文档库 最新最全的文档下载
当前位置:文档库 › 药物基因检测位点及意义

药物基因检测位点及意义

药物基因检测位点及意义
药物基因检测位点及意义

专业进展——药物基因组学

专业进展——药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 埃索美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。 药物进入体内方式除被动扩散外,细胞的主动转运发挥着非常重要的作用。 例:

基因检测与用药

基因与用药指导 新用药时代 科学的发展让许多不可能变为了可能,攀月登空,潜海游龙。如今我们身边充斥着诸多高科技的元素,基因——DNA更是这其中耀眼的明星。日常我们听到的转基因大豆、转基因动物、DNA眼霜。这些看似高科技外衣下的产品,使我们越来越习惯于听说基因的消息,那基因DNA到底离我们有多远呢? 平日老百姓生活最普通的一部分,感冒发烧,到医院拿点药,或者干脆自己到药店买点儿药。好了也便好了,不好只能归咎于“病毒性的”。遇到大病,医生幵药也是按照常规处方,摸着石头过河。患者更是糊里糊涂,听大夫的便是。至于好不好,好到什么程度,那只能说个人差异了。 岂不知,这差异就体现在基因上,而这吃药也是有讲究的。我们的基因决定了我们吃什么药管用,吃什么药不管用。正确合理的用药是未来个体化医疗的重要组成部分。据世界卫生组织统计,全球死亡患者中,1/3是死于不合理用药,而非死于自然疾病本身。 “基因指导用药” 这个概念并不等同于一般意义上的“抗生素耐药”。后者是针对侵害人体的细菌而言,抗生素是一类能够破坏细菌生理结构或生长代谢的物质。 细菌通过不断的优胜劣汰以抗拒抗生素对它们的杀灭,导致耐药菌株队伍不断壮大,这导致了细菌耐药性的出现,并且这种耐药形势在抗生素滥用的情况下不断恶化,以至于出现了“超级病菌”。 “基因指导用药”则是针对我们每个人先天的遗传基因而言,在一般情况下,基因是伴随我们一生不变的,上面提到医生常规用药,同样的病、同样剂量的药,不同患者服用后疗效可能大相径庭,比如:高血压,据不完全统计,我国现有高血压病人约2亿。高血压是心肌梗死、脑卒中发病的重要危险因素,高血压每年在全球造成的死亡超过700万人,也就是每分钟约有13个人因高血压而与世长辞。很多高血压患者有过用药、疗效不佳、换药的经历。为什么同是高血压,同样的药却结果不一样呢?答案是:基因。基因决定了一个人吃何种药有效、吃何沖药无效,甚至有不良反 应。根据现有研究表明,部分抗高血压的药物降压疗效及不良反应的个体差异主要是因为相关药物的代谢酶、转运体和受体的基因多态性所致。临床常用抗高血压药物包括利尿剂、13-受体阻滞剂(如美托洛尔、卡维地洛等)、钙离子拮抗剂、血管紧张素转换酶抑制剂 (ACE-I)、血管紧张素受体拮抗剂(ARB)等,其中大部分抗高血压药物可能因为基因多态性差异,致使不同患者个体间出现降压效应的差异。 患者当发现患上高血压时,应到相关医院咨询,医生幵具化验单检测上述基因,并在医生指导下合理选择药物,进行有针对性的用药,以免贻误病情或造成不必要的经济损失。

