文档库 最新最全的文档下载
当前位置:文档库 › 流体流动形态的观察与测定

流体流动形态的观察与测定

流体流动形态的观察与测定
流体流动形态的观察与测定

流体流动形态的观察与测定(雷诺实验)

一、实验目的:

1、实际观察流体在管内作层流、湍流流动时的流动形态,并观察层流和湍流时的速度分布形式。

2、确立雷诺准数与层流和湍流的联系,并测出临界雷诺准数的大小。

3、初步掌握流动形态对化工过程的影响。

4、了解溢流装置的结构和作用,熟悉转子流量计的流量校正方法。 二、实验原理的说明:

1、液体作滞流流动时,其质点作直线运动,且互相平行;湍流时质点紊乱地向各个方向作不规则运动,但流体的主体向一定的方向流动。

2、利用少量的带色指示液加入透明的玻璃管中,即通过指示液的流动形态来确定管道中流体的流动形态。

3、雷诺准数是确定流体流动类型的准数。若流体在圆形管子内流动,则雷诺准数用下式表示。

μρμ

ρ

???=

??=

s d

V d u S Re

式中:d -管子内径[m];

s -管子的横截面积[m 2]; u -管内流速[m/s]; ρ-流体密度[kg/m 3]; μ-流体粘度[Pas];

Vs -流体的流量[m 3/s]

对于一定温度的流体,在特定的圆管内流动,雷诺准数(Re)仅与流速有关。改变流量,即可改变流速,也可改变流动的形态。当流体的流动形态由层流转变为过渡流或湍流时,其雷诺准数即为临界雷诺准数;而其流速即是临界流速。当管内流速高于临界值时,即有可能转变为湍流。

三、设备及流程说明

实验装置如图所示,图中大槽为水槽,试验时水即由此进入玻璃管(玻璃管系观察流体流动的形态和层流时导管中流速分布之用)。槽内之水由自来水管供给,水量由阀A 调节,槽内设有进水稳流袭置及溢流箱。用以维持平稳而又恒定的液面,多余之水由溢流管排入水沟。 试验时打开阀C ,水即由高位槽进入玻璃管,经转子流量计后,排向排水管,可用C 阀调节水量,流量由转子流量计测出。

高位墨水瓶供贮存墨水之用,墨水由此经阀B 流入玻璃管,阀B 即墨水量的调节阀。 四、实验步骤

1、检查水箱5中是否有水,高位墨水瓶中是否有沉淀;转子流量计中转子是否在下部,针孔有无堵塞。在测试时,必须保证有溢流现象.

2、观摩层流、湍流流动形态和层流、湍流时的速度分布。

1)打开阀门C ,并打开墨水液阀门B ,此时从针头中即可流出红色的指示液。当指示液呈一条直线向下流出时,即表明流动状态是层流。逐渐开大阀门C ,当流量增大到一定值时,原来表现出直线状的指示液,会变成不稳定的曲线状或散乱现象。此时流动状态即为湍流。 2)关闭阀门B 和阀门C ,然后将阀门B 突然打开一段时间,使玻璃管上端充满红色的指示液,然后关闭阀门B ,而打开阀门C ,则指示液向下流动,同时其前部呈抛物线状,或者较平的曲线状。抛物线即为层流时的速度分布,较平的曲线状,即为湍流时的速度分布。观察完毕后,关上阀门B 和阀门C 。

3、测定临界雷诺准数

图2—1雷诺实验装置流程图

1、墨水瓶;

2、进水稳流装置;

3、溢流箱;

4、溢流管;

5、高位水槽;

6、排水管;

7、转子流量计;

8、观察玻璃管;

1)测定水箱液面较平静时的临界雷诺准数Re1。使水箱中充满水,然后关闭阀门A。放置一段时间后(即水面无波动时),开启阀门C和B(注意:B阀门不可开得太大)。开始测试和记录指示液由直线到散乱状的流量值,并要注意记录指示液由直线转变成曲线状时的值。然后关闭阀门B和C。

2)测定在水箱中液位不变的情况下的临界雷诺准数Re1。,开启阀门A,使水箱中充满水。并保持溢流。此时,重新打开阀门B和阀门C,重复上面的测试工作和数据记录。

五、操作注意事项:

1、当测定水面平静时的临界雷诺值Re1时,由于水箱不进水,水箱中的液位逐渐下降,流量也会随时间的推移而逐渐减小。因此当需固定某一流量观察流形时,应逐渐开大阀门C,以保证管内流量稳定在某一数值.

2、开自进水阀时,要控制在保持少量溢流即可,不可过大,以免水箱液面剧烈波动而影响测试数据。

3、实验完毕后,将管道中的有色液体排空,并冲洗干净。

六、数据整理

设备编号____________;管子内径__________mm;水温__________oC

七、思考题

1、影响流动形态的因素有哪些?

2、如果管子是不透明的,不能用直接观察来判断管中流动形态,你认为可以用什么方法来到断管中的流动形态?

3、有人说可以只用流速来判断管中流动形态,流速低于某一具体数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下,可以只由流速的数值来判断流动形态?

4、层流和湍流流动的本质区别是什么?

5、雷诺数的物理意义是什么?

6、实验过程中,哪些因素对实验结果有影响?

