文档库 最新最全的文档下载
当前位置:文档库 › Q320583 DSRZ 0042019RZ无机改性石墨聚苯乙烯不燃保温板保温系统建筑构造最新 .pdf

Q320583 DSRZ 0042019RZ无机改性石墨聚苯乙烯不燃保温板保温系统建筑构造最新 .pdf

聚苯乙烯的应用及研究发展方向

聚苯乙烯的应用及研究发展方向 摘要:自从20世纪30年代初期聚苯乙烯第一次在德国实现了工业生产以后,它的应用领域也在不断扩大,迄今为止,聚苯乙烯以实现了规模化、跨越式发展。聚苯乙烯具有优越的抗水防潮性、轻质、高硬度、高抗冲性、保温性能好等特性,现在它其中最重要的一个应用领域就是用作建筑外墙保温材料——聚苯乙烯泡沫板。然而,由于聚苯乙烯泡沫塑料最大的缺点就是具有易燃性、防火性能差,使得它在建筑材料中的应用受到了很大程度的限制。不仅如此,国内聚苯乙烯生产技术比较落后,目前它的大多应用还是局限于低端领域,如包装容器、日用品、电子等行业。随着现代科学技术的不断进步,对聚苯乙烯进行改性,最大程度上弥补材料的缺陷,已成为当今研究发展的一个重要方向。 关键词:聚苯乙烯性能;应用领域;改性研究;现状及前景;建议。 以下紧接英文题目、作者姓名及所在单位的英译文、摘要和关键词的英译文,全部使用Times New Roman: Applications and research directions of polystyrene Abstract:Since the early 1930s, first in Germany to achieve polystyrene industrial production in the future, its applications are constantly expanding, so far, to achieve the scale polystyrene, leaps and bounds. Polystyrene has excellent resistance to water moisture resistance, good light, high hardness, high impact resistance, thermal insulation properties and other characteristics, it is now one of the most important application area is used as a building wall insulation - polystyrene foam board. However, the biggest drawback is the polystyrene foam flammability, poor fire performance, making its use in building materials has been a great extent. Moreover, domestic polystyrene production technology is relatively backward, now it is mostly confined to the low end applications, such as containers, daily necessities, electronics and other industries. With the progress of modern science and technology, modified polystyrene, make up material defects to the maximum extent, has become an important direction of today's research and development. Key words:Polystyrene performance; applications; modification; Situation and Prospects; suggestions.

二氧化硅的处理方法研究2

二氧化硅处理方法的研究 第一章前言 1、选题的目的、意义 由于二氧化硅内部的聚硅氧和外表面存在的活硅醇基及其吸附水,使其呈亲水性,在有机相中难湿润和分散,与有机基体之间结合力差,易造成界缺陷,使复合材料性能降低[1-3],而二氧化硅可用于橡胶制品、塑料制品、粘合剂、涂料等领域,要想改善这种缺陷,我们需要通过对二氧化硅进一步处理,使原来亲水疏油的表面变成亲油疏水的表面,这种表面功能的改变在实际应用中有重要价值。据此我们利用一些表面改性方法如沉淀法二氧化硅表面改性、十二醇二氧化硅表面改性、气相法二氧化硅表面改性、两亲性聚合物改性二氧化硅等来使亲水性的二氧化硅通过表面处理改性为疏水的二氧化硅,以提高产品的亲油性、分散性和相容性,并能使二氧化硅在某些乳液中既能长期稳定分散,又能保证它与基料在成膜后能有良好的界面结合。 第二章、二氧化硅处理方法的研究现状 目前我们对二氧化硅处理方法的研究主要分为:纳米级二氧化硅的改性处理和非纳米级的二氧化硅的改性处理。 2.1非纳米级二氧化硅的研究 2.1.1二氧化硅的概念:SiO2又称硅石。在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的淡黄色。密度2.2 ~2.66。熔点1670℃(麟石英);1710℃(方石英)。沸点2230℃,相对介电常数为3.9。不溶于水微溶于酸,呈颗粒状态时能和熔融碱类起作用。用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。 2.1.2非纳米级二氧化硅表面改性 由于在二氧化硅表面存在有羟基,相邻羟基彼此以氢键结合,孤立羟基的氢原子正电性强,易与负电性原子吸附,与含羟基化合物发生脱水缩合反应,与亚硫酰氯或碳酰氯反应,与环氧化台物发生酯化反应。表面羟基的存在使表面具有化学吸附活性,遇水分子时形成氢键吸附。二氧化硅表面是亲水性的,无论气相法或沉淀法都是如此,差异仅是程度不同这导致了在与橡胶配合时相容性差,在配合胶料内对硫化促进剂吸附而迟延硫化。此外,白炭黑比表面积大、粒径小,在与