药物基因组学检测工作

药物基因组学检测工作 药物基因组学 (pharmaeogenomies)又称基因组药物学或基因组药理学,是药理学或基因组学的一个分支,它是研究基因组或基因变异对药物在人体内吸收、代谢、疗效及不良反应的影响,从而指导临床合理用药的一门新学科。目前,很多高血压或糖尿病等常见病、多发病的患者在接受治疗时,同样的疾病使用同样剂量的同一药物,在疗效和不良反应方面存在显著差异,其原因是多方面的,其中患者间基因的个体差异因素起着相当重要的作用,正是这种差异直接导致患者对药物敏感性不同。因而根据患者遗传背景,检测出患者的基因个体差异,选取正确的药物并确定正确的给药剂量,正是药物基因组学服务的目的。美国FDA于2007年首次批准了华法林的基因组学检测方法,用于判断其用量及敏感性。截至2011年,美国已有70余种药物说明书上注明要求根据药物基因组学信息,制订个体化用药方案。结合国内外基因组检测较为成熟的经验和我院的实际情况,我院临床药学科与检验科现已开展质子泵抑制剂、氯吡格雷、华法林等相关药物基因组学检测工作。 1.药物基因组学研究内容 药物基因组学主要是利用已知的基因组学理论,来研究人体遗传因素对药物反应的影响,其主要内容包括:药物代谢酶、药物转运蛋白、药物作用靶点等基因多态性。它以药物效应和安全性为目标,主要研究药物效应的个体性差异,并针对不同个体的基因型进行个性化针对治疗。 2.药物相关基因检测的适合人群 通常需要长期甚至终身接受某种药物治疗的患者(如心血管药物、精神病药物、消化道药物、抗病毒药物) ;有过严重药物不良反应史或家族成员中有过药物不良反应的人;同时接受多种药物治疗的患者;经常接触有毒物质的患者;使用某种药物效果一直不理想,病情控制不稳定的患者;某些特殊人群:儿童和老年人等人群,适合作药物相关基因检测。 3.药物基因组学检测方法 根据检测对象的不同,药物基因组学对用药指导的检测可以分为三类:即药物代谢酶基因检测、药物转运体基因检测、药物靶点基因检测。我院药物基因组学检测主要通过药物代谢酶基因检测从而制订个体化用药方案。 药物代谢酶的种类很多,包括氧化、还原或水解I相酶和负责结合反应的II相酶。I相酶中的细胞色素P 450酶系 (CYP450 )参与了临床上90 %以上的药物代谢,不同的P450家族成员对药物代谢有不同的影响。如果药物代谢的药酶发生变异,则可引发血药浓度的显著变化从而改变了药物的药动学与药效学。 已知参与药物代谢的药酶众多,因基因多态性的编码影响,将其分为 4 种:正常代谢型( extensivemetabolizer,EM) 、慢代谢型( poor metaboliser,PM) 、中间

药物基因组学

药物基因组学 PART 01 药物基因组学 一、药物基因组学 药物基因组学:是研究人类基因变异和药物反应的关系,利用基因组学信息解答不同个体对同一药物反应存在差异的原因。 基因组(genome):是指生物体单倍细胞中一套完整的遗传物质,包括所有的基因和基因间区域(即编码区和非编码区)。 人类基因组计划是由序列(结构)基因组学向功能基因组学的转移。开启了人类的“后基因组时代”。 后基因组时代研究的重要方向: 功能基因组学 比较基因组学 结构基因组学 蛋白质组学 药物基因组学 …… PART 02 基因多态性 二、基因多态性 基因多态性是指在一个生物群体中,呈不连续多峰曲线分布的一个或多个等位基因发生突变而产生的遗传变异。 CYP450酶超大家族 共涉及1000种药物的代谢(拓展) 12种亚型:CYP1、CYP2、CYP3…… 15个亚家族:A~Q 如:CYP2C9、CYP2C19、CYP2D6、CYP3A5等 药物转运蛋白-MDR1(多药耐药基因)(拓展) 调控许多药物吸收、分布和排泄过程 与胆红素、抗癌化疗药物、强心苷、免疫抑制剂、糖皮质激素、HIVⅠ型蛋白抑制剂有关 药物靶蛋白-ADRB2 编码人β2肾上腺受体 人类白血球抗原-HLA-B HLA-B变异,将引起某些药物的严重皮肤反应 内容: 1.药物代谢酶的多态性 同一基因位点上具有多个等位基因引起,其多态性决定表型多态性和药物代谢酶的活性,造成不同个体间药物代谢反应的差异。是产生药物毒副作用、降低或丧失药效的主要原因之一。 细胞色素P450酶(CYP)是药物代谢的主要酶系。在细胞色素P450的亚群中,CYP2D6、CYP2C9和CYP2C19对许多药物的效应非常重要。(拓展) 例: 奥美拉唑、兰索拉唑和泮托拉唑等质子泵抑制剂由P450酶代谢,主要由CYP2C19,部分由CYP3A4代谢。 因此,CYP2C19的基因多态性会影响质子泵抑制剂的药动学,从而影响后者治疗相关疾病的临床效果。 艾司奥美拉唑仅经CYP3A4代谢。 2.药物转运蛋白 在药物的吸收、排泄、分布、转运等方面起重要作用,其变异对药物吸收和消除具有重要意义。

