文档库 最新最全的文档下载
当前位置:文档库 › 交流电机矢量控制讲座(贺益康)

交流电机矢量控制讲座(贺益康)

浅析交流伺服电机的矢量控制

浅析交流伺服电机的矢量控制 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)关于交流电机的矢量控制技术,有很多论文与各种文章介绍。但多用难解的公式与坐标来记述,如果没有扎实的数学和控制等理论基础的话,相信大家有同感比较难理解。日笃君尽量用简单易懂的图解与计算来聊聊电机的构造,静止坐标与旋转坐标的变化,矢量控制,伺服控制等电机驱动技术。 在聊控制之前,为了更好理解控制,我们先来看看电机的构造。实时应用的电机构造很复杂,但可以简单的理解成:电机由装在里面的转子与装在外面的定子构成(也有相反的电机),转子里面一般放入永久磁石,定子里面一般缠绕铜线。然后在中间插入中轴来带动驱动物体。 电机技术经过百年的发展,形成了如上的各种分类。电机上使用的磁石属于稀有金属,产量主要分布在中国,近年由于稀土材料的价格高腾,工业界正在积极研究如何减少稀土的使用量,保持性能的同时降低产品成本,是企业也更是工程师永远的课题。如今实际应用中,同步电机得到广泛的采用。 同步电机又以磁石所装入的部位,主要分类为SPM(表面磁石)和IPM(内部磁石): SPM电机由于控制简单,早起被工业界所采用,但是这种电机由于磁石装在转子的表面,所以可以利用的动力主要来源于自身的表面磁石。 IPM电机由于可以利用磁石与磁石周围励磁的动力,产生高密度的能量,而且可以通过构造的工夫减少稀土的使用量,所以今年得到更广泛的应用。 下面进入正题,聊聊交流电机的控制问题。

交流电机控制技术II课程期末试卷A卷标准答案

交流电机控制技术I I课程期末试卷A卷标准答案 LELE was finally revised on the morning of December 16, 2020

交流电机控制技术I复习题A 一、判断题 1. 间接变频装置的中间直流环节采用大电感滤波的属于电压源变频装置。() 2. 恒磁通变频调速协调控制原则是U/f为常数() 3. 异步电动机矢量控制中,MT坐标系的电磁量是直流量。() 4. 在矢量控制中以定子A轴为参考轴的坐标系是dq坐标系。() 5. 交交变频器输出电压频率与输入电网电压的频率相同。() 6. 交-交变频器的最大输出频率是50Hz。() 7. 规则采样法的采样区间是等宽的() 8. 串联二极管的电流型逆变器换流中的尖峰电压出现在二极管换流时刻() 9. 在选择逆变器的开关器件时,可以不考虑元件承受反压的时间。() 10. 交直交变频器是直接变频器。() 二、选择题 从(A)、(B)、(C)、(D)中选择正确的答案,填入下面各题的()中:1. 变频技术中正弦脉冲宽度调制的英文缩写是() A.PIC B. IPM C. SPWM D. GTR 2.基频以下变频调速时为了维持最大转矩恒定,在较低频率时应适当提高()。 A.定子电流 B.定子电压 C. 电源频率 D. 电机转速

3. 由D触发器构建的环形分配器,如果在任意时刻都有2个Q端输出1,则可得到宽()的六路脉冲输出。 A.120° B. 180° C. 150° D. 不确定 4. 对变频器调速系统的调试工作应遵循先()的一般规律。 A、先空载、后轻载、再重载 B、先轻载、后空载、再重载 C、先重载、后轻载、再空载 D、先轻载、后重载、再空载 5. 120°导电型的三相桥式逆变电路的换流是在()之间进行的。 A. 相邻相的上桥臂或者下桥臂 B. 相邻相的上下桥臂 C. 同一相的上下桥臂 D. 不确定桥臂 6. 电流型变频器带异步电动机在电动状态下运行时,变频器的逆变器处于()状态。 A. 空载 B.逆变 C.截止 D.无法确定 7.变频调速系统控制单元通过()得到控制脉冲的高低电平。 A. 锁相环 B. 比较器 C. 函数发生器 D. 极性鉴别器 8.电流型变频器带动异步电动机可以四象限运行,如果运行在第2象限则逆变器处于()状态。 A. 电动 B. 逆变 C. 整流 D. 截止 9. 交交变频器工作时,正、反两组变流器交替工作。如果输出电压电流相位差大于90°,说明电动机工作在()状态。 A. 电动 B. 制动 C.空载 D.额定 10. 在变频调速中,若在额定频率以上调时,当频率上调时,电压 ()。 A、上调 B、下降 C、不变 D、不一定