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

聚苯乙烯PS三大改性手段

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/706295350.html,) 聚苯乙烯(PS)三大改性手段 聚苯乙烯(PS),乳名:苯乙烯,后通过自由基聚合,成为聚苯乙烯。其性,透明,绝缘,好色(易染色);低吸湿,价格还便宜。因此,常常被卖到电子、汽车、包装、建筑、仪表、家电、玩具和日用品等行业中做苦力。 正所谓,便宜没好货,好货不便宜。便宜的聚苯乙烯的缺点也挺多,比如说,受不得打(脆性大)、身子弱,受不得环境变化(耐环境应力差)、胃寒,更是喝不了各种饮料(耐溶剂性差)。因此,常常需要通过吃药养生(改性)来治疗这些毛病。比较常见三大手段是:共混改性、共聚改性以及无机纳米粒子改性。 一、共混改性 共混改性:就是把两种或两种以上的聚合物材料、无机材料及助剂,经过机械搅拌,最后获得力学均匀、热性能、光性能得到改善的材料。 共混特点:共混改性方法投资小、生产周期短,因而成为PS改性的热点,不仅是聚合物改性的重要手段,也是开发新材料的重要途径。

PS/PE 聚乙烯(PE)具有优良的柔性和抗冲击性能,因而有利于提高PS的韧性。但PS和PE是两种不相容的高聚物,共混改性时,需加入适当的相容剂。PS与PE共混有两种手段可以实现,即反应性共混和非反应性共混。 在反应性共混的研究中,将增强PS(RPS)、羟基化PE(CPE)、PE 和PS同时加入双螺杆挤出机中熔融共混挤出得到共混改性PS。注:PE相对分子量增大不影响共混物的拉伸强度,同时还可提高共混物的抗冲击强度。 PS/PP 聚丙烯(PP)拉伸强度和表面硬度均高于PS,耐热性能也好,因而将其与PS共混可提高PS的热性能。 但PP与PS不相容,故需加入增容剂。常用表面处理后的硅填充PS/PP体系能增加聚合物界面间的粘合力,提高PS/PP体系的拉伸强度。马来酸酐官能化聚丙烯(RPS-MPP)对PS/PP也有较好的反应增容效果。 PS/PC 聚碳酸酯(PC)性能优异,抗蠕变性能好,可见光透过率可达90%以上,与PS折光率相近,且可与PS共混,使PS的热稳定性、强度和韧性都有所提高。

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

ps共混改性

PS的共混改性研究进展 摘要:综述了国内外聚苯乙烯(PS)树脂的生产、应用及新品种的开发情况,采用接枝共聚物,嵌段共聚物以及反应性共混提高PS/PE相容性的研究方法。本文主要介绍了聚苯乙烯(PS)的改性方法及其在各个领域的应用进展。 关键词:共混改性;接枝共聚物;嵌段共聚物;非反应性共混;反应性共混;增韧改性。 1.前言 聚苯乙烯是由苯乙烯单体通过自由基聚合而成的,英文名称为polystyrene,简称PS,是一种应用广泛性仅次于聚烯烃和PVC 的热塑性材料。PS 较脆,耐环境应力开裂及耐溶剂性能较差,热变形温度相对较低(70~98℃),冲击强度也不高。因而,获得综合性能优良的PS合金材料就成为当前人们关注的一个重要课题。历年来,科学家们不断研究提高PS性能的方法。接着诸如HIPS、ABS、AS 等改性聚苯乙烯系列纷纷涌现。综观各种PS 改性方法,用共混改性PS 的方法投资小、见效快、生产周期短,因而成为改性聚苯乙烯的热点。以下主要介绍几种共混改性方法。聚苯乙烯(PS)与其它通用型塑料相比,有透明、成型性好刚性好、电绝缘性能好、易染色、低吸湿性和价格低廉等优点。因而在包装、电子、建筑、汽车、家电、仪表、日用品和玩具等行业已得到广泛应用。但PS的抗冲击性能、耐环境应力开裂及耐溶剂性能较差,热变形温度相对较低(70~98℃),限制了它的应用。 2. 聚苯乙烯(PS)的共混改性 所谓共混改性是指将两种或两种以上聚合物材料、无机材料以及助剂在一定

