文档库 最新最全的文档下载
当前位置:文档库 › MC34063芯片原理与应用技巧(车充)

MC34063芯片原理与应用技巧(车充)

MC34063芯片原理与应用技巧(车充)
MC34063芯片原理与应用技巧(车充)

MC34063芯片原理与应用技巧(车充)

1. MC34063 DC/DC变换器控制电路简介:

MC34063是一单片双极型线性集成电路,专用于直流-直流变换器。它能使用很少的外接元件构成开关式升压变换器、降压变换器和电源反向器。

特点:价格便宜0.2元,电路简单,且效率满足一般要求

*能在3-40V的输入电压下工作; *低静态电流;*电流限制;*输出电压可调

*输出开关电流峰值可达1.5A(平均0.8A)(无外接三极管时)

*工作振荡频率从100HZ到100KHZ

2.MC34063引脚图及原理框图

MC34063 电路原理

振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡。充电和放电电流都是恒定的,振荡频率仅取决于③脚外接的定时电容。与门的C 输入端在定时电容充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器定时电容(③脚上)在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。

电流限制通过检测连接在VCC(即6脚)和7 脚之间安全电阻(Rsc)上的压降来实现,当检测到电阻上的电压降接近超过0.3V 时,电流限制电路开始工作,这时通过CT 管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。如⑧②两脚直接连到电源的正负极上,那么, T2上将承受很高的压降:为防T2因承压→发热过大,应在⑧或②外接电阻|电感等负载★。

线性稳压电源效率低,通常不适合于大电流或输入、输出压差大的情况。开关电源的效率相对较高,按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。MC34063属于低成本斩波型硬开关。

有一个车用手机充电器(车充),芯片是MC34063,MicroUSB接口。

MC34063

1. MC34063实现的低端车充方案

优点::低成本,接驳灵活

缺点:(1) 可靠性差,功能单一;没有过温度保护,短路保护等安全性措施;

(2) 输出虽然是直流电压,但控制输出恒流充电电流的方式为电流峰值限制,精度不够高;

(3) 由于34063开关电流PWM+PFM模式(PWM是利用波脉冲宽度控制输出,PFM是利用脉冲的有无控制输出),其车充方案输出电压纹波较大,不够纯净;输出电流能力也非常有限;(常见于300ma~600ma之间的低端车充方案中)

2. MC34063应用电路图:

2.1 MC34063基本降压变换器电路(图中安全电阻Rsc=0.3Ω故电流峰值被限在0.3V/0.3Ω=1A,设50%占空比,则平均0.5A★)。当降压压差大时,也可在集电极外加线绕电阻帮助降压,但效率降低。

利用MC34063降压原理制作的多档电源输出电路,比LM317更省电,效率更高,电流也更大!

2.2MC34063基本升压变换器电路

★↓如在D1前加上一个电容和一个大些的电感(也有在⑧外接PNP三极管控制Vin的),即可改为升降压均可的电路,输入电压的范围更广了,几乎通吃了该芯片的3-40V范围输入,电路如下图。

进一步改为“指针万用表电源”。当指针万用表打到10k档时9V接通,打到*1*10*100*1k等档时1.5V接通,电路输出从9V降为1.5V(R1上的电压为1.25V,4148小电流时的压降约为0.25V,加起来刚好约为1.5V)。

2.3 MC34063大电流升压电路

用场效应管扩流时,不用其内部的开关管(断开①脚),而直接用其推动管——防发热。-jrq

2.4 MC34063大电流降压变换器电路(注意测试PMOS能否完全关断!否则换回①脚)

2.5 MC34063反向变换器电路

■34063的特殊应用

● 扩展输出电流的应用(基本用不着,可不看)

DC/DC转换器34063开关管允许的峰值电流为1.5A,由于通过开关管的电流为梯形波,所以输出的平均电流和峰值电流间存在一个差值。如果使用较大的电感,这个差值就会比较小,这样输出的平均电流就可以做得比较大。例如,输入电压为9V,输出电压为3.3V,采用220μH的电感,输出平均电流达到0.9A,峰值电流为1.2A。