药物代谢酶和药物作用靶点基因检测技术指南(试行)

药物代谢酶和药物作用靶点基因检测技术指南(试行)

前言 药物体内代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体内浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具,部分上市的新药仅限于特定基因型的适应症患者。美国FDA已批准在140余种药物的药品标签中增加药物基因组信息,涉及的药物基因组生物标记物42个。此外,部分行业指南也将部分非FDA批准的生物标记物及其特性(如MGMT基因甲基化)的检测列入疾病的治疗指南。药物反应相关基因及其表达产物的分子检测是实施个体化药物治疗的前提。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体内吸收、分布、代谢和排泄规律,侧重于阐明药物的体内过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其内容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变化,侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。目前美国FDA和我国食品药品监督管理局(CFDA)都已批准了一系列的个体化用药基因诊断试剂盒。这些试剂盒基本都是对人DNA样本进行基因检测。而在基因表达的检测方面,由于RNA的稳定性差,样本处置不当可导致目标RNA降解,使得检测结果不准确,影响临床判断。因此,RNA检测试剂的研发相对滞后。 本指南旨在为个体化用药基因检测提供一致性的方法。本指南中所指的药物基因组生物标志物不包括影响抗感染药物反应性的微生物基因组变异。此外,肿瘤靶向治疗药物个体化医学检测指南见《肿瘤个体化治疗的检测技术指南》。 本指南起草单位:中南大学湘雅医院临床药理研究所、中南大学临床药理研究所、中南大学湘雅医学检验所,并经国家卫生计生委个体化医学检测技术专家委员会、中国药理学会药物基因组学专业委员会、中国药理学会临床药理学专业委员会和中华医学会检验分会组织修订。 本指南起草人:周宏灏、陈小平、张伟、刘昭前、尹继业、李智、李曦、唐洁、俞

药物基因检测位点及意义

药物基因检测位点及意义

检测项目名称基因位点检测意义 氯吡格雷01CYP2C19*2(G >A) 细胞色素氧化酶 2C19*2型,代谢酶 预测氯吡格雷抵 抗风险,给出个体 合适剂量,提高氯 吡格雷疗效,降低 无效用药风险。 氯吡格雷为前药, 体外无活性,口服 经肠(ABCB1)吸 收,入肝脏,经肝药 酶CYP2C19*2、 *3、*17代谢激活, 其活性代谢产物, 再经过PON1激 活,才能发挥抗血 小板的功效。 CYP2C19*2、*3、 *17及PON1酶活 性决定了氯吡格 雷的疗效。 其中, CYP2C19*17突变02CYP2C19*3(G >A) 细胞色素氧化酶 2C19*3型,代谢酶 60CYP2C19*17(C >T) 细胞色素氧化酶 2C19*17型,代谢 酶 152PON1(A>G) 对氧磷酶1,代谢 酶

后,氯吡格雷活性增强,敏感度高,出血风险高,需高度关注出血风险,尤其是蛛网膜下腔出血。 氯吡格雷简化版(只测两个位点)01CYP2C19*2(G >A) 细胞色素氧化酶 2C19*2型, 代谢酶 仅仅判断氯吡格 雷抵抗风险,只能 测出部分抵抗患 者,会有漏检,且 不能判断出血风 险。 02CYP2C19*3(G >A) 细胞色素氧化酶 2C19*3型, 代谢酶 华法林69VKORC1(1639 G>A) 维生素K环氧化 物还原酶复合物1 亚单位,靶点 华法林经CYP2C9 代谢后失活,基因 突变者导致该药 在体内蓄积,应减 量;VKORC1为

12CYP2C9*3(107 5A>C) 细胞色素氧化酶2C9*3型,代谢酶华法林作用靶点,基因突变者,对华法林敏感性增加,应减量。VKORC1 CYP2C9用于起始剂量和维持剂量的计算,起始剂量给药五天后,转入维持剂量微调。缩短调药时间,降低血栓和出血等不良反应发生。 阿司匹林106PEAR1(G>A)PEAR1 :GG等位基因对阿司匹林抗血小板应答好;AA\AG基因型,用阿司匹林(或结合氯吡格雷),PCI患者,心梗和死亡率高。预测疗效,给出个

