 成都地铁1号线一期工程盾构施工2标,人民北路站至天府广场站盾构区间,第一台盾构机从始发井(右线)南端向南始发掘进,到达天

府广场站调头至左线,再从左线向北始发,到达骡马市站后盾构机过站,到达文武路站后盾构机转场,到人民北路站吊出完成左线盾构掘进;第二台盾构机从始发井(右线)北端始发到达骡马市站过站,到文武路站转场,到人民北路站吊出完成右线盾构掘进,见图1线路平面示意图。整个盾构区间左、右线盾构吊装与拆除4次、调头1次、过站2次、转场2次。成都地铁人-天区间两台盾构机在右线始发井各有一次盾构始发起点,总共7次始发,根据每次各100m的始发掘进地段的地质条件和线路平、纵断面设计,分析盾构机的掘进受力,对于正确设计、固定盾构机的始发设施,合理提出始发阶段盾构机掘进参数的控制是十分必要的。 图1线路平面示意图 2盾构机始发阶段的受力 盾构机始发前的受力 始发前盾构机处于+%变坡点附近,整个盾体支承在始发托架上,盾构主机仅有重力G约3200kN作用在始发托架上,重心距刀盘面约2.7m,刀盘悬臂置于托架前端,托架前端离始发掘进面(围护结构外侧面)约

盾构机推力扭矩计算依据

6.34m土压平衡d1型地铁盾构 (液压系统) 计 算 书

Ф6340土压平衡d1型盾构推力扭矩计算书 2.设计依据 Φ6.34m土压平衡盾构掘进机的设计根据上海地区的软土地质条件和工程条件进行,土质主要包括灰色淤泥质粘土层、灰色粘土层、粉质粘土、砂质粉土等。 2.1 地质条件 隧道需穿越的地层主要是灰色淤泥质粘土层、灰色粘土层、灰色粉质土层,其特点:饱和、流塑,属高压缩性土,受扰动后沉降大,易发生流砂。(见图一)其主要力学指标: a.平均值:N=2~8 b.内摩擦角:Φ=7.5°~19.5° c.凝聚力:C=4.0~25.0kpa d.渗透系数:K V20=1.77×10-5~1.58×10-4cm/sec K H20=2.02×10-5~2.49×10-4cm/sec 3.2 推进系统 3.2.1盾构的载荷条件及盾构总推力 3.2.1.1盾构的载荷条件 盾构在地下推进时,盾构壳体所受荷载基本有以下几种:垂直土压、水平土压、地下水压、土体抗力、自重、地面荷载、施工荷载、其它荷载。

P g—自重抵抗土压(kN/m2);P w1—顶部垂直水压(kN/m2); P w2—底部垂直水压(kN/m2);q e1—顶部土体侧压(kN/m2); q e2—底部土体侧压(kN/m2);q w1—顶部侧向水压(kN/m2); q w2—底部侧向水压(kN/m2);q fe1—顶部水平土压(kN/m2); q fe2—底部水平土压(kN/m2);q fw1—顶部水平水压(kN/m2); q fw2—底部水平水压(kN/m2)。 其中q fe1=q e1,q fe2=q e2,q fw1=q w1,q fw2=q w2。 垂直土压:P e1=W0+γt H0+γ'H w(1)式中:W0—地面荷载(kN/m2);H0—地下水位高度(m); H w—H-H0;H—覆土厚度(m); γt—地下水位上部的土体容重(kN/m2); γ'—地下水位下部的土体容重(kN/m2)。

相关文档