实验二流体流动型态及临界雷诺数的测定

实验二 流体流动型态及临界雷诺数的测定 一、实验目的 研究流体流动的型态,对于化学工程的理论和工程实践都具有决定性的意义。 1883年雷诺(Pεψνολδσ)首先在实验装置中观察到实际流体的流动存在两种不同型态——层流和湍流,以及两种不同型态的转变过程。 本实验的目的,是通过雷诺试验装置,观察流体流动过程的不同流型及其转变过程,测定流型转变时的临界雷诺数。 二、实验原理 经许多研究者实验证明:流体流动存在两种截然不同的型态,主要决定因素为流体的 密度和粘度、流体流动的速度,以及设备的几何尺寸(在圆形导管中为导管直径)。 将这些因素整理归纳为一个无因次数群,称该无因次数群为雷诺准数(或雷诺数),即 ()1 u d R e μ ρ= 式中δ一导管直径,μ ρ一流体密度,κγ·μ-3; μ一流体粘度,∏α· σ; υ一流体流速,μ· σ-1; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数 大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过 渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临 界雷诺数为400O 时,即可形成湍流。 应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过

渡区 域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影 响。 三、实验装置 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注人并充满稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计,最后排入下水道。稳压溢流水槽的溢流水,也直接排入下水道。 水流量由调节阀调节。 图1雷诺实验装置及流程 示踪剂瓶;2稳压溢流水槽;3.试验导管; 4.转子流量计;?01.示踪剂调节阀;?02.上水调节阀; ?03.水流量调节阀;?04,?05-泄水阀;?06一放风阀。 四、实验方法 实验前准备工作: (1)实验前,先用自来水充满稳压溢流水槽.将适量示踪剂(红墨水)加入贮瓶内备 用,并排尽贮瓶与针头之间管路内的空气。 (2)实验前,先对转子流量计进行标定,作好流量标定曲线。

流体流动习题答案

流体流动习题 1. 雷诺准数的表达式为_________。当密度ρ=1000kg/m3,粘度μ=1厘泊的水,在内径为d=100mm,以流速为1m/s 在管中流动时,其雷诺准数等于__________,其流动类型为______. 答案:Re=d uρ/μ ; 105; 湍流 2. 某流体在圆管中呈层流流动,今用皮托管测得管中心的最大流速为2m/s,此时管内的平均流速为_________. 答案: 1m/s 3. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为s/,其体积流量为______.平均流速为_______.答案:s ;s 4. 管出口的局部阻力系数等于,管入口的局部阻力系数等于. 5. 流体在园直管内流动,当Re≥4000时的流型称为___, 其平均速度与最大流速的关系为___,而Re≤2000的流型称为___,平均速度与最大流速的关系为___。 答案:湍流; ≈; 层流; = umax 6. 某设备上,真空度的读数为80mmHg ,其绝压=____mH2O= _____Pa. (该地区的大气压为720mmHg) 答案: ; ×104pa 7. 应用柏努利方程所选取的截面所必须具备的条件是______________。 8.流体静压强P 的作用方向为( B ) A .指向受压面 B .垂直指向受压面 C .垂直受压面 D .平行受压面 9. 层流与湍流的本质区别是 ( D ) A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 10. 在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的( C )倍 A. 2 B. 8 C. 4 11. 某液体在一等径直管中作稳态流动,若体积流量不变,管内径减小为原来的一半,假定管内的相对粗糙度不变,则层流时,流动阻力变为原来的( C ) 2 22322642d lu u d l du u d l h f ρμμ ρλ= ??=??=

流体力学 第5章 圆管流动

第5章圆管流动 一.学习目的和任务 1.本章学习目的 (1)掌握流体流动的两种状态与雷诺数之间的关系; (2)切实掌握计算阻力损失的知识,为管路计算打基础。 2.本章学习任务 了解雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;掌握圆管层流基本规律,了解紊流的机理和脉动、时均化以及混合长度理论;了解尼古拉兹实验和莫迪图的使用,掌握阻力系数的确定方法;理解流动阻力的两种形式,掌握管路沿程损失和局部损失的计算;了解边界层概念、边界层分离和绕流阻力。 二.重点、难点 重点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。 难点:紊流流速分布和紊流阻力分析。 由于实际流体存在黏性,流体在圆管中流动会受到阻力的作用,从而引起流体能量的损失。本章将主要讨论实际流体在圆管内流动的情况和能量损失的计算。 5.1 雷诺(Osborne Reynolds)实验和流态判据 5.1.1 雷诺实验 1883年,英国科学家雷诺通过实验发现,流体在流动时存在两种不同的状态,对应的流体微团运动呈现完全不同的规律。这就是著名的雷诺实验,它是流体力学中最重要实验之一。