温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学及其他性能得到改善的新材料的过程。聚合物的共混不仅是聚合物改性的一种重要手段,更是开发具有崭新性能新型材料的重要途径。 2.1 PE/PS 共混体系 PE 具有优良的柔性和抗冲击性能,因而,有利于提高PS 的韧性。 (1)非反应性共混 谢文炳就PE、PS 的分子量对PS/PE 共混体系的影响做了研究,并提出,PE 相对分子量增大不会影响共混物拉伸强度而能提高其抗冲击强度;而PS 相对分子量增大,共混体系的冲击强度增加,但韧性下降。Tjong 研究了PS/PE/SEBS (SEBS 是增容剂)体系,发现富PE 相HDPE/PS/SEBS 体系抗冲击强度超过纯HDPE,说明HDPE 可与PS、SEBS 共混而增加其抗冲强度。 接枝共聚物增容作用PS/PE 早在七十年代初,就有用接枝共聚物增容PS/PE体系的报导[2~4],近年来国内也开始了此方面的工作。陈苏[5~6]等采用PE悬浮接枝聚合苯乙烯的方法,制备了接枝率为38.5%的PE、PS接枝共聚物(GR-Ⅰ相容剂),并将这种接枝共聚物与SBS复配(GR-Ⅱ相容剂)应用于PS/PE共混体系。由如图1知随着共混物中HDPE含量的增加其拉伸强度Ts下降;图2表明随着共混物中PS含量的增加其冲击强度Is 下降;在HDPE/PS共混物中加入10%GR-Ⅰ相容剂其力学性能均有一定的提高。在HDPE/PS共混物不加相容剂GR-Ⅱ时PS组分的Tg峰在105℃左右,加入相容剂后,此峰变得非常平坦几乎消失。另外,加入相容剂后,共混物HDPE组分的结晶熔融温度Tm向高温方向移动。这些说明了加入此相容剂后共混物的相容性有一定改善。

聚苯乙烯常见的改性方法

聚苯乙烯的改性 聚苯乙烯(PS)由苯乙烯单体通过自由基聚合而成,因其具有的透明、成型性好、电绝缘性能好、易染色、低吸湿性和价格低廉等优点,被广泛应用于电子、汽车、包装、建筑、仪表、家电、玩具和日用品等行业中。但PS也具有脆性较大、耐环境应力及耐溶剂性能较差、热变形温度较低、冲击强度低等缺点,因此,通过适当方法,在较少损失模量的前提下制备改性PS成为当前受到广泛关注的一个重要课题。 PS的常用改性方法有共混改性、共聚改性以及无机纳米粒子改性。 一、共混改性 共混改性是指将两种或两中以上聚合物材料、无机材料及助剂在一定温度下进行机械掺混,最终形成宏观上均匀,且在力学、热学和光学等性能上得到改善的新材料的过程。共混改性方法投资小、生产周期短,因而成为PS改性的热点,不仅是聚合物改性的重要手段,也是开发新材料的重要途径。 1、用聚烯烃改性PS PS/PE 聚乙烯(PE)具有优良的柔性和抗冲击性能,因而有利于提高PS的韧性。但PS和PE是两种不相容的高聚物,若要通过共混改性,需加入适当的相容剂。PS与PE共混有两种手段可以实现,即反应性共混和非反应性共混。 在反应性共混的研究中,Baker等[2]将增强PS(RPS)、羟基化PE(CPE)、PE 和PS同时加入双螺杆挤出机中熔融共混挤出得到共混改性PS,所得共混物性能比用(PS-g-PE)增容的PS/PE的性能更佳。而谢文炳等[3]研究了PS/PE非反应性共混体系的抗冲击强度、拉伸强度和弯曲强度与增容剂SEBS(氢化乙苯胶)含量的关系,还就PE、PS的分子量对PS/PE非反应性共混体系的影响进行了研究。结果表明,PE相对分子量增大不影响共混物的拉伸强度,同时还可提高共混物的抗冲击强度。 2、PS/PP 聚丙烯(PP)拉伸强度和表面硬度均高于PS,耐热性能也较好,因而将其与PS共混可提高PS的热性能。PP与PS同样不相容,故仍需加入增容剂。用表面