要实现>0.9A的输出电流,应进行扩流,图2和图3是外接开关管降压电路和升压电路。

↓图2. 升压接法,达林顿及非达林顿均用N型(需外加下拉电阻)示意图

↓图3. 降压型达林顿(用N型)及非达林顿(P型)接法示意图

采用非达林顿接法,外接三极管可以达到饱和,当达到深度饱和时,由于基区存储了相当的电荷,所以三极管关断的延时就比较长,这就延长了开关导通时间,影响开关频率。达林顿接法虽然不会饱和,但开关导通时压降较大,所以效率也会降低。可以采用抗饱和驱动技术,如下图所示,此驱动电路可以将Q1的Vce保持在 0.7V以上,使其导通在弱饱和状态。此驱动电路能防止Q1的Vce过低,使其导通在弱饱和状态(负反馈)。

利用一片34063就可以产生三路电压输出,如图5所示。

图5输出3路电压的34063电路

+Vo的输出电压峰值可达2倍V_IN,-Vo的输出电压可达-V_IN。需要注意的是,3路的峰值电路不能超过1.5A,输出功率合计P≤V_IN·I·r,其中I为主输出的电流,r为占空比。在此两路输出电流不大的情况下,此电路可以很好地降低实现升压和负压电源的成本。

● 具有“关断”功能的34063电路

34063本身不具有关断功能,但可以利用它的过流饱和功能,增加几个器件就可以实现关断功能,同时还可以实现延时启动。

图6是具有关断功能的34063电路,R3取510Ω,R4取3.9kΩ。当控制端加一个高电平,则34063的输出就变成0V,同时不影响它的过流保护功能的正常工作。

“拉低⑦脚”?——能够完全关断。

↓图6.具有关断功能的34063电路,(拉低⑦脚)

将此电路稍加改动,就可以得到具有延时启动功能的34063电路,如图7所示。

↓图7. 具有延时启动功能的34063电路(暂时拉低⑦脚)

取C11为1μF,R10为5KΩ,就可以达到200~500ms的启动延时(jrq:延时时间主要与三极管放大倍数β有关,因C11的充电电流约为流过R10总电流的1/(β+1),故相当于充电时间被延长约β倍,或相当于接了个β倍的电容或电阻)。这个电路的缺点就是当峰值电流过流时无法起到保护作用,只能对平均电流过流起保护作用。

● 恒流恒压充电电路

恒压恒流充电电路如图8所示,可用于给蓄电池进行充电,先以500mA电流恒流充电,充到13.8V后变为恒压充电,充电电流逐渐减小。Q1导通,电流通过R3抬高③脚电压→限流。-jrq

↓图8. 恒压恒流充电电路

34063的局限性

由34063构成的开关电源虽然价格便宜、应用广泛,但它的局限性也是显而易见的。主要有以下几点:

(1)效率偏低。对于降压应用,效率一般只有70%左右,输出电压低时效率更低。这就使它不能用在某些对功耗要求严格的场合,比如USB提供电源的应用。

(2)占空比范围偏小,约在15%~80%,这就限制了它的动态范围,某些输入电压变化较大的应用场合则不适用。

(3)由于采用开环误差放大,所以占空比不能锁定,这给电路参数的选择带来麻烦,电感量和电容量不得不数倍于理论计算值,才能达到预期的效果。虽然34063有许多缺点,但对产品利润空间十分有限的制造商来说,它还是设计开关电源的很好选择。

开关电源频率和对ADSL的影响

对于ADSL来说,上行信道分布在30~100kHz之间,下行信道分布在100kHz~1.1MHz之间。长线连接速率常常是衡量ADSL性能的一个重要指标,但在线路很长的时候,下行信道中高频信道衰减得很厉害,所以此时下行低频段的信噪比对长线连接速率就起着至关重要的作用。

开关电源的输出含有开关频率基频及其谐波的纹波成分,一般从基波到10次谐波的能量都比较大。如果开关频率为20kHz,它的谐波为40kHz、60kHz、80kHz…。这样,从100~300kHz的下行信道中就会有10个干扰的频率点。而如果开关频率为100kHz,则干扰点就下降为2个,如果开关频率为1MHz,则下行信道就不会受到干扰,这样就能极大提高下行信道的性能。

器件选择要点

(1)续流二极管一般选肖特基二极管,正向压降低,但要注意耐压。如果输出电压很小(零点几伏),就必须使用压降更低的MOS管续流(以便降耗)。输出滤波电容一般使用高频电容,可减小输出纹波同时降低电容的温升。在取样电路的上臂电阻并一个0.1~1nf电容,可以改善瞬态响应(即所谓“加速电容”或“补偿电容”)。