105 如图5-1所示为雷诺实验的装置。其中的阀门T1保持水箱A 内的水位不变,使流动处在恒定流状态;水管B 上相距为l 处分别装有一根测压管,用来测量两处的沿程损失 f h ,管末端装有一个调节流量的阀门T3,容器C 用来计量流量;容器D 盛有颜色液体, T2控制其流量。 进行实验时,先微开阀门T3,使水管中保持小速度稳定水流,然后打开颜色液体阀门T2放出连续的细流,可以观察到水管内颜色液体成一条直的流线,如图5-2(a )所示;从这一现象可以看出,在管中流速较小时,它与水流不相混和,管中的液体质点均保持直线运动,水流层与层间互不干扰,这种流动称为层流(Laminar flow )。比如,实际中黏性较大的液体在极缓慢流动时,属层流运动。 随后,逐渐开大阀门T3,增大管中液体流速,流速达到一定速度时,管内颜色液体开始抖动,具有波形轮廓,如图5-2(b )所示。继续增大流速,颜色液体抖动加剧,并在某个流速/ c u (上临界流速)时,颜色液体线完全消失,颜色液体溶入水流中,如图5-2(c )所示;这种现象是液体质点的运动轨迹不规则,各层液体相互剧烈混和,产生随机的脉动,这种流动称为湍流(Turbulent flow )或紊流。 上述实验是液体流速由小到大的情况,流速由大到小的实验过程是首先全开阀门T3,让水流在水管B 中高速流动,形成湍流状态,然后适当打开颜色液体阀门T2,使颜色液体溶入水流中;然后缓慢关小阀门T3,使液体流速逐渐降低,当流速减到某一值c u (下临界流速)时,流动形态就由湍流变成层流。这两次实验所不同的是,由层流转变成湍流时的流速/ c u 要小于由湍流转变成层流的流速c u 。 实验表明,流体流动具有两种形态,并且可以相互转变。 5.1.2 流态判据 上述实验告诉我们流体流动有层流和湍流两种流态,以及流态与管道流速间的关系,可以用临界流速来判别。通过对雷诺实验的数据测定和进一步分析,流态不但与断面平均流速v 有关,而且与管径d 、液体密度ρ以及其黏性μ有关。归结为一个无因数——雷

2018流体力学实验指导书

《流体力学》实验指导书 杨英俊 2018.

目录 实验一平面上静水总压力测量实验 (4) 实验二恒定总流动量方程验证实验 (7) 实验三流态演示与临界雷诺数量测实验 (10) 实验四沿程水头损失测量实验 (13) 实验五文透里流量计率定实验 (16) 实验六局部水头损失测量实验 (19) 实验七恒定总流能量方程演示实验 (22)

前言 流体力学是一门重要的技术基础课,它的主要研究内容为流体运动的规律以及流体与边界的相互作用,它涉及到建筑、土木、环境、水利造船、电力、冶金、机械、核工程、航天航空等许多学科。在自然界中,与流体运动关联的力学问题是很普遍的,所以流体力学在许多工程领域有着广泛的应用。例如水利工程、机械工程、环境工程、热能工程、化学工程、港口、船舶与海洋工程等,因此流体力学是高等学校众多理工科专业的必修课。 流体力学课程的理论性强,同时又有明确的工程应用背景。它是连接前期基础课程和后续专业课程的桥梁。因此,掌握流体力学的基本概念、基本理论和解决流体力学问题的基本方法,具备一定的实验技能,为后续课程的学习打好基础,培养分析和解决工程实际中有关水力学问题的能力。 流体力学和其它学科一样,大致有三种研究方法。一是理论方法,分析问题的主次因素,提出适当的假定,抽象出理论模型(如连续介质、理想流体、不可压缩流体等),运用数学工具寻求流体运动的普遍解。二是实验方法,将实际流动问题概括为相似的实验模型,在实验中观察现象、测定数据,并进而按照一定方法推测实际结果。第三种方法是数值计算,根据理论分析与实验观测拟订计算方案,通过编制程序输入数据,用计算机算出数值解。三种方法各有千秋,既是互相补充和验证,但又不能互相取代。实验方法仍是检验与深化研究成果的重要手段,现代实验技术的突飞猛进也促进了流体力学的蓬勃发展。因此,流体力学实验在流体力学学科及教学中占有重要位置,也是在学习流体力学课程中一个不可缺少的重要教学环节。目前,针对我院各专业本科生,流体力学实验包括以下7个实验: 1)平面上静水总压力测量实验 2)恒定总流动量方程验证实验 3)流态演示与临界雷诺数量测实验 4)沿程水头损失测量实验 5)文透里流量计率定实验

第一章.流体流动习题及答案

一、单选题 1.单位体积流体所具有的( A )称为流体的密度。 A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的( A )。 A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是( D )。 A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是( B )的流体。 A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的( C )。 A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为( A )。 A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的( D )大于外界大气压力时,所用的测压仪表称为压力表。 A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力( A )外界大气压力时,所用的测压仪表称为压力表。 A 大于; B 小于; C 等于; D 近似于。 9.( A )上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A 压力表; B 真空表; C 高度表; D 速度表。 10.被测流体的( D )小于外界大气压力时,所用测压仪表称为真空表。 A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为( B )。 A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( A )。 A. 与指示液密度、液面高度有关,与U形管粗细无关;