开展药物相关基因检测项目申请书及流程样板

药物基因检测项目介绍 医院药学部 一、药物基因组学简介

药物基因组学是研究人类基因序列多态性与药物效应多样性之间的关系,即基因本身及其突变体与药物效应相互关系的一门科学。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体内吸收、分布、代谢和排泄规律,侧重于阐明药物的体内过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其内容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变化,侧重于解释药物如何与作用靶点发生作用。 药物的体内代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体内浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具。 目前临床按照指南和标准化的治疗,约有30%的患者治疗不达标。针对这些患者,药物基因组学可阐明药物反应的个体差异,并结合检测结果出具具有个体化的用药建议,从而提高药物治疗的有效性和安全性、降低药物不良反应、缩短平均住院日、降低患者的费用负担,最终实现药物的个体化治疗。 因此,我院药学部临床药理室已开展相关药物基因检测项目,各临床科室可根据患者具体临床表现送样检测,适用人群与相关检测套餐如下: 适用人群 1、需要长期使用某种药物的患者; 2、需要使用的药物存在严重不良反应发生风险的患者; 3、术后需要长期应用药物进行治疗控制的患者; 4、使用某种药物效果一直不理想,病情控制不稳定的患者; 5、有过严重药物不良反应史或家族成员中有过药物不良反应的人; 6、同时接受多种药物治疗的患者,经常接触有毒物质的患者; 7、某些特殊人群:儿童、老年人和孕产妇等人群。

什么是药物基因组学

近年来,随着分子生物学、分子遗传学与分子药理学,特别是基因组学的发 展,人们逐渐认识到,不同个体对同一药物的不同反应,大多源于基因的差异。 由此,在药物遗传学的基础上,发展形成了药物基因组学这一新学科,在分子和 基因水平上研究揭示个体对药物不同反应的机理,为科学合理用药开拓了新的思 路和途径。 1、什么是药物基因组学 药物基因组学是以药物效应和安全为主要目标,研究药物体内过程差异的基 因特性,以及基因变异所致的不同患者对药物的不同反应,从而研究开发新的药 物和合理用药方法的一门新学科。这个学科以与药物效应有关的基因为靶点,以 基因多态性与药效多样性为平台,研究遗传基因及基因变异对药物效应的影响。 它是基于功能基因组学与分子药理学,从基因水平研究人类个体对药物效应不同 的分子机理的学科。 药物基因组学的创立,为研究高效、特效药物开辟了新的途径,为患者和特 定人群寻找合适的药物及适宜的用药方法展现了新的前景。 2、药物基因组学的诞生 药物基因组学是在药物遗传学基础上发展起来的新学科。早在20世纪50年代,人们就发现,不同的遗传背景会导致药物反应的差异,特别是药物代谢酶基因的 差异可引起药物的不良反应。例如,由胆碱酯酶基因引起的胆碱酯酶缺乏,可使 琥珀胆碱的肌松作用时间延长;抗疟药物治疗时的溶血现象与红细胞中编码葡萄 糖-6-磷酸脱氢酶的基因有关,葡萄糖-6-磷酸脱氢酶活性降低时可引起抗疟 药的溶血作用;外周神经病变的病人,对异烟肼的反应差异与编码药物乙酰代酶 的基因有关。这些发现表明,由于编码药物代谢酶基因的多态性,可导致它所编 码的酶具有不同活力,从而引起相关药物的不同反应。20世纪70年代开始分子遗 传变异的研究,杰弗里提出基因中每100个碱基中就有1个呈现变异;到20世纪80 年代后期,科学家们把这些差异引进药物遗传学。 第一个被阐明具有基因多态性的酶是细胞色素P450酶系中CYP2D6。编码此酶的基因具有多态性,导致病人对药物呈现快代谢和慢代谢两种不同的代谢方式, 慢代谢型病人的CYP2D6酶不能很快地分解药物,使病人血液中的活性药物浓度升高,易导致体温过低、惊厥或肾衰。 20世纪末,随着分子生物学、分子遗传学的发展和人类基因组计划的顺利实施,人类基因的多态性不断被发现和证实,人们认识到人体的许多基因参与药物 的体内过程,某一药物在体内的反应和代谢涉及到多个基因的相互作用。所以, 基因的多态性导致药物反应的多样性,从而为从基因组水平研究药物反应的个体 差异奠定了基础,药物基因组学随之从药物遗传学基础上脱颖而出。 3、基因多态性与药效 基因的多态性,最常见的形式是单核苷酸多态性(SNP)。SNP是指同一位点 的不同等位基因之间个别核苷酸的差异或只有小的插入、缺失等。 SNP主要从两个方面导致人类个体的多样性,一是编码区SNP(cSNP),cSNP 可以改变基因的编码,使得基因表达的蛋白质中某些氨基酸发生变化而影响其功能;二是调节区SNP(rSNP),它往往影响基因的表达和调控,使得基因的表达 量产生变化。 阐明SNP与药物反应之间的关系已成为目前后基因组学的一个重要研究方向。快速、准确的基因多态性检测对药物的开发研究、药物的毒理实验、改善药物的 临床实验、监测药物的有效性和安全性都具有重要的作用。目前,全球范围内广