石墨烯分散方法

石墨烯分散方法 石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下: 1、机械分散发 利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。 2、超声分散发 利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这

是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。3、微波辐射发 采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。 4、表面改性 通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。 采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π—π共轭相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,

聚苯乙烯材料介绍

聚苯乙烯(PS)

目录 聚苯乙烯 (1) 聚苯乙烯- 基本资料 (1) 聚苯乙烯- 材料简介 (1) 聚苯乙烯- 发展历程 (2) 聚苯乙烯- 材料性能 (2) 热性能 (2) 机械性能 (2) 隔热保温性 (2) 抗水防潮性 (3) 高强度抗压性 (3) 耐用性 (3) 物理性质 (3) 环保 (3) 聚苯乙烯- 化学性能 (3) 聚苯乙烯- 加工生产 (4) 聚苯乙烯- 市场分析 (4) 中国聚苯乙烯市场的特点 (4) 中国聚苯乙烯产品特点 (5) 中国聚苯乙烯工业发展建议 (5) 聚苯乙烯- 发展现状 (6) 聚苯乙烯- 现存问题 (6) 聚苯乙烯- 抗冲击聚苯乙烯 (7)

聚苯乙烯 聚苯乙烯(英语:Polystyrene,简称PS)为一种无色透明的热塑性塑料,是由苯乙烯单体经自由基缩聚反应合成的聚合物,因其具有高于100摄氏度的玻璃转化温度,所以经常被用来制造各种需要承受开水温度的一次性容器或一次性泡沫饭盒等。 聚苯乙烯 - 基本资料 名称:聚苯乙烯 密度:1050 kg/m3 电导率:(σ) 10-16 S/m 导热率:0.08 W/(m·K) 杨氏模量:(E) 3000-3600 MPa 拉伸强度:(σt) 46–60 MPa 伸长长度:3–4% 夏比冲击试验:2–5 kJ/m2 玻璃转化温度:80-100°C 熔点:240°C 热膨胀系数:(α) 8 * 10-5/K 热容:(c) 1.3 kJ/(kg·K) 吸水率:(ASTM) 0.03–0.1 降解:±2000年 聚苯乙烯 - 材料简介 聚苯乙烯是指有苯乙烯单体经自由基缩聚反应合成的聚合物,通式是[(CH2CHC6H5)n],包括普通聚苯乙烯(GPPS),聚苯乙烯、可发性聚苯乙烯(EPS)、高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。玻璃化温度80~90℃,非晶态密度1.04~1.06克/厘米3,晶体密度1.11~1.12克/厘米3,熔融温度240℃,电阻率为1020~1022欧·厘米。导热系数3 0℃时0.116瓦/(米·开)。通常的聚苯乙烯为非晶态无规聚合物,具有优良的绝热、绝缘和透明性,长期使用温度0~70℃,但脆,低温易开裂。此外还有全同和间同立构聚苯乙烯。全同聚合物有高度结晶性。 普通聚苯乙烯树脂属无定形高分子聚合物,聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高、刚度大、玻璃化温度高,性脆等。可发性聚苯乙烯为在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,专用于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的冲击强度,但产品不透明。间规聚苯乙烯为间同结构,采用茂金属催化剂生产,是近年来发展的聚苯乙烯新品种,性能好,属于工程塑料。 聚苯乙烯(PS)具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。普通聚苯乙烯树脂为无毒,无臭,无色的透明颗粒,似玻璃状脆性材料,其制品具有极高的透明度,透光率可达90%以上,电绝缘

年产一万吨聚苯乙烯聚合工段工艺设计

. 毕业设计 题目:年产1万吨聚苯乙烯聚合车间工艺设计学院: 专业: 姓名: 学号: 指导老师: 完成时间:

设计说明 本次设计主要是针对年产1万吨聚苯乙烯聚合车间工艺的设计。设计的内容主要包括绪论、聚苯乙烯的聚合机理、聚合工艺介绍、物料衡算、反应釜的设计、热量衡算、自动控制等几部分。本设计采用的是热引发本体聚合的生产工艺,在确定工艺流程的基础上对以下几部分进行了设计计算:物料衡算、反应釜的设计、热量衡算等。本次设计年理论产值是一万吨经计算投料每小时需投入苯乙烯1288.8kg,甲苯175.69kg,每小时生成的聚苯乙烯计算后可知,年产量为1.08万吨。符合设计的要求。釜体容积14.33m3,釜体高度 3.18m。共需反应热为24000000KJ。 关键词:热引发本体聚合聚苯乙烯苯乙烯预聚釜聚合釜