经典完美版流体流动概念

流体流动 一填空 (1)流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的 2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/4 倍。 (2)离心泵的特性曲线通常包括H-Q曲线、η-Q 和 N-Q 曲线,这些曲线表示在一定转速下,输送某种特定的液体时泵的性能。 (3) 处于同一水平面的液体,维持等压面的条件必须是静止的、连通着的、同一种连续的液体。流体在管内流动时,如要测取管截面上的流速分布,应选用皮托流量计测量。 (4) 如果流体为理想流体且无外加功的情况下,写出: 单位质量流体的机械能衡算式为?????????????????; 单位重量流体的机械能衡算式为?????????????????; 单位体积流体的机械能衡算式为?????????????????; (5) 有外加能量时以单位体积流体为基准的实际流体柏努利方程为z1ρg+(u12ρ/2)+p1+W s ρ= z2ρg+(u22ρ/2)+p2 +ρ∑h f ,各项单位为Pa(N/m2)。 )气体的粘度随温度升高而增加,水的粘度随温度升高而降低。 (7) 流体在变径管中作稳定流动,在管径缩小的地方其静压能减小。 (8) 流体流动的连续性方程是 u1Aρ1= u2Aρ2=······= u Aρ;适用于圆形直管的不可压缩流体流动的连续性方程为 u1d12 = u2d22 = ······= u d2。 (9) 当地大气压为745mmHg测得一容器内的绝对压强为350mmHg,则真空度为395mmHg 。测得另一容器内的表压强为1360 mmHg,则其绝对压强为2105mmHg。(10) 并联管路中各管段压强降相等;管子长、直径小的管段通过的流量小。 (11) 测流体流量时,随流量增加孔板流量计两侧压差值将增加,若改用转子流量计,随流量增加转子两侧压差值将不变。 (12) 离心泵的轴封装置主要有两种:填料密封和机械密封。 (13) 离心通风机的全风压是指静风压与动风压之和,其单位为Pa 。 (14) 若被输送的流体粘度增高,则离心泵的压头降低,流量减小,效率降低,轴功率增加。降尘室的生产能力只与沉降面积和颗粒沉降速度有关,而与高度无关。 (15) 分离因素的定义式为u t2/gR 。 (16) 0. 5m,气体的切向进口速度为20m/s,则该分离器的分离因数为800/9.8。 (17) 板框过滤机的洗涤速率为最终过滤速率的 1/4 。 (18) 在滞流区,颗粒的沉降速度与颗粒直径的 2 次方成正比,在湍流区颗粒的沉降速度与颗粒直径的 0.5 次方成正比。 二选择 1 流体在管内流动时,如要测取管截面上的流速分布,应选用??A???流量计测量。 A 皮托管 B 孔板流量计 C 文丘里流量计 D 转子流量计 2 离心泵开动以前必须充满液体是为了防止发生???A???。 A 气缚现象 B汽蚀现象 C 汽化现象 D 气浮现象 3 离心泵的调节阀开大时, B A 吸入管路阻力损失不变 B 泵出口的压力减小 C 泵入口的真空度减小 D 泵工作点的扬程升高 4 水由敞口恒液位的高位槽通过一管道流向压力恒定的反应器,当管道上的阀门开度减小后,管道总阻力损失 C 。 A 增大 B 减小 C 不变 D 不能判断 5 流体流动时的摩擦阻力损失h f所损失的是机械能中的 C 项。 A 动能 B 位能 C 静压能 D 总机械能 6 在完全湍流时(阻力平方区),粗糙管的摩擦系数λ数值 C

实验九 雷诺数的测定与流型观察

实验九 雷诺数的测定与流型观察 一、实验目的 1. 观察流体在管内流动的两种不同型态。 2. 确定临界雷诺数Re 。 二、基本原理 1. 流体在管内流动时,一般情况下,不是处于滞流(层流)就是处于湍流(紊流)状态。滞流时,流体质点运动互相平行,不同流体层间的质点彼此不发生穿插混合。湍流时,流体质点向各个方向作不规则运动,但流体主体仍向某一规定方向流动。判定流型的准数称为雷诺准数,以Re 表示。圆直管中,Re <2000时属于层流;Re >4000时则属于湍流。Re 在2000至4000之间时,流动处于一种过渡状态,可能为层流,也可能为湍流,或是二者交替出现,为外界条件所左右。一般情况下把滞流变为湍流的临界情况的Re 称为上临界Re 数。而把由湍流变为滞流的临界情况的Re 称为下临界Re 数。二者一般是不相等的。Re 以下式表示: μ ρ du R e = 式中:d ——管子内径,m ; u ——流速,m/s ; ρ——流体密度,kg/m 3; μ——流体黏度,Pa ·s 。 因为流体的粘度和密度与流体的温度有关,所以在测定Re 数的过程中,还必须知道流体的温度,流体在管道内流动,若已知d 、ρ、μ,则测定出由滞流变为湍流时的临界速度即可计算出临界雷诺数Re 的值。 实验观察过程中,影响流动状态的因素很多,入口条件、有无振动现象、流量计调节速度快慢等都会对流体流动造成影响。 2. 流体进入圆管,以均匀一致的速度u 流动,由于流体粘性的影响,相邻的流体层间产生摩擦力,使流体流动速度发生变化,在垂直流体流动

方向产生速度梯度du/dy,从而形成速度分布。层流时速度分布为抛物线,湍流时则为指数曲线(顶部较平坦)。实验时,通过红墨水示踪,即可观察到不同的流动型态。 三、实验装置 如图所示,,实验时水由水箱1进入实验玻璃试验管2,水量由进水阀6控制,水箱内设有进水稳流装置5及溢流口,以维持液面平稳恒定,多余的水由溢流口管10排出,以保证进水阀6开度不变时通过实验试验管的水流量不变,即稳定流动。 玻璃试验管内径:直径为25mm;全长为1200mm。 四、实验操作 1.熟悉实验装置及流程; 2.开阀9放一团墨水(2cm-3cm),再关9阀,略微开启4阀,使管中的水在很低的速度下流动,观察墨水顶端形状; 3.开阀6向高位槽供水,并调节6阀保持有少量水溢流; 4.微开启阀9,调节阀4的开度,观察墨水线在管中出现的不同现象;