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref 和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM

中科院信号与系统

中国科学院大学硕士研究生入学考试 《信号与系统》考试大纲 一、考试科目基本要求及适用范围 本《信号与系统》考试大纲适用于中国科学院大学信号与信息处理等专业的硕士研究生入学考试。信号与系统是电子通信、控制科学与工程等许多学科专业的基础理论课程,它主要研究信号与系统理论的基本概念和基本分析方法。认识如何建立信号与系统的数学模型,通过时间域与变换域的数学分析对系统本身和系统输出信号进行求解与分析,对所得结果给以物理解释、赋予物理意义。要求考生熟练掌握《信号与系统》课程的基本概念与基本运算,并能加以灵活应用。 二、考试形式和试卷结构 考试采取闭卷笔试形式,考试时间180分钟,总分150分。试卷分为填空、选择及计算题几个部分。 三、考试内容 (一)概论 1.信号的定义及其分类; 2.信号的运算; 3.系统的定义与分类; 4.线性时不变系统的定义及特征; 5.系统分析方法。 (二)连续时间系统的时域分析 1.微分方程的建立与求解; 2.零输入响应与零状态响应的定义和求解; 3.冲激响应与阶跃响应; 4.卷积的定义,性质,计算等。 (三)傅里叶变换 1.周期信号的傅里叶级数和典型周期信号频谱; 2.傅里叶变换及典型非周期信号的频谱密度函数; 3.傅里叶变换的性质与运算; 4.周期信号的傅里叶变换; 5.抽样定理;抽样信号的傅里叶变换; 6.能量信号,功率信号,相关等基本概念;以及能量谱,功率谱,维纳-欣钦公式。

(四)拉普拉斯变换 1.拉普拉斯变换及逆变换; 2.拉普拉斯变换的性质与运算; 3.线性系统拉普拉斯变换求解; 4.系统函数与冲激响应; 5.周期信号与抽样信号的拉普拉斯变换。 (五)S域分析、极点与零点 1.系统零、极点分布与其时域特征的关系; 2.自由响应与强迫响应,暂态响应与稳态响应和零、极点的关系; 3.系统零、极点分布与系统的频率响应; 4.系统稳定性的定义与判断。 (六)连续时间系统的傅里叶分析 1.周期、非周期信号激励下的系统响应; 2.无失真传输; 3.理想低通滤波器; 4.佩利-维纳准则; 5.希尔伯特变换; 6.调制与解调。 (七)离散时间系统的时域分析 1.离散时间信号的分类与运算; 2.离散时间系统的数学模型及求解; 3.单位样值响应; 4.离散卷积和的定义,性质与运算等。 (八)离散时间信号与系统的Z变换分析 1.Z变换的定义与收敛域; 2.典型序列的Z变换;逆Z变换; 3.Z变换的性质; 4.Z变换与拉普拉斯变换的关系; 5.差分方程的Z变换求解; 6.离散系统的系统函数; 7.离散系统的频率响应; 8.数字滤波器的基本原理与构成。 (九)系统的状态方程分析 1.系统状态方程的建立与求解; 2.S域流图的建立、求解与性能分析; 3. Z域流图的建立、求解与性能分析; 四、考试要求 2