PCB布局和布线的要点

开关导通和关断都存在一个电流环路,这两个环路都是高频、大电流的环路,所以在布局和布线时都要将此二环路面积设计得最小。用于反馈的取样电压要从输出电容上引出,并注意芯片或开关管的散热。

〓MC34063接成标准的DC—DC电路〓

斩波型开关电源

斩波型开关电源按其拓扑结构通常可以分为3种:降压型(Buck)、升压型(Boost)、升降压型

(Buck-boost)。降压型开关电源电路通常如图1所示。

图1中,T为开关管,L1为储能电感,C1为滤波电容,D1为续流二极管。当开关管导通时,电感被充磁,电感中的电流线性增加,电能转换为磁能存储在电感中。设电感的初始电流为iL0,则流过电感的电流与时间t 的关系为:

iLt= iL0+(Vi-Vo-Vs)t/L,电流渐增,Vs为“开关管T”的导通压降。

当T关断时,L1通过D1续流,从而电感的电流线性减小,设电感的初始电流为iL1,则则流过电感的电流与时间t的关系:

iLt="iL1"- (Vo+Vf)t/L,电流渐小,Vf为D1的正向饱和电压。

这种用于DC-DC电源变换的集成电路,应用比较广泛,通用廉价易购。极性反转效率最高65%,升压效率最高90%,降压效率最高80%,变换效率和工作频率滤波电容等成正比。

另外,输出功率达不到要求的时候,比如>250~300MA时,可以通过外接扩功率管的方法扩大电流,双极型或MOS型扩流管均可,计算公式和其他参数及其含义详见最下部详细介绍即可。

外围元件标称含义和它们取值的计算公式:

Vout(输出电压)=1.25V(1+R2/R1)

Ct(定时电容):决定内部工作频率。Ct=0.000 004*Ton(工作频率)

Ipk=2*Iomax*T/toff

Rsc(限流电阻):决定输出电流。Rsc=0.33/Ipk

Lmin(电感):Lmin=(Vimin-Vces)*Ton/Ipk

Co(滤波电容):决定输出电压波纹系数,Co=Io*ton/Vp-p(波纹系数)

固定值参数:

Vces=1.0V ton/toff=(Vo+Vf-Vimin)/(Vimin-Vces)Vimin:输入电压不稳定时的最小值Vf=1.2V 快速开关二极管正向压降;

其他手册参数:

MC34063输入电压2.5~40V, 输出电压1.25~40V,工作温度0~70度

MC33063输入电压2.5~40V, 输出电压1.25~40V,工作温度-40~80度

网上有一些现成的MC34063升降压板(既升压又降压),可以买来改造。

网上有一些现成的MC34063升降压板(既升压又降压),可以买来改造。

MC芯片原理与应用技巧车充

MC34063芯片原理与应用技巧(车充) 1. MC34063 DC/DC变换器控制电路简介: MC34063是一单片双极型线性集成电路,专用于直流-直流变换器。它能使用很少的外接元件构成开关式升压变换器、降压变换器和电源反向器。 特点:价格便宜元,电路简单,且效率满足一般要求 *能在3-40V的输入电压下工作; *低静态电流;*电流限制;*输出电压可调 *输出开关电流峰值可达(平均)(无外接三极管时) *工作振荡频率从100HZ到100KHZ 引脚图及原理框图 MC34063 电路原理 振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡。充电和放电电流都是恒定的,振荡频率仅取决于③脚外接的定时电容。与门的C 输入端在定时电容充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器定时电容(③脚上)在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。 电流限制通过检测连接在VCC(即6脚)和7 脚之间安全电阻(Rsc)上的压降来实现,当检测到电阻上的电压降接近超过时,电流限制电路开始工作,这时通过CT 管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。如⑧②两脚直接连到电源的正负极上,那么, T2上将承受很高的压降:为防T2因承压→发热过大,应在⑧或②外接电阻|电感等负载★。 线性稳压电源效率低,通常不适合于大电流或输入、输出压差大的情况。开关电源的效率相对较高,按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。MC34063属于低成本斩波型硬开关。 有一个车用手机充电器(车充),芯片是MC34063,MicroUSB接口。 1. MC34063实现的低端车充方案 优点::低成本,接驳灵活 缺点:(1) 可靠性差,功能单一;没有过温度保护,短路保护等安全性措施; (2) 输出虽然是直流电压,但控制输出恒流充电电流的方式为电流峰值限制,精度不够高; (3) 由于34063开关电流PWM+PFM模式(PWM是利用波脉冲宽度控制输出,PFM是利用脉冲的有无控制输出),其车充方案输出电压纹波较大,不够纯净;输出电流能力也非常有限;(常见于300ma~600ma 之间的低端车充方案中) 2. MC34063应用电路图: MC34063基本降压变换器电路(图中安全电阻Rsc=Ω故电流峰值被限在Ω=1A,设50%占空比,则平均★)。当降压压差大时,也可在集电极外加线绕电阻帮助降压,但效率降低。 利用MC34063降压原理制作的多档电源输出电路,比LM317更省电,效率更高,电流也更大! 基本升压变换器电路 ★↓如在D1前加上一个电容和一个大些的电感(也有在⑧外接PNP三极管控制Vin的),即可改为升降压均可的电路,输入电压的范围更广了,几乎通吃了该芯片的3-40V范围输入,电路如下图。进一步改为“指针万用表电源”。当指针万用表打到10k档时9V接通,打到*1*10*100*1k等档时接通,电路输出从9V降为(R1上的电压为,4148小电流时的压降约为,加起来刚好约为。 MC34063大电流升压电路

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

TM2302 (3A车充芯片)

DESCRIPTION The is a monolithic step-down switch mode converter with a built in internal power MOSFET. It achieves 2A continuous output cur-rent over a wide input supply range with excel-lent load and line regulation. The requires a minimum number of readily available standard external components. Current mode operation provides fast transient response and eases loop stabilization. shutdown mode the regulator draws 25μA of supply current. FEATURES ● 2A Output Current ● 0.22? Internal Power MOSFET Switch ● Stable with Low ESR Output Ceramic Capacitors ● Up to 95% Efficiency ● 25μA Shutdown Mode ●● Thermal Shutdown ● Cycle-by-Cycle Over Current Protection ● Wide 4.75 to 32V Operating Input Range ● Output Adjustable from 1.22V to 21V PACKAGE REFERENCE Part number Package Temperature –40° C to +125 ° C SOIC-8EL TM2302 TM2302 TM2302TM2302 Fixed 420KHz Frequency Fault condition protection includes cycle-by-cycle current limiting and thermal shutdown. In Mar.2009 Rev.1.1 APPLICATIONS ? Automotive Power Adapters ? PDA and Cellular Phone Battery Chargers ? Distributed Power Systems ? Automotive Aftermarket Electronics 2A 32V Step - Down

常用数字芯片型号解读

常用数字芯片型号解读 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的

汽车钥匙芯片知识大全修订稿

汽车钥匙芯片知识大全公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

汽车钥匙芯片知识 1、芯片钥匙防盗原理 汽车电子防盗系统,与引擎控制电脑进行通讯,只有钥匙芯片中的代码得到识别后才允许启动引擎 2、汽车钥匙芯片的类型: 芯片有固定码;滚动码;加密码3种类型. 固定码:代码固定不变并且由数字与英文字母组成(当启动引擎后,数据不会变动). 滚动码:每个钥匙具有不同的电子代码.但是每次使用钥匙启动车辆引擎后,代码就会被更改.更改代码的程只有芯片控制器生产商才知道,并且很难通过读取钥匙芯片的记忆进行破解. 加密码:加密代码用于最新的芯片和芯片控制器(采用双向数据加密).它配备有内部程序算法,用于对每次加密的信息进行解密. 3、芯片代号 "PH"飞利浦芯片 "PH/CR"飞利浦加密芯片 "PH/CR2"飞利浦二代加密芯片 "MEG"美加摩斯芯片 "MEG/CR"美加摩斯加密芯片 "TEXAS"得克萨斯芯片 "TEX/CR"得克萨斯加密芯片 "TEMIC"泰米克芯片 "TEM/CR"泰米克加密芯片 "MOTPROLA"摩托罗拉芯片 "MEG/SAAB"美加斯萨博芯片 11--泰米克芯片(菲亚特汽车-固定码) 12--泰米克芯片(马自达汽车-固定码) 13--美加摩斯芯片(固定码) 21--silca芯片(固定码) 22--silca芯片(固定码) 23--silca芯片(固定码) 30--飞利浦芯片(读/写-固定码)