药物基因检测位点及意义

检测项目名称基因位点检测意义 氯吡格雷01CYP2C19*2(G>A) 细胞色素氧化酶2C19*2型,代谢酶 预测氯吡格雷抵抗风险,给出个体 合适剂量,提高氯吡格雷疗效,降 低无效用药风险。 氯吡格雷为前药,体外无活性,口 服经肠(ABCB1)吸收,入肝脏,经肝 药酶CYP2C19*2、*3、*17代谢激 活,其活性代谢产物,再经过PON1 激活,才能发挥抗血小板的功效。 CYP2C19*2、*3、*17及PON1酶 活性决定了氯吡格雷的疗效。 其中,CYP2C19*17突变后,氯吡 格雷活性增强,敏感度高,出血风 险高,需高度关注出血风险,尤其 是蛛网膜下腔出血。 02CYP2C19*3(G>A) 细胞色素氧化酶2C19*3型,代谢酶 60CYP2C19*17(C>T) 细胞色素氧化酶2C19*17型,代谢 酶 152PON1(A>G) 对氧磷酶1,代谢酶 氯吡格雷简化版(只测两个位点)01CYP2C19*2(G>A) 细胞色素氧化酶2C19*2型, 代谢酶仅仅判断氯吡格雷抵抗风险,只能 测出部分抵抗患者,会有漏检,且 不能判断出血风险。 02CYP2C19*3(G>A) 细胞色素氧化酶2C19*3型, 代谢酶 华法林69VKORC1(1639G>A) 维生素K环氧化物还原酶复合物1 亚单位,靶点 华法林经CYP2C9代谢后失活,基 因突变者导致该药在体内蓄积,应 减量;VKORC1为华法林作用靶点, 基因突变者,对华法林敏感性增加, 应减量。VKORC1 CYP2C9用于起 始剂量和维持剂量的计算,起始剂 量给药五天后,转入维持剂量微调。 缩短调药时间,降低血栓和出血等 不良反应发生。 12CYP2C9*3(1075A>C) 细胞色素氧化酶2C9*3型,代谢酶 阿司匹林106PEAR1(G>A)PEAR1 :GG等位基因对阿司匹林抗血小板应答好;AA\AG基因型,用阿司匹林(或结合氯吡格雷),PCI 患者,心梗和死亡率高。 预测疗效,给出个体化用量。 硝酸甘油20ALDH2(1510G>A) 线粒体乙醛脱氢酶2,代谢酶 30%~50%的人携带有Lys504基因 突变。突变者中42.4%,正常剂量 硝酸甘油起效慢,应换药或联用其 他抗心绞痛药物。 预测硝酸甘油抵抗风险,避免用药 无效事件

药物基因组学(PGx)检测的临床应用及质量控制--国家临检中心林贵高

药物基因组学(PGx)检测的临床应用及质量控制 国家卫生健康委临检中心林贵高 2019. 4.17 gglin@https://www.wendangku.net/doc/709025047.html,

主要内容 基本概念和原理 药物基因及检测意义PGx PGx检测的技术 PGx检测的结果报告 PGx检测的质量控制

药物的有效性在不同个体差异很大疾病用药无效患者百分比 抑郁 哮喘 糖尿病 类风湿 阿尔茨海默 化疗药 Clinical application of pharmacogenetics.Trends Mol Med. 2001 May;7(5):201-4.