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

永磁同步电机矢量控制

永磁同步电机矢量控制 1 引言 永磁同步电机(PMSM)体积小,重量轻,转子无发热问题,具有损耗低、电气时间常数小、响应快等特点,因此在高控制精度与高可靠性等方面显示出优越的性能,永磁同步电动机调速系统正在成为近代交流调速领域中研究的一个热门课题。 2 基本原理 (1) PMSM 的数学模型 dq0 坐标系中,永磁同步电动机的基本电压方程通常可以表示为 d s d d q q s q q d u R i p u R i p ψωψψωψ=+-=++ 式中u d ,u q 为定子电压的直、交轴分量;R s 为定子绕组电阻;p 为微分算子;ω为电动机转子角频率。 定子磁链方程为 d d d f q q q L i l i ψψψ=+= 式中ψd ,ψq 为转子坐标系下直、交轴磁链;L d ,L q 为PMSM 的直轴、交轴电感;i d ,i q 为定子电流的直、交轴分量;ψf 为转子磁钢在定子上的耦合磁链。 永磁同步电机的转矩方程为 ()()33 22 e m d q q q m f q d q d q T p i i p i L L i i ψψψ??= -=+-?? 式中p m 为永磁同步电机的极对数。 (2) PMSM 的转子磁场定向控制策略 PMSM 的电磁转矩基本上取决于定子交轴分量和直轴电流分量,在矢量控制下,采用按转子磁链定向(i d =0)控制策略,使定子电流矢量位于q 轴,而无d 轴分量,既定子电流全部用来产生转矩,此时,PMSM 的电压方程可写为: d q q s q q d u u R i p ωψψωψ==++ 电磁转矩方程为: 3 2 e m f q T p i ψ= 此种控制方式最为简单,只要准确地检测出转子空间位置(d 轴),通过控制逆变器使三相定子的合成电流(磁动势)位于q 轴上,那么,PMSM 的电磁转矩只与定子电流的幅值成正比,即控制定子电流的幅值就能很好地控制电磁转矩,此时PMSM 的控制就类似于直流电机的控制。图1给出PMSM 调速控制系统原理框图。

矢量信号分析仪计量中的evm指标研究

矢量信号分析仪计量中的EVM 指标研究 周峰,郭隆庆,张睿,张小雨 信息产业部通信计量中心 矢量调制信号是现代通信的基础,矢量信号分析仪(VSA)是信号分析的重要仪表,目前,我国技术监督部门还没有制定VSA 的校准和鉴定规程,相关研究也并不完善。所谓对VSA 的鉴定,就是通过测试测量来确定VSA 测量结果的残留误差。而误差矢量幅度EVM ,是VSA 测量的核心指标之一,从EVM 入手进行研究,是比较合理的。本研究报告以QPSK 信号为典型,建立了数学模型并且使用Matlab 语言编程搭建了简单算法平台,并且使用了PSA 频谱分析仪(包括VSA 选件)和SMU200矢量信号源进行了实验研究。报告主要包含三个部分。 第一部分 EVM 计算中参考信号幅度输出算法研究 VSA 可以分为两个模块:变频器、滤波器和放大器序列构成的模拟部分,和由数字处理芯片及其算法构成的数字模块。本部分主要研究数字模块中的参考信号幅度生成算法。 图 1 VSA 的模块化构成 中频信号被抽样量化后成为数字信号,N 个码片的抽样信号进入数字信号处理模块后, 其幅度和相位就确定了,经过判决,重新生成了码字序列,然后计算EVM 指标。EVM 指标是抽样信号和“标准参考信号”的矢量做差得出的结果。而这个“标准参考信号”的幅度,则是N 个码片的抽样值决定的。传统上我们定义参考信号幅度s M 为: 我们假设一个码片的归一化幅度误差是M ?,而相位误差是P ?,根据三角关系,矢量幅度误差可以表示为:

在调制方式确定后,星座图基本点的相位是确定的,所以是不依赖于参考信号幅度的,所以P ?是确定的,但是M ?是依赖参考信号幅度的,进而EVM 也是依赖参考信号幅度的。经典理论指出:参考信号幅度s M 的选择算法,应当使EVM 尽可能小。但是我们的研究显示,从理论上讲,(1)式的算法不是使EVM 最小化的最优算法,以下我们将简要说明我们对最优算法的研究: VSA 输出的EVM 值,并不是单个码片的EVM 值,而是N 个码片EVM 的均方根值,即: rms EVM = = (3) 前文已经说明,i P ?是不可选择的,而 1i i s M M M ?=- (4) 而这个标准的s M 就是我们要求取的量。设定函数 ()()2 2221141sin 411sin 122N N i i i i s i i i i s s P M P M f M M M M M ==???? ??????=+?+?=+-+- ? ? ? ? ???????? ? ∑∑ (5) ()s f M 越小,则rms EVM 越小,通过偏导法来求函数()s f M 的极值,通过分析,认为一定存在 这样一个极小值存在在可导区间上:

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

交流电机控制技术II

东北大学继续教育学院 交流电机控制技术II 试卷(作业考核线上2)A 卷(共6 页) 一、判断题(20分)正确用√表示,错误用X表示,请将判断结果填入各题的()中: 1. 间接变频装置的中间直流环节采用大电感滤波的属于电压源变频装置。(X) 2. 恒磁通变频调速协调控制原则是U/f为常数(√) 3. 异步电动机矢量控制中,MT坐标系的电磁量是直流量。(√) 4. 在矢量控制中以转子a轴为参考轴的坐标系是dq坐标系。(X) 5. 在SPWM的正弦参考信号中加入3次谐波后,可以拓宽线性控制范围(X) 6. 交-交变频器的最大输出频率是50Hz。(X) 7. 规则采样法的采样区间是等宽的(√) 8. 串联二极管的电流型逆变器换流中的尖峰电压与负载漏抗有关(√) 9. 在选择逆变器的开关器件时,可以不考虑元件承受反压的时间。(X) 10. 交直交变频器是直接变频器。(√) 11.按照VT1~VT6顺序导通逆变器主开关为三相异步电动机提供变频电源,ABC三相的下桥臂开关编号分别是VT2、VT3、VT6。(X) 12.变频调速时,在基频以下通常采用恒磁通变频调速,其协调控制原则为U/f等于常数。(X) 等于常数。(√) 13.恒功率变频调速,其协调控制原则为 14.基频以下调速时为了维持最大转矩恒定,在频率较低时应适当提高转子电压。(X) 15.变频器按变换的环节分为交—交变频器和交—直—交变频器。(√) 16.变频器按直流环节储能元件不同分为电流型变频器和电压型变频器。(√) 17.矢量控制理论中涉及的三个主要坐标系分别是ABC 、αβ 和 MT ;其中ABC和αβ

是静止坐标系。( X ) 18.通过坐标变换将定子电流分解为两个相互独立的量,其中为1T i 磁场分量; 1M i 为转矩分量,可以实现解耦控制。( X ) 19.在矢量控制理论中将三相坐标系下的三个时间变量写成2[()()()]A A B C x k x t ax t a x t =++形式的空间矢量,是以任意x 轴为参考轴的空间矢量表达式。( X ) 20.三相坐标系下,空间矢量a A j x x e θ-=是以转子a 轴为参考轴的空间矢量表达式。( X ) 二、选择题(20分)请将正确答案填入各题的()中: 1. 变频技术中智能功率模块的英文缩写是( B ) A .PIC B. IPM C. SPWM D. GTR 2.基频以下变频调速时为了维持最大转矩恒定,在较低频率时应适当提高( B )。 A.定子电流 B.定子电压 C. 电源频率 D. 电机转速 3. 由D 触发器构建的环形分配器,如果在任意时刻都有三个Q 端输出1,则可得到宽( B )的六路脉冲输出。 A.120° B. 180° C. 150° D. 不确定 4. 对变频器调速系统的调试工作应遵循先( A )的一般规律。 A 、先空载、后轻载、再重载 B 、先轻载、后空载、再重载 C 、先重载、后轻载、再空载 D 、先轻载、后重载、再空载 5. 180°导电型的三相桥式逆变电路的换流是在( C )之间进行的。 A. 相邻相的上桥臂或者下桥臂 B. 相邻相的上下桥臂 C. 同一相的上下桥臂 D. 不确定桥臂 6. 电流型变频器带异步电动机在电动状态下运行时,变频器的逆变器处于( B )状态。 A. 空载 B.逆变 C.截止 D.无法确定 7.变频调速系统控制单元通过( B )得到控制脉冲的高低电平。 A. 锁相环 B. 比较器 C. 函数发生器 D. 极性鉴别器 8. 磁场轨迹法采用相邻电压矢量作为辅助矢量,在主矢量u(561)转换为主矢量u(612)以前,采用( A )作为辅助矢量。