40--飞利浦加密芯片(用于欧宝汽车) 41--飞利浦加密芯片(用于尼桑汽车) 42--飞利浦加密芯片(VAG) 44--飞利浦加密芯片 45--飞利浦加密芯片(用于标致汽车) 46--飞利浦第二代加密芯片 48--美加摩斯加密芯片 53--飞利浦芯片(用于奥迪汽车) 73--飞利浦芯片(固定码) 93--飞利浦芯片(用于大宇汽车) 4C--得克萨斯芯片(固定码) 4D--得克萨斯加密芯片

在各个领域中常用芯片汇总(2)(精)

在各个领域中常用芯片汇总 1. 音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334,4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2. 音频放大芯片4558,833,此二芯片都是双运放。为什么不用324等运放个人觉得应该是对音频的频率响应比较好。 3. 74HC244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。 4. 373和374,地址锁存器,一个电平触发,一个沿触发。373用在单片机p0地址锁存,当然是扩展外部ram的时候用到62256。374有时候也用在锁数码管内容显示。 5. max232和max202,有些为了节约成本就用max202,主要是驱动能力的限制。 6. 网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7. amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。 8. 164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9. sdram,ddrram,在设计时候通常会在数据地址总线上加22,33的电阻,据说是为了阻抗匹配,对于这点我理论基础学到过,但实际上没什么深刻理解。 10. 网卡控制芯片ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。 11. 24位AD:CS5532,LPC2413效果还可以 12. 仪表运放:ITL114,不过据说功耗有点大 13. 音频功放:一般用LM368 14. 音量控制IC. PT2257/9. 15. PCM双向解/编码ADC/DAC CW6691.

汽车钥匙芯片知识

汽车钥匙芯片知识 1、芯片钥匙防盗原理 ???汽车电子防盗系统,与引擎控制电脑进行通讯,只有钥匙芯片中的代码得到识别后才允许启动引擎 ??? 2、汽车钥匙芯片的类型: 芯片有固定码;滚动码;加密码3种类型. 固定码:代码固定不变并且由数字与英文字母组成(当启动引擎后,数据不会变动). 滚动码:每个钥匙具有不同的电子代码.但是每次使用钥匙启动车辆引擎后,代码就会被更改.更改代码的程只有芯片控制器生产商才知道,并且很难通过读取钥匙芯片的记忆进行破解. 加密码:加密代码用于最新的芯片和芯片控制器(采用双向数据加密).它配备有内部程序算法,用于对每次加密的信息进行解密. 3、芯片代号

"PH"?????飞利浦芯片 "PH/CR"??飞利浦加密芯片"PH/CR2"飞利浦二代加密芯片"MEG"?????? 美加摩斯芯片"MEG/CR"????美加摩斯加密芯片"TEXAS"???? 得克萨斯芯片"TEX/CR"??? 得克萨斯加密芯片"TEMIC"??? 泰米克芯片?"TEM/CR"???泰米克加密芯片"MOTPROLA"? 摩托罗拉芯片"MEG/SAAB"? 美加斯萨博芯片11--泰米克芯片(菲亚特汽车-固定码) 12--泰米克芯片(马自达汽车-固定码) 13--美加摩斯芯片(固定码) 21--silca芯片(固定码)

22--silca芯片(固定码) 23--silca芯片(固定码) 30--飞利浦芯片(读/写-固定码) 40--飞利浦加密芯片(用于欧宝汽车) 41--飞利浦加密芯片(用于尼桑汽车) 42--飞利浦加密芯片(VAG) 44--飞利浦加密芯片 45--飞利浦加密芯片(用于标致汽车) 46--飞利浦第二代加密芯片 48--美加摩斯加密芯片 53--飞利浦芯片(用于奥迪汽车) 73--飞利浦芯片(固定码) 93--飞利浦芯片(用于大宇汽车) 4C--得克萨斯芯片(固定码) 4D--得克萨斯加密芯片

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

2011最新整理汽车钥匙芯片型号对照表[1]