化工原理第1章--流体流动-习题及答案

一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。

10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的 最大流速的关系为()。B A. Um=1/2Umax; B. Um=0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。 C A. 恒截面、恒压差; B. 变截面、变压差; C. 恒流速、恒压差; D. 变流速、恒压差。 16.层流与湍流的本质区别是:( )。 D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 17.圆直管内流动流体,湍流时雷诺准数是()。B A. Re ≤ 2000; B. Re ≥ 4000; C. Re = 2000~4000。 18.某离心泵入口处真空表的读数为200mmHg ,当地大气压为101kPa, 则泵

流体流动与输送设备(习题及答案)

第一章 流体流动与输送设备 1. 燃烧重油所得的燃烧气,经分析知其中含%,%,N 276%,H 2O8%(体积%),试求此混合气体在温度500℃、压力时的密度。 解:混合气体平均摩尔质量 mol kg M y M i i m /1086.281808.02876.032075.044085.03-?=?+?+?+?=∑=∴ 混合密度 3 3 3/455.0)500273(31.81086.28103.101m kg RT pM m m =+????==-ρ 2.已知20℃下水和乙醇的密度分别为998.2 kg/m 3和789kg/m 3,试计算50%(质量%)乙醇水溶液的密度。又知其实测值为935 kg/m 3,计算相对误差。 解:乙醇水溶液的混合密度 7895 .02.9985.01 22 11+ = + = ρρρa a m 3 /36.881m kg m =∴ρ 相对误差: % 74.5%10093536.8811%100=???? ??-=?-实实m m m ρρρ 3.在大气压力为的地区,某真空蒸馏塔塔顶的真空表读数为85kPa 。若在大气压力为90 kPa 的地区,仍使该塔塔顶在相同的绝压下操作,则此时真空表的读数应为多少 解:' '真真绝 p p p p p a a -=-= ∴kPa p p p p a a 7.73)853.101(90)(''=--=--=真真 4.如附图所示,密闭容器中存有密度为900 kg/m 3的液体。容器上方的压力表读数为42kPa ,又在液面下装一压力表,表中心线在测压口以上0.55m ,其读数为58 kPa 。试计算液面到下方测压口的距离。 解:液面下测压口处压力 gh p z g p p ρρ+=?+=10 m h g p p g p gh p z 36.255.081.990010)4258(3 0101=+??-=+-=-+=?∴ρρρ 5. 如附图所示,敞口容器内盛有不互溶的油和水,油层和水层的厚度分别为700mm 和600mm 。在容器底部开孔与玻璃管相连。已知油与水的密度分别为800 kg/m 3和1000 kg/m 3。 (1)计算玻璃管内水柱的高度; (2)判断A 与B 、C 与D 点的压力是否相等。 解:(1)容器底部压力 gh p gh gh p p a a 水水油ρρρ+=++=21 m h h h h h 16.16.07.01000800 2121=+?=+=+=∴水油水水油ρρρρρ 题4 附图 D h 1 h 2 A C 题5 附图

实验一(1)流体流动形态观察与测定

实验一流体流动形态观察与测定 一、实验目的 1、建立“层流和湍流两种形态和层流时管路中流速分布”的感性知识; 2、确立“层流、湍流与Re之间有一定联系”的概念。 二、实验任务 1、先做演示实验,观察以下三种现象:层流、湍流、层流时流速分布曲线的形成。 2、维持高位槽液面稳定的情况下,测定不同流动形态的雷诺数。 三、实验原理 无 四、实验装置及实验步骤 实验管道有效长度: L=600 mm 外径: Do=30 mm 内径: Di=24.2mm 实验装置流程如图一所示。 1. 实验前的准备工作 (1) 必要时调整红水细管4的位置,使它处于实验管道6的中心线上。 (2) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。 (3) 关闭流量调节阀10、7、9,打开进水阀3,使自来水充满水槽,?并使其有一定的溢流 量。 (4) 轻轻打开阀门10,让水缓慢流过实验管道。使红水全部充满细管道中。 2. 雷诺实验的过程 (1) 向红水储瓶 2 中加入适量的用水稀释过的红墨水。

(2) 轻轻打开阀门10,让水缓慢流过实验管道。使红水全部充满细管道中。 (3) 调节进水阀,维持尽可能小的溢流量。 (4) 缓慢地适当打开红水流量调节夹 ,即可看到当前水流量下实验管内水的流动状况 (层流流动如下图二示)。读取流量计的流量并计算出雷诺准数。 图二、层流流动示意图 (5) 因进水和溢流造成的震动,有时会使实验管道中的红水流束偏离管的中心线,或发生不同程度的左右摆动. 为此, 可突然暂时关闭进水阀3, 过一会儿之后即可看到实验管道中出现的与管中心线重合的红色直线。 (6) 增大进水阀 3 的开度,在维持尽可能小的溢流量的情况下提高水的流量。并同时根据实际情况适当调整红水流量,即可观测其他各种流量下实验管内的流动状况。为部分消除进水和溢流造成的震动的影响,在滞流和过渡流状况的每一种流量下均可采用四. 2.(5)中讲的方法,突然暂时关闭进口阀 3 ,然后观察管内水的流动状况(过渡流、湍流流动如图三示)。读取流量计的流量并计算出雷诺准数。 3.流体在圆管内作流体速度分布演示实验 (1)首先将进口阀 3打开,关闭出口阀门7。 (2)将红水流量调节夹打开,使红水滴落在不流动的实验管路。 图三、过渡流、湍流流动示意图 (3)突然打开放水阀门10,在实验管路中可以清晰地看到红水流动所形成的如图四所 示速度分布。 图四、流速分布示意图 4. 实验结束时的操作 (1)关闭红水流量调节夹,使红水停止流动。 (2)关闭进水阀 3,使自来水停止流入水槽。 (3)待实验管道的红色消失时,关闭阀门 10。 (4)若日后较长时间不用,请将装置内各处的存水放净。 五. 实验注意事项 做滞流时,为了使滞流状况能较快地形成,而且能够保持稳定,第一, 水槽的溢流应尽可能的小。因为溢流大时,上水的流量也大,上水和溢流两者造成的震动都比较大,影响实验结果。第二,应尽量不要人为地使实验架产生任何的震动.为减小震动,