交流电机控制技术I复习

交流电机控制技术I复习 一、判断题 1?间接变频装置的中间直流环节采用大电感滤波的属于电压源变频装置。 (X) 2.恒磁通变频调速协调控制原则是U/f为常数(J) 3.异步电动机矢量控制中,MT坐标系的电磁量是直流量。(V ) 4.在矢量控制中以定子A轴为参考轴的坐标系是dq坐标系。(X ) 5.交交变频器输出电压频率与输入电网电压的频率相同。(X ) 6.交-交变频器的最大输出频率是50Hzo (X ) 7.规则采样法的采样区间是等宽的(V ) 8.在矢量控制理论中ABC和a B是静止坐标系,MT是旋转坐标系。(J) 9.矢量控制采用的是转子磁场定向的控制方法。(V ) 10.180°导电型的三相桥式逆变电路在任意区间有3只开关管同时导通. (J) 二、选择题 从(A)、(B)、(C)、(D)中选择正确的答案,填入下面各题的()中: 1.变频技术中正弦脉冲宽度调制的英文缩写是(C ) A. PIC B. IPM C. SPWM D. GTR 2.基频以下变频调速时为了维持最大转矩恒定,在较低频率时应适当提高 (B )。 A.定子电流 B.定子电压 C.电源频率 D.电机转速 3.I1ID触发器构建的环形分配器,如果在任意时刻都有2个Q端输出1,则可得到宽(A )的六路脉冲输出。 A. 120° B. 180° C. 150° D.不确定 4.对变频器调速系统的调试工作应遵循先(A )的一般规律。

A、先空载、后轻载、再重载 B、先轻载、后空载、再重载 C、先重载、后轻载、再空载 D、先轻载、后重载、再空载 5.120°导电型的三相桥式逆变电路的换流是在(A )之间进行的。 A.相邻相的上桥臂或者下桥臂 B.相邻相的上下桥臂 C.同一相的上下桥臂 D.不确定桥臂 6.电流型变频器带异步电动机在电动状态下运行时,变频器的逆变器处于(B )状态。 A.空载 B.逆变 C.截止 D.无法确定 7.变频调速系统控制单元通过(B )得到控制脉冲的高低电平。 A.锁相环 B.比较器 C.函数发生器 D.极性鉴别器 二常数时,称为(C )调制方式。 A.异步 B.分级异步 C.同步 D.不能确定 9.谐波消除法就是适当安排开关角,在满足输出(B )的条件下,消除不希望有的谐波分量。 A.基波电流 B.基波电压 C.基波频率 D.基波相位 10.余弦交截法就是用一系列余弦同步(C )波和模拟量基准电压波的交点去决定整流器中相应晶闸管的控制角的方法。 A.电流 B.频率 C.相位 D.电压 三、填空题 1.按照VTPVT6顺序导通逆变器主开关为三相异步电动机提供变频电源,ABC三 相的下桥臂开关编号分别是(VT4 ), (VT6 ), (VT2 )。 2.变频调速时,在(基频)以下通常釆用恒磁通变频调速,其协调控制原则为 U/f等于(常数);在(基频)以上一般采用恒功率变频调速,其协调控制原则为(U/Jf )等于常数。基频以下调速时为了维持最大转矩恒定,在频率较低时应适当提高(定子电压)。 3.变频器按变换的环节分为(交一交变频器)和(交

第四章 交流电机理论基础

第四章交流电机理论基础 4.1 交流绕组与直流电枢绕组的根本区别是什么? [答案] 4.2 构成交流电枢绕组并联支路的理想条件有哪些? [答案] 4.3 产生脉振磁动势和产生圆形磁动势的条件各有哪些? [答案] 4.4 将对称三相绕组接到三相电源的三个接线头对调两根后,其旋转磁动势的转向是否会改变? [答案] 4.5 一台频率为50Hz的三相电机,通入频率为60Hz的三相对称电流,如电流的有效值不变,相序不变,试问三相合成基波磁动势的幅值,转速和转向是否会改变? [答案] 4.6 a、b两相绕组,其空间轴线互成90o电角度,每相基波的有效匝数为Nk N1 (两相绕组都相同),绕组为p对极,现给两相绕组中通以对称两相交流电流,即 试求绕组的基波合成磁动势及三相谐波合成磁动势的表达式f1(θ, t) 和f3(θ, t) ,写出两者的振幅计算式,并分别指出磁动势的转速及转向如何? [答案]