汽车芯片ID对照大众奥迪: 帕萨特B5 48芯片 帕萨特B4 33芯片 奥迪A4 48芯片 奥迪A6 48芯片 奥迪A8 48芯片 奥迪TT 48芯片 奥迪A4老款纯德 13芯片 超人48芯片 捷达二代防盗42芯片 捷达三代防盗 48芯片 10-11捷达48专用芯片 帕萨特带灯48芯片 速腾专用48芯片 斯柯达专用48芯片 波罗48芯片 高尔48芯片 途锐小钥匙46专用芯片 朗逸专用48专用芯片 宝来48芯片 新宝来48芯片 高尔夫48芯片 开迪48芯片 志俊专用44芯片钥匙 途安48芯片 领域48芯片 迈腾专用48芯片 甲壳虫 48芯片 丰田: 锐志4D芯片 佳美 4C芯片 4500 03年前 4C芯片 4500 03年后 4D 60芯片 4700 03年前 4C芯片 4700 03年后 4D 67芯片 霸道2700 4000 4D 60芯片 凯美瑞4D 67 芯片 卡罗拉4D 芯片 08威驰4D芯片 花冠4C芯片 皇冠4D 60芯片 霸道4D 67芯片 凌志4C芯片 丰田2010款带G 4D 60加密芯片 本田: CRV 46 芯片 雅阁2.4 48芯片钥匙 雅阁2.3 13芯片钥匙 06-07款广本雅阁8E芯片钥匙 飞度老款48芯片(06之前普通48,06之后加密48) 飞度新款46芯片

奥德赛48芯片 思域46芯片 马自达: 海马44专用芯片 海马8C芯片 海马46芯片 M6 M2 M3 M5 -4D 63芯片三菱: 4D 61芯片 46芯片 福特: 福克斯4D 63芯片 蒙迪欧4D 60芯片 林肯4C芯片 嘉年华 4C芯片 翼虎 4D芯片 别克: 君威世纪 13芯片 GL8 陆尊 13芯片 GMC 46芯片 老款别克电阻钥匙 君越13芯片 凯越05以前 4D芯片 凯越05以后48芯片 赛欧40芯片 科鲁兹46加密芯片 景程专用4D60芯片 乐风 48芯片 奇瑞: 东方之子40专用芯片 瑞虎40专用芯片 新款瑞虎46专用芯片 A5 40专用芯片 A3 46专用芯片 尼桑: A32 33 41 T5芯片 A33 4D 60芯片 天籁 46芯片 颐达骐达 46芯片 骊威 46芯片 轩逸46芯片 逍客46芯片 尼桑奥丁44专用芯片 Q35 46芯片 中华: 中华13芯片 中华46芯片 中华44芯片 中华48芯片 标致雪铁龙: 307 46芯片

XL4201 芯龙原厂最新文档 车充芯片

特点 n8V到40V宽输入电压范围 n输出电压从1.25V到37V可调 n最小压差0.3V n固定150KHz开关频率 n最大3A开关电流 n内置功率MOS n出色的线性与负载调整率 n内置恒流环路 n内置频率补偿功能 n内置输出短路保护功能 n内置输入过压保护功能 n内置热关断功能 n推荐输出功率小于13W n SOP8-EP封装 应用 n车载充电器 n电池充电器 n LCD电视与显示屏 n便携式设备供电 n通讯设备供电 n降压恒流驱动 n显示器LED背光 n通用LED照明 描述 XL4201是一款高效降压型DC-DC转换 器,可工作在DC8V到40V输入电压范围, 低纹波,内置功率MOS。XL4201内置固定 频率振荡器与频率补偿电路,简化了电路设 计。 PWM控制环路可以调节占空比从 0~100%之间线性变化。内置输出过电流保 护功能。内部补偿模块可以减少外围元器件 数量。 图1.XL4201封装

150KHz 40V 3A开关电流自带恒流环路降压型DC-DC转换器XL4201 方框图 图3. XL4201方框图 典型应用(车载充电) 图4. XL4201系统参数测量电路