Design Description This design is mainly aimed at the annual output of 10000 tons of polymerization polystyrene workshop process design. Design content mainly includes the introduction, polystyrene introduced the polymerization mechanism, polymerization process, material balance, the design of the reaction kettle, heat balance, automatic control and so on several parts. This design USES a thermal bulk polymerization production process, the technological process is determined on the basis of calculation in design of the following sections: the design of the material balance and the reaction kettle, heat balance, etc. The design theory of value is ten thousand tons of calculating charge per hour need for styrene 1288.8 kg, 175.69 kg, toluene per hour generated polystyrene after calculation, the annual output of 10800 tons. In line with the requirements of design. The kettle body volume of 14.33 m3, body height of 3.18 m. The total heat of reaction of 24000000 kJ. . Keywords:Heat cause Bulk polymerization polystyrene styrene The performed kettle Polymerization kettle

聚苯乙烯的进展及其改性研究

聚苯乙烯的改性研究及其应用现状 成型0801班 周昌乐 200848030123 摘要:主要介绍了聚苯乙烯( PS )的改性方法及其在各领域的应用研究进展。指出共混改性依然是PS目前主要的改性方法。强调了随着研究工作的深入,纳米材料改性等新的方法将也将有大的突破,必然伴随着PS应用领域的不断发展。 关键词:共混改性;相容性;控制释放;降解材料;缓释材料 Abstract: It mainly introduced the modification methods of polystyrene (PS) and their applications in various fields. Pointed out that the blending modified is still main methods of PS modification at present. Emphasized the research work with deep, nanometer material and so on the new modification methods will will also have big breakthrough, is accompanied by the development of the application field of PS. Key words: Polystyrene;Blending modification;Compatibility;Degradable material;Sustained release material 聚苯乙烯( PS ) 具有透明、成型性好、刚性好、电绝缘性能好、易染色、低吸湿性和价格低廉等优点,在包装、电子、建筑、汽车、家电、仪表、日用品和玩具等行业已得到广泛应用。但PS较脆,耐环境应力开裂及耐溶剂性能较差,热变形温度相对较低( 7 0 - - 9 8 " C) ,冲击强度也不高。因而,在PS不显著损失模量的前提下增加其韧性,获得综合性能优良的PS合金材料就成为当前人们关注的一个重要课题。历年来,科学家们不断研究提高PS性能的方法,同时也扩大了其应用领域。本文拟就聚苯乙烯改性方法和其应用领域做一综述。 1、PS的改性方法研究进展 1.1 、PS的共混改性 所谓共混改性是指将两种或两种以上聚合物材料、无机材料及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,且力学、热学、光学等性能得到改善的新材料的过程。共混不仅是聚合物改性的重要手段,而且也是开发新材料的重要途径。 1.1.1、用聚烯烃(PE)改性PS PE具有优良的柔性和抗冲击性能,因而有利于提高聚苯乙烯的韧性。但是PS和PE是两种不相容的高聚物,简单共混得不到理想合金,必须加入相容剂。 1.1.1.1、非反应性共混改性 七十年代初,Barenten和Heikens [1 , 2]用接枝共聚物PS- g- PE增容PS/PE体系。结果表明,加入PS - g - PE能提高PS/PE体系的拉伸和冲击强度,使分散相尺寸减小。谢文炳[ 3;4 ]研究了PS/PE共混体系的抗冲强度、拉伸强度和弯曲强度与增容剂S EBS ( 氢化乙苯胶) 含量的关系。还就PE 、PS的分子量对PS/PE共混体系的影响做了研究,并提出,PE相对分子量增大不会影响共混物拉伸强度而能提高其冲击强度;而PS相对分子量增大,共混体系的冲击强度增加,但韧性下降。Tjongt5研究了PS/PE/SEBS ( S E B S是增容剂) 体系,发现S E B S共混而增加其抗冲强度。 1.1.1.2、反应性共混改性 早在1988年,PE t e r就用反应挤出共混制备了PS/PE共混物,并研究了不同分子量的PE 、PS及不同添加剂含量对共混物性能的影响。但他没能就减小PS、PE内部交联和链降解的问题提出解决办法。1 9 9 1 年T e h和R u d i n t T l 将引发剂、偶联剂溶于苯乙烯单体中,在PE 、PS双螺杆共混挤出时加入该苯乙烯单体,从而减小了PE的自身偶联,增加了PS和PE间的接枝反应。B a k e d 0 1 将R PS ( 嗯唑啉官能化PS ) C PE ( 羧基化