成都理工化工原理实验一:流体流动型态及临界雷诺数的测定

本科生实验报告 实验课程 学院名称 专业名称 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇年月二〇年月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下 2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩 放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4 号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一 流体流动型态及临界雷诺数的测定 一、实验目的 研究流体流动的型态,对于化学工程的理论和工程实践都具有决定性的意义。 1883年雷诺(Reynolds )首先在实验装置中观察到实际流体的流动存在两种不同型态——层流和湍流,以及两种不同型态的转变过程。 本实验的目的,是通过雷诺试验装置,观察流体流动过程的不同流型及其转变过程,测定流型转变时的临界雷诺数。 二、实验原理 经许多研究者实验证明:流体流动存在两种截然不同的型态,主要决定因素为流体的密度和粘度、流体流动的速度,以及设备的几何尺寸(在圆形导管中为导管直径)。将这些因素整理归纳为一个无因次数群,称该无因次数群为雷诺准数(或雷诺数),即 ()1 u d R e μ ρ= 式中d 一导管直径,m ρ一流体密度,kg ·m -3 ; μ一流体粘度,Pa · s ; u 一流体流速,m · s -1 ; 大量实验测得:当雷诺准数小于某一下临界值时,流体流动型态恒为层流;当雷诺数大于某一上临界值时,流体流型恒为湍流。在上临界值与下临界值之间,则为不稳定的过渡区域。对于圆形导管,下临界雷诺数为2000,上临界雷诺数为10000。一般情况下,上临界雷诺数为400O 时,即可形成湍流。应当指出,层流与湍流之间并非是突然的转变,而是两者之间相隔一个不稳定过渡区域,因此,临界雷诺数测定值和流型的转变,在一定程度上受一些不稳定的其他因素的影响。 三、实验装置 雷诺试验装置主要由稳压溢流水槽、试验导管和转子流量计等部分组成,如图1所示。自来水不断注人并充满稳压溢流水槽。稳压溢流水槽的水流经试验导管和流量计。 图1雷诺实验装置及流程 1. 示踪剂瓶;2稳压溢流水槽;3.试验导管; 4.转子流量计;V01.示踪剂调节阀;V02.上水调节阀; V03.水流量调节阀;V04,V05-泄水阀;V06一放风阀。 2.

单元练习 流体流动及输送机械(答案)

单元练习:流体流动及输送机械 一、填空题(仅供练习使用,需掌握基本概念与基本公式) 1. 层流时,摩擦系数λ与Re的关系为λ=64/Re。 2. U型管压差计指示液为水,若所测压差不变,要使读数R增大,应更换一种密度比水 小的指示液。 3. 流体输送机械向流体提供的能量主要用于流体势能提高和 阻力损失。 4. 离心泵前必须先灌泵是因为空气密度小,造成的压差或泵吸入口的真空度小 而不能将液体吸入泵内。 5. 用离心泵将地面敞口容器中的碱液送至离地面10m高处密闭容器中,容器上方真空表读数 为P,现在表的读数增大,其他管路条件不变,则管路总阻力损失将增大。6. 水由敞口高位槽通过一管路流向压力恒定的反应器,当管路上的阀门开度减小(湍流态变 为层流态),水流量将减小,摩擦系数增大,管路总阻力损失增大。(增大,减小,不变) 二、选择题 1. 对离心泵允许安装高度没有影响的是下列情况中的 D 。 A. 安装处的大气压; B. 输送液体温度; C. 吸入管道的流动阻力; D. 排出管道的流动阻力 2.流体在圆管内层流流动时,最大速度是平均速度的( C ) A. 四分之一 B. 一半 C .二倍 D. 四倍 3. 当被测流体的绝对压强大于外界大气压强时,所用的测压仪表称为( A ) A. 压力表 B. 真空表 C. 高度表 D. 速度表 4. 流体在直管中流动,当Re≤2000时,流体的流动类型属于( A ) A.层流 B. 湍流 C.过渡流 D. 漩涡流 三、简答题 1. 离心泵在开车前为何要先关闭出口阀门? 答:离心泵开动时的瞬时启动电流为正常工作电流的5~7倍,为保护电机,关闭出口阀以减小负荷,减小电流,防止电极因瞬时电流过大而烧毁。 2. 汽蚀现象产生的原因是什么?会造成什么样的结果?