150KHz 40V 3A开关电流自带恒流环路降压型DC-DC转换器XL4201 典型应用(降压LED恒流驱动) ILED=0.11V/RCS 图5.XL4201系统参数测量电路(LED恒流驱动) 订购信息 产品型号打印名称封装方式包装类型 XL4201E1 XL4201E1 SOP8-EP 2500只每卷 XLSEMI无铅产品,产品型号带有“E1”后缀的符合RoHS标准。 绝对最大额定值(注1) 参数符号值单位 输入电压Vin -0.3到45 V 反馈引脚电压V FB-0.3到45 V 输出开关引脚电压V SW-0.3到VIN V 功耗P D内部限制mW 热阻(SOP8-EP) R JA60 oC/W (结到环境,无外部散热片) 最大结温T J-40到150 oC 操作结温T J-40到125 oC 贮存温度范围T STG-65到150 oC 引脚温度(焊接10秒) T LEAD260 oC ESD (人体模型) >2000 V 注1: 超过绝对最大额定值可能导致芯片永久性损坏,在上述或者其他未标明的条件下只做功能操作,在绝对最大额定值条件下长时间工作可能会影响芯片的寿命。

汽车钥匙使用的芯片种类

汽车钥匙使用的芯片种类 汽车钥匙晶片类型 SILCA blsnk 21 SILCA blsnk 22 SILCA blsnk 23 TEMIC*(Fiat) 11 TEMIC*(Mazda) 12 MEGAMOS* 13 PHILIPS*(orig.or emul) 33 PHILIPS*(orig) 73 PHILIPS*emulatingMEGAMOS*(Audi) 53 PHILIPS*emulatingMEGAMOS*(VDO) 93 PHILIPS*Crypto 44 MEGAMOS*Crypto 48 TEXAS* 4C TEXAS*Crypto 4D TEMIC*Crypto 8C SAAB not duplicable 8D PHILIPS*Crypto OPEL 40 PHILIPS*Crypto NISSAN 41 PHILIPS*Crypto VAG 42 PHILIPS*Crypto Crypto PEUGEOT 45 注:*Megamos、Philips、Temic、Texas为注册商标 1.可复制芯片,可以使用芯片复制机器.这种芯片中有一个维修代码. 芯片复制 机器可以直接复制这个代码到空白的芯片上. 这种芯片有 Philips (TP01), Temic (TP04) and Megamos (TP03) 几种. 有一种空白的芯片叫Nova,这种芯片可以复制三种芯片 --Philips (TP01), Temic (TP04) and Megamos (TP03). 2可安装芯片,这种芯片已经在空白芯片中写好了一个密码.只需要利用客户买 车时得到的车的电路系统的安装口令往车上安装即可.这种芯片是Texas (TP02, TP06, TP 07). 3.Crypto 芯片 (TP08...TP14),芯片上已经带有一个代码,不得不利用一个密 码安装到车的中央系统内. 4.Rolling 芯片,用于奔驰、宝马、沃尔沃、绅宝等高档车. 只要一发动汽车该 芯片的密码就立即改变. 虽然这种芯片是可以复制的, 但汽车的电路系统只能 认读他一或两次, 一旦确认它不是原始钥匙将取消该复制钥匙的功能. 这种芯 片广泛引用在1997年后 (奔驰、宝马的使用时间可以上溯到1995年), 在欧洲 普及是在1998年后.

芯片常用封装及尺寸说明

A、常用芯片封装介绍 来源:互联网作者: 关键字:芯片封装 1、BGA 封装(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配 LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚 LSI 用的一种封装。封装本体也可做得比 QFP(四侧引脚扁平封装)小。例如,引脚中心距为 1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚 QFP 为 40mm 见方。而且 BGA 不用担心 QFP 那样的引脚变形问题。该封装是美国 Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为 1.5mm,引脚数为225。现在也有一些 LSI 厂家正在开发500 引脚的 BGA。 BGA 的问题是回流焊后的外观检查。 现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国 Motorola 公司把用模压树脂密封的封装称为 OMPAC,而把灌封方法密封的封装称为 GPAC(见 OMPAC 和 GPAC)。 2、BQFP 封装(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和 ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见 QFP)。