个体对酒精的不同反应 乙醇乙醛乙酸 乙醇脱氢酶 乙醛脱氢酶ALDH ALDH2*2 变异 10% 亚洲人为纯合变异,严重不良反应(呕吐腹泻血压不稳) 30~40% 亚洲人为杂合变异,“亚洲红脸” 脂肪CO2 H2O 酒精的生理作用 CNS 神经内分泌性功能骨骼体温心血管 乙醛毒性是乙醇的30倍!

药物不良反应(ADR ) ?不良反应报告139.8万份 ?国家药品不良反应监测年度报告(2015年)皮肤损害27%胃肠系统损害 26% 全身性损害10% ?美国1999-2006?ADR 致2341人死亡 ?抗凝药阿片类免疫抑制剂

术后常规服用可待因致死一例 ?2岁男童,行扁桃体切除术 ?术后,每4-6h 服用10-12.5 mg 可待因+ 120 mg 对乙酰氨基酚; 2 天后死亡 ?尸检: 可待因(0.70 mg/L) & 吗啡(32 ng/ml) 毒性浓度 ?CYP2D6基因分型:3 拷贝CYP2D6等位基因(UM,超快代谢者) 吗啡可待因

基因检测与用药

基因检测与用药 The document was finally revised on 2021

基因与用药指导 新用药时代 科学的发展让许多不可能变为了可能,攀月登空,潜海游龙。如今我们身边充斥着诸多高科技的元素,基因——DNA更是这其中耀眼的明星。日常我们听到的转基因大豆、转基因动物、DNA眼霜。这些看似高科技外衣下的产品,使我们越来越习惯于听说基因的消息,那基因DNA到底离我们有多远呢? 平日老百姓生活最普通的一部分,感冒发烧,到医院拿点药,或者干脆自己到药店买点儿药。好了也便好了,不好只能归咎于“病毒性的”。遇到大病,医生幵药也是按照常规处方,摸着石头过河。患者更是糊里糊涂,听大夫的便是。至于好不好,好到什么程度,那只能说个人差异了。 岂不知,这差异就体现在基因上,而这吃药也是有讲究的。我们的基因决定了我们吃什么药管用,吃什么药不管用。正确合理的用药是未来个体化医疗的重要组成部分。据世界卫生组织统计,全球死亡患者中,1/3是死于不合理用药,而非死于自然疾病本身。 “基因指导用药” 这个概念并不等同于一般意义上的“抗生素耐药”。后者是针对侵害人体的细菌而言,抗生素是一类能够破坏细菌生理结构或生长代谢的物质。 细菌通过不断的优胜劣汰以抗拒抗生素对它们的杀灭,导致耐药菌株队伍不断壮大,这导致了细菌耐药性的出现,并且这种耐药形势在抗生素滥用的情况下不断恶化,以至于出现了“超级病菌”。 “基因指导用药”则是针对我们每个人先天的遗传基因而言,在一般情况下,基因是伴随我们一生不变的,上面提到医生常规用药,同样的病、同样剂量的药,不同患者服用后疗效可能大相径庭,比如:高血压,据不完全统计,我国现有高血压病人约2亿。高血压是心肌梗死、脑卒中发病的重要危险因素,高血压每年在全球造成的死亡超过700万人,也就是每分钟约有13个人因高血压而与世长辞。很多高血压患者有过用药、疗效不佳、换药的经历。为什么同是高血压,同样的药却结果不一样呢?答案是:基因。基因决定了一个人吃何种药有效、吃何冲药无效,甚至有不良反 应。根据现有研究表明,部分抗高血压的药物降压疗效及不良反应的个体差异主要是因为相关药物的代谢酶、转运体和受体的基因多态性所致。临床常用抗高血压药物包括利尿剂、13-受体阻滞剂(如美托洛尔、卡维地洛等)、钙离子拮抗剂、血管紧张素转换酶抑制剂 (ACE-I)、血管紧张素受体拮抗剂(ARB)等,其中大部分抗高血压药物可能因为基因多态性差异,致使不同患者个体间出现降压效应的差异。 患者当发现患上高血压时,应到相关医院咨询,医生幵具化验单检测上述基因,并在医生指导下合理选择药物,进行有针对性的用药,以免贻误病情或造成不必要的经济损失。

相关文档
相关文档 最新文档