4.7 三相对称交流定子绕组通入三相对称非正弦波电流,设此非正弦波电流包含有基波及3、5、7等奇次谐波分量,试分析分别由3、5、7次谐波电流所产生的三相合成磁动势基波和3、5、7次谐波的转速和转向。 [答案] 4.8 有一台汽轮发电机,定子槽数Z=36,极数2p=2,采用双层叠绕绕组,节距y1=14,每个线圈匝数N c=1,并联支路数a=1,频率为50Hz。每极磁通量Φ1=2.63Wb。试求: (1) 导体电势E c1; (2) 匝电势E t1; (3) 线圈电势E y1; (4) 线圈组电势E q1; (5) 相电势E 1。 [答案] 4.9 一台三相交流异步电动机,定子采用双层短距叠绕绕组,Y联结,定子槽数Z=48,极数2p=4,线圈匝数N c=22,节距y1=10,每相并联支路数a=4,定子绕组相电流I=37A,f=50Hz,试求: (1) 一相绕组所产生的磁动势波; (2) 三相绕组所产生的合成磁动势波。 [答案] 4.10 一台三相六极交流对称定子绕组,在A、B、C相绕组中分别通以三相对称电流i A=10cosωt A;i B=10cos(ωt-2π/3) A;i C=10cos(ωt-4π/3) A,试求: (1) 当i A=10 A时,三相合成磁动势基波的幅值的位置; (2) 当i B=10 A时,三相合成磁动势基波的幅值的位置; (3) 当i A从10 A下降至5 A时,基波合成磁动势在空间转过多少圆周? [答案]

基于Matlab的交流电机矢量控制系统仿真..

基于MATLAB交流异步电机矢量控制系统建 模与仿真 摘要:在分析异步电机的数学模型及矢量控制原理的基础上,利用MATLAB,采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性、有效性。 关键词:交流异步电机,矢量控制,MATLAB 一、引言 交流电动机由于动态数学模型的复杂性,其静态和动态性能并不是很理想。因此在上世纪前期需要调速的场合下采用的都是直流电动机,但是直流电动机结构上存在着自身难以克服的缺点,导致人们对交流调速越来越重视。从最初的恒压频比控制到现在的直接转矩控制和矢量控制,性能越来越优良,甚至可以和直流电机的性能相媲美。 本文研究交流异步电机矢量控制调速系统的建模与仿真。利用MATLAB中的电气系统模块构建异步电机矢量控制仿真模型,并对其动、静态性能进行仿真试验。仿真试验结果验证了矢量控制方法的有效性、可行性。 二、交流异步电机的矢量控制原理 矢量控制基本思想是根据坐标变换理论将交流电机两个在时间相位上正交 的交流分量,转换为空间上正交的两个直流分量,从而把交流电机定子电流分解成励磁分量和转矩分量两个独立的直流控制量,分别实现对电机磁通和转矩的控制,然后再通过坐标变换将两个独立的直流控制量还原为交流时变量来控制交流电机,实现了像直流电机那样独立控制磁通和转矩的目的。 由于交流异步电机在A-B-C坐标系下的数学模型比较复杂,需要通过两次坐标变换来简化交流异步电机的数学模型。一次是三相静止坐标系和两相静止坐标系

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

交流电机基础理论

交流电机基础理论 常用的交流电动机有三相异步电机(感应电机)和同步电机。 异步电机可用于一般场所和无特殊性能要求的各种机械设备;同步电机既可作发电机使用,也可作电动机使用。 Y 系列三相异步电机 三相稀土永磁同步电机 4.1 交流电机基础理论 电磁场理论 4.1.1 交流电机的基本工作原理 原理: 基于定子旋转磁场(定子绕组内三相电流所产生的合成磁场)和转子电流 (转子绕组内的感应电流)的相互作用。

工作原理 定子绕组与电源的连接 4.1.2 交流电机的基本电路分析 由于转子转速不等于同步转速,把转速差(n0-n)与同步转速n0的比值称为 异步电动机的转差率,用S表示,即 三相异步电动机的结构 按结构分类: 鼠笼式异步电动机:结构简单,坚固,成本低。 绕线式异步电动机:通过外串电阻改善电机的起动,调速等性能。 4.2.1 三相异步电动机的基本结构 定子 定子由铁心、绕组与机座三部分组成。定子铁心是电动机磁路的一部分,它是由0.5mm的硅钢片叠压而成,片与片之间是绝缘的。 定子绕组是电动机的电路部分由许多线圈连接而成,每个线圈有两个有效边分别放在两个槽里。三相对称绕组AX,BY,CZ可连接成星型或三角形。