第1章流体流动和输送

第一章流体流动和输送 1-1 烟道气的组成约为N275%,CO215%,O25%,H2O5%(体积百分数)。试计算常压下400℃时该混合气体的密度。 解:M m=∑M i y i=0.75×28+0.15×44+0.05×32+0.05×18=30.1 ρm=pM m/RT=101.3×103×30.1/(8.314×103×673)=0.545kg/m3 1-2 已知成都和拉萨两地的平均大气压强分别为0.095MPa和0.062MPa。现有一果汁浓缩锅需保持锅内绝对压强为8.0kPa。问这一设备若置于成都和拉萨两地,表上读数分别应为多少? 解:成都p R=95-8=87kPa(真空度) 拉萨p R=62-8=54kPa(真空度) 1-3 用如附图所示的U型管压差计测定吸附器内气体在A点处的压强以及通过吸附剂层的压强降。在某气速下测得R1为400mmHg,R2为90mmHg,R3为40mmH2O,试求上述值。 解:p B=R3ρH2O g+R2ρHg g=0.04×1000×9.81+0.09×13600×9.81=12399.8Pa(表)p A=p B+R1ρHg g=12399.8+0.4×13600×9.81=65766.2Pa(表) ?p=p A-p B=65766.2-12399.8=53366.4Pa 1-4 如附图所示,倾斜微压差计由直径为D的贮液器和直径为d的倾斜管组成。若被测流体密度为ρ0,空气密度为ρ,试导出用R1表示的压强差计算式。如倾角α为30o时,若要忽略贮液器内的液面高度h的变化,而测量误差又不得超过1%时,试确定D/d比值至少应为多少?

流体流型的观察与测定

实验二 流体流型观测及临界雷诺数的测定 一.实验数据记录 1.实验设备基本参数: 试验导管内径d=Φ23mm 转子流量计 公称通径=25mm 2.实验数据记录: 二1.查表知18℃水的相关物理参数如下: 密度 ρ= m 3 黏度μ=2 -??m s mN 2.数据处理 17.88)898885908988(6 1 6 16 1 11=+++++== ∑=i i Q Q L ·h -1 33.188)208181180191190180(6 16 16 2 22 =+++++==∑=i i Q Q L ·h -1 由u d Q 24 π = ,μ ρdu = Re 知,d Q μπρ 4Re = 代入数据得: 12821023100559.136005.9981017.884Re 333 1332 =????????????=------m m s N m kg s m π下 27381023100559.136005.9981033.1884Re 3 233 133=????????????=------m m s N m kg s m π上 三.实验误差分析 Re 文献理论值: 下临界值为下Re =2000,上限临界值为上Re =4000 实验产生误差的主要原因:

1.实验中未调节红墨水流量。红墨水的注射速度应与主体流速相随,随水流速增加,需相应增加红墨水的注射流量。这是实验产生误差的主要原因。 2.每次调节后,都要等到流动型态稳定后,再记录数据,这是实验产生误差的一个重要 原因。 3.由于个人对流体流型的判断差异,也是实验产生误差的主要原因。 4.实验前未对转子流量计进行标定,由于转子流量计具有恒压差,需进行系统读数校正,这也是引起读数误差的一个主要原因。 5.稳压水槽中的溢流水量,随着操作流量的改变需相应调节,既不能让水位下降亦不能发生泛滥。稳压水槽中的水位变化会使流速不稳定也会产生一定误差。 6.实验中碰撞设备,操作应轻巧缓慢,大声说话等都会干扰流体的稳定状态。 7.实验中未检查针头。针头位置应与液体流速平行且应位于管轴线上方为佳。 四.思考题 1.雷诺数的物理意义是什么 答:雷诺数的物理意义是表征惯性力与黏性力之比。惯性力加剧湍动,黏性力拟制湍动。若流体的流速大或黏度小,Re 便大,表示惯性力占主导地位;雷诺数愈大,湍动程度愈激烈。若流体的速度小或黏度大,Re 便小,小到临界值以下,则黏性力占主导地位。 2.有人说可以只用流体的速度来判断管中流体的流动形态,当流速低于某一具体数值是层流,否则是湍流,你认为这种看法对否,在什么条件下可以用流速来判断流体的流动形态 答:不对。()μρ,,,Re u d f =,仅通过流体的速度来判断流体流型是不合理的。 只有对某一确定的流体,在相同的条件下,在一定的管径内流动时,才可以用流速u 来判断流体的流动形态。

流体力学练习题及答案

流体力学练习题及答案 一、单项选择题 1、下列各力中,不属于表面力的是()。 A.惯性力B.粘滞力 C.压力 D.表面张力 2、下列关于流体粘性的说法中,不准确的说法是()。 A.粘性是实际流体的物性之一 B.构成流体粘性的因素是流体分子间的吸引力 C.流体粘性具有阻碍流体流动的能力 D.流体运动粘度的国际单位制单位是m2/s 3、在流体研究的欧拉法中,流体质点的加速度包括当地加速度和迁移加速度,迁移加速度反映()。 A.由于流体质点运动改变了空间位置而引起的速度变化率 B.流体速度场的不稳定性

C .流体质点在流场某一固定空间位置上的速度变化率 D .流体的膨胀性 4、重力场中平衡流体的势函数为( )。 A .gz -=π B .gz =π C .z ρπ-= D .z ρπ= 5、无旋流动是指( )流动。 A .平行 B .不可压缩流体平面 C .旋涡强度为零的 D .流线是直线的 6、流体内摩擦力的量纲[]F 是( )。 A. []1-MLt B. []21--t ML C. []11--t ML D. []2-MLt 7、已知不可压缩流体的流速场为xyj zi x 2V 2+= ,则流动属于( )。 A .三向稳定流动 B .二维非稳定流动 C .三维稳定流动 D .二维稳定流动 8、动量方程 的不适用于in out QV QV F )()(ρρ∑-∑=∑