石墨烯改性

综合实践论文 题目:石墨烯改性研究进展 班级:高分子112 姓名:陈阳建 指导老师:祖立武 日期:2014年6月20日

石墨烯改性研究进展 陈阳建 齐齐哈尔大学材料学院,黑龙江齐齐哈尔10221 摘要: 结合当前国内外石墨烯改性的研究进展,分别从表面改性和电子性能改性两个方面介绍了石墨烯的改性方法。其中,石墨烯表面改性包括共价键功能化和非共价键功能化;石墨烯电子性能改性包括掺杂和离子轰击。讨论了各种改性方法的优缺点,并在原有改性方法的基础上,展望了未来石墨烯改性的发展方向。关键词: 石墨烯;改性;综述;共价键功能化;非共价键功能化;掺杂;离子轰击 Research progress in the modification of graphene Chen yangjian Materials Science,Qiqihar University ,Qiqihar in Heilongjiang 10221 Abstract: Based on the research progress of modification of graphene material at hom e and abroad, the methods of modification of graphene are introduced from the surfac e modification and the electronic properties modification, respectively. The methods o f surface modification contain the covalent functionalization and non-covalent functio nalization; the methods of electronic properties modification contain dopin g and ion b ombardment. Finally, the advantages and disadvantages of various modification met h ods are discussed, and the further development of modification of graphene is pointed out on the basis of original modification methods. Key words: graphene; modification; review; covalent functionalization; non-covalent functionalization; doping; ion bombardment