机座主要用于固定与支撑定子的铁心。 转子 转子有铁心与绕组组成。 异步电动机的转子绕组有鼠笼式、线绕式。 4.3.1 定子电路分析 定子由铁心、绕组与机座三部分组成;定子铁心是电动机磁路的一部分,它是由0.5mm的硅钢片叠压而成,片与片之间是绝缘的。定子绕组是电动机的电路部分,由许多线圈连接而成,每个线圈有两个有效边分别放在两个槽里。三相对称绕组AX,BY,CZ可连接成星型或三角形。 定子每相绕组中产生的感应电动势为: 有效值为: 定子电动势或电流的频率:

东大18秋学期《交流电机控制技术Ⅱ》在线作业3

(单选题) 1: 根据电压矢量和磁链矢量的关系,在直接转矩控制中,定子磁链顶点的轨迹沿着()的方向运动。 A: 逆时针 B: 顺时针 C: 电压矢量 D: 与电压矢量相反 正确答案: (单选题) 2: 180°导电型的三相桥式逆变电路在任意区间有()只开关管同时导通。A: 1 B: 2 C: 3 D: 4 正确答案: (单选题) 3: A: 任意x轴 B: 定子A轴 C: 同步旋转轴 D: 转子a轴 正确答案: (单选题) 4: 电压型逆变器180°导电型开关比120°导电型开关的()。 A: 输出电压有效值低 B: 输出电压有效值高 C: 输出频率高 D: 输出频率低 正确答案: (单选题) 5: 交交变频器无环流工作方式,在进行组间换组时,为了防止短路事故()。A: 不应该设置死区 B: 应该设置死区 C: AB都不行 D: 设不设无所谓 正确答案: (单选题) 6: 交交变频器工作时如果输出正电压、负电流,说明当前()处在截止状态。 A: 正组 B: 反组 C: 整流器 D: 逆变器 正确答案: (单选题) 7: 180°导电型的三相桥式逆变电路在任意区间有()只开关管同时导通。A: 1 B: 2 C: 3 D: 4 正确答案:

(单选题) 8: 在SPWM变频调速系统中,用()单元实现U/f协调控制。 A: 绝对值运算器 B: 极性鉴别器 C: 函数发生器 D: 比较器 正确答案: (单选题) 9: 直接转矩控制系统在电磁转矩控制中采用了零电压矢量是为了()。A: 减小定子电流 B: 减小转矩脉动 C: 降低电压 D: 降低转速 正确答案: (单选题) 10: 任意空间矢量在某一坐标轴上的投影等于这个空间矢量的分量在这个轴上的()。 A: 投影 B: x分量投影 C: y分量投影 D: 投影的代数和 正确答案: (判断题) 1: 直接转矩控制是直接分析交流电动机的模型,控制电动机的磁链和转矩。( ) A: 错误 B: 正确 正确答案: (判断题) 2: 基频以下变频调速在较低频率下应适当提高电磁转矩。() A: 错误 B: 正确 正确答案: (判断题) 3: 带辅助晶闸管的电压逆变器的主开关关断与辅助开关动作无关。() A: 错误 B: 正确 正确答案: (判断题) 4: 任意空间矢量在任意一坐标轴上的投影等于这个空间矢量的分量。()A: 错误 B: 正确 正确答案: (判断题) 5: 恒磁通恒最大转矩变频调速协调控制原则是E/f为常数() A: 错误 B: 正确 正确答案: (判断题) 6: 当电动机空载时,元件换流时间最长。() A: 错误 B: 正确 正确答案:

永磁同步电动机矢量控制模型的设计与仿真

永磁同步电动机矢量控制模型的设计与 仿真 交流调速理论包括矢量控制和直接转矩控制。1971年,由F.Blaschke 提出的矢量控制理论第一次使交流电机控制理论获得了质的飞跃。矢量控制采用了矢量变换的方法,通过把交流电机的磁通与转矩的控制解耦使交流电机的控制类似于直流电动机。矢量控制方法在实现过程中需要复杂的坐标变换,而且对电机的参数依赖性较大。直接转矩控制是1985年Depenbrock教授在研究异步电机控制方法时提出的。该方法是在定子坐标系下分析交流电机的数学模型,强调对电机的转矩进行直接控制,对转矩进行砰一砰控制,无需解耦,省掉了矢量旋转变换计算。控制定子磁链而不是转子磁链,不受转子参数变化的影响,但不可避免地产生转矩脉动,低速性能较差,调速范围受到限制。而且由于它对实时性要求高、计算量大,对控制系统微处理器的性能要求也较高。 矢量控制的基本思想是在普通的三相交流电动机上设法模拟直流电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分解成为产生磁通的励磁电流分量和产生转矩的转矩电流分量,并使得两个分量互相垂直,彼此独立,然后分别进行调节。这样交流电动机的转矩控制,从原理和特性上就和直流电动机相似了。 控制策略的选择上是PID控制,传统的数字PID控制是一种技术成熟、应用最为广泛的控制算法,其结构简单,调节方便。 1 永磁同步电机的数学模型 1.1 永磁同步电机系统的结构 永磁同步电机的基本组成:定子绕组、转子、机体。定子绕组通过三相交流电,产生与电源频率同步的旋转磁场。转子是用永磁材料做成的永磁体,它在定子绕组产生的旋转磁场的作用下,开始旋转。 1.2 坐标变换

高压中大型三相异步电机基本知识

三相异步电动机基本知识 1 电机概述 电机的型式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,电机构造的一般原则是:用适当的有效材料(导磁和导电材料)构成能互相进行电磁感应的磁路和电路,以产生电磁功率和电磁转矩,达到转换能量形态的目的。 为了减少激磁电流和旋转磁场在铁心中产生的涡流和磁滞损耗,铁心有0.5mm厚的硅钢片叠压而成。硅钢片绝缘层的作用?笼型转子结构简单、制造方便。对要求启动电流小、启动转矩大的电机,可以采用绕线式电机。 按电机功能来分,可分为: ①发电机——把机械能转换成电能; ②电动机——把电能转换成机械能; ③变压器、变频机、变流机、移相器——分别用于改变电压、频率、电流相位。 ④控制电机——作为控制系统中的元件。 又可按以下方法分类: 下面主要讲述高压中大型三相异步电机。 S=ns-n/ns 2 电机型号、结构及分类

2.1 分类 a)按中心高分类 可分为微型电机、小型电机、中型电机、大型电机。一般来说,H80以下的称为微型电机(也叫分马力电机,功率在1kW以下),H80~H315的称为小型电机,H355~H630的称为中型电机,H710~H1000的称为大型电机。 b)按防护等级分类 基本上可分为开启式、防护式和封闭式电机。开启式电机的常用结构是IP11,防护式电机的常用结构是和IP22、IP23,封闭式电机的常用结构是IP44和IP54。 IP是International Protection 的意思,紧跟其后的第一个数字表示电机防护固体的能力(0-无防护;1-防护大于50mm的固体;2-防护大于12mm的固体;3-防护大于2.5mm 的固体;4-防护大于1mm的固体;5-防尘。),第二个数字表示电机防水的能力(0-无防护电机;1-防滴电机;2-15°防滴电机;3-防淋水电机;4-防溅水电机;5-防喷水电机;6-防海浪电机;7-防浸水电机;8-潜水电机)。 请参考标准GB4942.1-85《电机外壳防护分级》。 c) 按安装方式分类 总体上可分为卧式电机和立式电机。 卧式电机的典型结构是IMB3,其余派生结构有IMB35、IMB5等。立式电机的典型结构是IMV1(把IMB5立起来装即可,轴伸朝下),其余派生结构有IMV15(把IMB35立起来装即可,轴伸朝下)等。 IM即International Mounting。 请参考标准GB997-2008《电机结构及安装型式代号》。(IEC60034-7:2001) 旋转电机的结构形式、安装形式及接线盒位置---IM代码。 结构形式:有关固定用构件、轴承装置和轴伸等电机部件的构成形式。

相关文档
相关文档 最新文档