( ) 的流场。 A.理想流体作定常流动 B.粘性流体作定常流动 C.不可压缩流体作定常流动 D.流体作非定常流动 9、不可压缩实际流体在重力场中的水平等径管道内作稳定流动时,以下陈述错误的是:沿流动方向 ( ) 。 A.流量逐渐减少 B.阻力损失量与流经的长度成正比 C.压强逐渐下降 D.雷诺数维持不变10、串联管道系统中,其各支管内单位质量流体的能量损失()。 A.一定不相等 B.之和为单位质量流体的总能量损失 C.一定相等 D.相等与否取决于支管长度是否相等

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

化工原理流体流动试题(跟答案)

化工原理第1章 化工原理试题(附答案) 姓名 _________ 班级 _________ 学号 __________ 一、填空题: 1.( 3分) 题号 1001 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=1000 kg.m,粘度μ=1[厘泊]的水,在内径为d=100[mm],以流速为1 [m.s]在管中流动时,其雷诺准数等于__________,其流动类型 为_____. ***答案*** Re=duρ/μ ; 10; 湍流 2.( 3分) 题号 1002 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=1000 kg. m,粘度μ=1[厘泊]的水,在内径为d=10[mm],以流速为0.15 [m. s]在管中流动时,其雷诺准数等于__________,其流动类型 为_____. ***答案*** Re=duρ/μ ; 1500; 层流 3.( 3分) 题号 1003 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=820 kg. m,粘度μ=3[厘泊]的水,在内径为d=100[mm],以流速为2[m.s] 在管中流动时,其雷诺准数等于__________,其流动类型为_____. ***答案*** Re=duρ/μ ; 5,46X10; 湍流 4.( 3分) 题号 1004 第 1章知识点: 600 难度: 易 雷诺准数的表达式为________________。当密度ρ=820 kg. m,粘度μ=3[厘泊]的水,在内径为d=10[mm],以流速为0.5[m. s]在管中流动时,其雷诺准数等于__________,其流动类型为__ ___. ***答案*** Re=duρ/μ ; 1366; 层流 5.( 2分) 题号 1005 第 1章知识点: 600 难度: 易 某流体在圆管中呈层流流动,今用皮托管测得管中心的最大流 速为2m.s,此时管内的平均流速为_____________. ***答案*** 1m.s 6.( 2分) 题号 1006 第 1章知识点: 600 难度: 易 某流体在圆管中呈层流流动,今用皮托管测得管中心的最大流 速为3m.s,此时管内的平均流速为_____________.

流体流动与输送

流体流动 一、流体流动复习题 1.流体密度的影响因素是什么?如何影响?气体的密度如何计算? 2.熟练掌握各种压强单位之间的换算,绝压、表压与真空度之间的关系。 3.掌握定态流动的概念以及定态流动时的物料衡算。不可压缩流体流速与管径之间的关系。4.与流体流动有关的能量形式有哪些?熟练掌握分析流动系统各截面上能量形式的方法。 熟悉流体机械能之间的相互转换关系。 5.柏努利方程的适用条件是什么?熟练掌握柏努利方程式的应用。 6.应用柏努利方程解决实际问题时要注意哪些事项? 7.液体、气体的粘度随压强、温度的变化关系是什么?熟悉粘度的单位换算;熟悉牛顿型流体和非牛顿型流体的概念。 8.流体的流动类型有哪两种?如何判断?在流体流量一定的条件下,雷诺数与管径是何关系? 10.当量直径的确定方法以及水力半径的意义。 11.流体在圆形管中流动时的流速分布情况以及平均流速与管中心最大流速的比值为多少?12.什么叫层流内层?如何减薄层流内层的厚度? 13.层流流动时流动阻力与管径和流速之间是何种关系?完全湍流时又是什么关系?15.流体在管内作层流和湍流流动时,摩擦系数与相对粗糙度是否有关?若有关,是何关系?16.掌握流体在圆形管内作层流流动时的摩擦系数的计算。掌握管路总阻力的计算。17.计算流通截面发生变化的局部阻力时,所用的流速应是大管还是小管内的流速。18.当孔板流量计和文氏管流量计上压差计读数相同时,若两流量计的孔径相同,哪个流量计的流量大? 19.离心泵启动前为什么要首先灌泵?什么是气缚现象? 20.离心泵的后盖板上常开有一些小孔,它的作用是什么?叶轮的作用是什么?泵壳的作用是什么?它为什么做成流道面积逐渐扩大的蜗壳形? 21.离心泵有哪些特性?扬程的意义是什么? 22.离心泵启动时,泵的出口阀为什么要处于关闭状态? 23.离心泵铭牌上标出的性能指的是什么状态下的参数?选用离心泵和离心泵操作时效率应控制在什么范围? 24.写出清水泵、油泵、耐腐蚀泵的型号符号,选择泵的步骤是什么? 25.往复泵的性能与离心泵有哪些区别?写出正位移泵的开停、泵步骤。 26.何谓风量、风压?风压与气体的密度是什么关系? 二、题型示例 (一)填充题 1.1atm= mmH2O= kPa。 2.1kgf/cm2= mH2O= MPa

相关文档
相关文档 最新文档