废旧聚苯乙烯循环利用

废旧聚苯乙烯循环利用 关键词: 白色污染; 聚苯乙烯( PS) ; 回收利用 1热降解制苯乙烯单体 聚苯乙烯由苯乙烯单体加聚而成, 但是在聚合上限温度以上和催化剂的作用下, 反应 能向相反的方向进行, 即解聚生成苯乙烯单体和低分子量的苯系物, 便得到苯乙烯单体和 燃料. 国际上有下面几种方法: ( 1) 日本的流化床热解聚苯乙烯工艺, 此工艺采用砂径0. 2 mm 的沙子作为载体, 当炉内温度达到450~530 ℃时, 收集热解生成的气体, 冷凝后得 到一种褐色的油. 经过简单分馏可回收纯度达98%以上的苯乙烯单体, 其中含1%左右的苯、甲苯、乙苯, 苯乙烯单体的回收率为70%左右. ( 2) 采用管式连续解聚设备, 在380 ℃的条件下解聚, 然后收集冷凝的液体产物, 经除杂质、分馏, 可得到纯度高的苯乙烯单体. ( 3) 采用Y2 型催化剂, 在400~500 ℃解聚PS, 得到苯乙烯单体和高辛值汽油的调和组分, 而 且把解聚气用作热解的热源. 聚苯乙烯的解聚主要是选择和研究合适的高效催化剂,降低能耗, 提高苯乙烯收率, 减少副反应和结渣问题 . 2制造粘合剂 溶剂胶结是热塑料胶结的有效方法之一, 该法是将被胶结塑料粉末溶解在相应溶剂之中, 配成胶液使用. 由此可见, 将聚苯乙烯溶于溶剂后, 本身就是一种粘合剂, 但由于聚 苯乙烯是非极性的, 不含有极性基团, 而且含有刚性大, 柔性小的苯环.由于它直接制成的粘合剂与极性被粘物的粘接力很弱, 胶层脆且硬, 应用范围很窄, 为此人们对其进行了大 量的改性研究工作, 目的在于引入极性基团, 提高粘接强度和极性, 以适用多种物质的胶 接 . 目前用聚苯乙烯做粘合剂的研究较多, 使用的溶剂多数仍是有机溶剂. 为了增强胶粘 剂的运动能力而起到扩散作用, 使胶粘剂处于溶液状态, 对所用溶剂的选择依据对基料溶 解性能好、经济、无毒、挥发适当的原则. 现在市售的“PS 胶粘剂”以废聚苯乙烯泡沫塑料、酚醛树酯、异氰酸酯、3- 氯丙烯、醋酸乙酯、丙酮、环己酮、甲苯、氯化锌、氧化镁防老剂为主要原料, 在一定温度下, 经搅拌制得PS 胶. 该胶价格低廉、工艺简单、操作方便、不需特殊设备; 对木材及日常用品的粘接性能好, 耐气候变化, 耐稀酸、稀碱、酒精及减少对植物的侵蚀.可用于木材的粘接, 日常塑料制品、塑料贴面、塑料贴墙纸及铭牌粘接 . 3制造涂料 在由废旧聚苯乙烯制得的粘合剂中加入填料、颜料、涂料助剂等, 即可制得PS 涂料, 可广泛用于建筑防水( 如内外墙、地面和屋面的装饰) 和纸品防水涂层( 如纸箱防水涂料) , 纸塑涂料( 如广告、美术装璜等) . 在制取涂料之前首先将收集到的废聚苯乙烯进行预处理, 即将其放在热碱水中泡一段时间, 然后进行机械搅拌, 使之相互碰撞和摩擦, 以达到除去 污物之目的, 取出聚苯乙烯放入清水池中进行搅拌清洗, 最后将清洗好的聚苯乙烯烘干或 晾干. 然后, 用粉碎机粉碎, 量小的也可用手粉碎至一定粒度 . 准备工作就绪后, 根据不同的需求来选择不同的涂料制备方法. 例如可按一定的比例量取乙酸异戊酯、三氯甲烷、丙酮配制成混合溶剂,随后在室温条件下将一定量预处理后的废聚苯乙烯泡沫塑料加入到配制好的混合溶剂中, 搅拌使之充分溶解. 待全部溶解后, 加入适量的乳化剂和改性剂, 加热 搅拌, 温度为70~75 ℃, 乳化1~2 h, 加入填料氯化锌或其他填料. 加热搅拌大约1h,直 到涂料均匀, 冷却至室温, 加入适量防老剂, 过滤即得成品 . 也可用少量丙烯酸酯和活性单体对PS进行接枝改性, 改善聚苯乙烯的成膜特性, 增强与基体的附着力, 使聚苯乙烯有 较强的可乳化性, 同时减少了有机溶剂的用量, 既降低了成本又减轻了毒性, 制成性能良 好乳液涂料 . 或者将聚苯乙烯、松香树脂、增塑剂和活性单体按一定比例混合,使聚苯乙烯接枝改性制成涂料基料 . 将清洗粉碎好的聚苯乙烯加各种改性剂, 搅拌均匀后制成PS—I

二氧化硅的红外光谱特征研究

二氧化硅的红外光谱特征研究 1 引言 二氧化硅是建筑材料的基石,化学式为SiO2,在自然界分布很广,种类繁多,如石英、石英砂、水晶、玛瑙、蛋白石、白炭黑等。随着科学技术不断发展,现在出现了很多人工合成的二氧化硅,如纳米二氧化硅、二氧化硅乳液、介空二氧化硅等。而且不同的二氧化硅具有不同的作用,如石英、石英砂,用来制造石英玻璃;纳米二氧化硅用来制造陶瓷材料、涂料、粘接剂、防水材料等[1]。 红外光谱的产生源于物质分子的振动,不同的物质分子具有不同的振动频率可形成不同的红外光谱图,故红外光谱又被称为物质分子的“指纹图谱”。根据被测样品红外光谱的特征峰进行对比分析,可以作为物质识别和比较的重要依据。傅里叶变换红外(FTIR)光谱法具有操作简单、快速灵敏、重复性好和成本低等优点,可作为二氧化硅的一种定性、快速的检测技术。本文分析研究了八种不同来源的二氧化硅样品,寻找二氧化硅在其红外特征谱中的反映,比较其红外光谱的异同,提供最直接有效的鉴别方法,为人们在建筑材料上开发、研究及选用合适的二氧化硅提供理论指导。 2 实验 2.1实验仪器 红外光谱在Nexus型傅立叶变换显微红外光谱仪上进行。KBr压片法制样,KBr分束器,DTGS KBr检测器,分辨率:4 cm-1,扫描次数:64,测试范围4000~400 cm-1。 2.2样品 白炭黑(自制)、纳米二氧化硅粉末(为浙江舟山明日纳米材料有限公司产品)、二氧化硅乳液(自制)。 3 结果与讨论 3.1白炭黑的红外光谱 白炭黑是白色粉末状X-射线无定形硅酸和硅酸盐产品的总称,主要是指沉淀二氧化硅、气相二氧化硅、超细二氧化硅凝胶和气凝胶,也包括粉末状合成硅酸铝和硅酸钙等。白炭黑化学式SiO2.nH2O 即水合二氧化硅。图6为白炭黑(由稻壳,按文献[4]方法制备)的红外光谱,由图可见,1095 cm-1强而宽的吸收带是Si-O-Si反对称伸缩振动峰,798 cm-1、466 cm-1处的峰为Si-O键对称伸缩振动峰,3450 cm-1处的宽峰是结构水-OH反对称伸缩振动峰,1638 cm-1附近的峰是水的H-O-H弯曲振动峰,955 cm-1处的峰属于Si-OH的弯曲振动吸收峰。其红外光谱图与文献报导一致[4]。

二氧化硅处理方法的研究2

二氧化硅处理成纳米级二氧化硅及二氧化硅的 表面改性的处理方法 表面改性球形二氧化硅的制备与表征 球形二氧化硅在涂料、催化、色谱填料、感光乳剂、高性能陶瓷及集成电路塑封填料等方面都有广泛应用。表面改性的疏水二氧化硅因具有较强的非极性相互作用,在反相固体萃取填料及高聚物体系性能补强等方面得到重要应用。球形二氧化硅的液相反应法制备主要包括溶胶—凝胶法[1~4]和微乳液法[5~6]。溶胶—凝胶法通常以有机硅醇盐如正硅酸乙酯(TEOS)为原料,用碱或酸作催化剂,在醇或醇水介质中通过水解反应制备。微乳液法则是以TOES或NaSiO2为原料,在反向微乳液(W/O)提供的微反应器中通过水解聚合反应合成。溶胶—凝胶法中,反应溶剂的种类、催化剂的种类和浓度、相关反应物浓度及比例等因素都会影响水解和成胶反应过程,从而影响最终所得二氧化硅颗粒的形貌、粒度分布和颗粒间的聚集状态。研究这些影响因素对颗粒的调控作用对拓宽颗粒粒径的选择范围具有重要的意义。 本研究以TEOS为硅源,在醇水混合溶剂中以氨作催化剂,通过溶胶—凝胶法制备二氧化硅球形颗粒,并以十八烷醇作为改性剂,通过酯化反应对二氧化硅进行表面修饰改性。研究了成胶反应中TEOS浓度对二氧化硅颗粒粒径的影响,并用TEM、XPS、IR、TG-DTG等实验手段对所得产品进行了表征。 一、实验部分 1、1 试剂 TEOS、无水乙醇、氨水、三氯甲烷、环己烷均为分析纯,使用前未经进一步纯化。 1、2 制备方法 按一定比例配制TEOS和无水乙醇的混合溶液,室温(25℃)搅拌下将该混合液滴加到含有一定量浓氨水的无水乙醇溶液中,控制反应体系的PH值约为8,继续搅拌2h后,将其转移到装有搅拌的三口瓶中,加入一定量的十八烷醇和正丁醇,进行蒸馏。当蒸汽温度上升到118℃后,停止蒸馏。通氮气保护下将反应体系加热至反应温度200~210℃,继续搅拌加热3h,后,将反应液趁热转移到烧杯中,加入一定量的以3:2的体积比混合而成的三氯甲烷和环己烷的溶液,搅拌均匀并使其完全溶解。 将上述混合液转入离心管中,在转速为1500r/min下离心分离10min,然后在水浴中加热,再离心10min,将上清液弃去,往含沉淀的离心管中再加入等量的三氯甲烷和环己烷的混合溶液,按上述操作再离心分离两次。将离心后所得的产品从离心管中取出,放在表面皿中自然干燥后即得产品。 1、3样品表征 用NETZS STA 409 PC/PC热分析仪测定样品的热重曲线,实验条件为:升温速率10℃/min分析气氛为空气,流速30mL/min用Joel JEM-2010型透射电子显微镜(TEM)观察颗粒形貌和尺寸,样品先分散在环己烷中,然后用滴加到有非晶碳膜的铜网上,于空气中晾干后进行电镜分析。用Nexus 470型红外光谱

相关文档
相关文档 最新文档