各种芯片钥匙的简介

《各种芯片钥匙的简介》 T1 、T2、T5(11,23,33),是可以用RW2复制的。其中T1,T2里面是有内容的。其中T5芯片是空的。可以复制T1,T2。用T1芯片的车多数都可以用口令安装匹配新钥匙。那么在国内有哪些车属于用T1芯片的。有中华,君威,GL8,广本2。3,飞亚特2002款。PASSAT B4。老奥迪。其中除PASSAT B4和老奥迪外,其他车都可以用口令匹配新钥匙。有些车钥匙全丢了也可以,有些全丢了不可以。必须要有主钥匙。当配钥匙的时候有两种办法,一是RW2拷贝,但这种办法有一个问题就是无法把车主丢失的钥匙删除。留下了隐患。另一种方法是用口令匹配。这样可以把丢失的钥匙删除。同时匹配了新的钥匙。用RW2 23。00版本可以自动的产生一把主钥匙的编码。可以把这个编码拷贝到T5芯片中,这样,这个T5芯片就变成了一把主钥匙。这是RW2和别的解码器不同的地方。 T3,T4(4C)芯片主要用于丰田,灵志,福特和韩国现代车上。现在匹配新钥匙用口令安装的方法。但丰田钥匙全丢了必须要换防盗电脑。(或者把防盗电脑的内存清除也可以)。 T6芯片用于目前国内大众,本田2。4,飞亚特新款车上。只能用解码器匹配,不能用RW2复制,将来也不可能复制。 4D芯片,这是一种很新的芯片,和4C芯片是一家公司生产。分成几种,用RW2识别,都是4D,但各种4D芯片是不通用的。国内使用4D芯片的车有以下几种。尼桑A33,MAZDA 6,凯越,大切诺基。伏特,雷诺等。目前RW2最新版本24。00可以识别大多数4D芯片,只有识别出来,才可以用相应的方法匹配。 尼桑A32所用芯片。为什么要单列呢,因为比较特殊。尼桑A32部分车型用的T2芯片,可以直接用RW2拷贝,但部分A32车型用了T11芯片,不可以直接拷贝。怎么办呢,只有RW2可以解决这个问题。用IDENTIFY功能把T11的部分代码读出来,然后用ENTER CODE功能,把这个代码写到T5芯片里,这个T5芯片就可以在A32上使用。 毕加索,塞纳,标志307所用芯片是一种很新的芯片T14(46)。这个芯片只有用RW2 23。00版本可以识别出来。其他版本读不出来,很容易误以为没有芯片。 这些是芯片钥匙基本的知识。 汽车芯片钥匙的基本常识 汽车芯片的基本常识 以下简略的说明了汽车芯片的基本常识汽车钥匙使用的芯片,叫它磁性芯片系统。磁性芯片系统在性质上是被动的。意思就是它们不需要电能支持,也不需要自身的超级能量。它们的操作依靠125 千赫的频率运行。当没有外界和自身能量支持时,它的传送距离很短,在许多汽车芯片系统里,钥匙的识别是相似的。当把一把钥匙插入点火锁中并转动到“on ”或“run ”的位置,点火锁芯的读识 线圈将对钥匙的芯片进行读取;芯片都有固定的数字信息,线圈将读取出的数字信息与防盗系统预存的数字信息对照检验,一旦一致将继续车辆发动

TI 常用运放芯片型号

CA3130?高输入阻抗运算放大器?Intersil[DA TA] CA3140?高输入阻抗运算放大器 CD4573?四可编程运算放大器?MC14573 ICL7650?斩波稳零放大器 LF347(NS[DA TA])?带宽四运算放大器?KA347 LF351?BI-FET单运算放大器?NS[DA TA] LF353?BI-FET双运算放大器?NS[DA TA] LF356?BI-FET单运算放大器?NS[DA TA] LF357?BI-FET单运算放大器?NS[DA TA] LF398?采样保持放大器?NS[DA TA] LF411?BI-FET单运算放大器?NS[DA TA] LF412?BI-FET双运放大器?NS[DATA] LM124?低功耗四运算放大器(军用档)?NS[DA TA]/TI[DATA] LM1458?双运算放大器?NS[DA TA] LM148?四运算放大器?NS[DA TA] LM224J?低功耗四运算放大器(工业档)?NS[DA TA]/TI[DATA] LM2902?四运算放大器?NS[DA TA]/TI[DA TA] LM2904?双运放大器?NS[DA TA]/TI[DA TA] LM301?运算放大器?NS[DA TA] LM308?运算放大器?NS[DA TA] LM308H?运算放大器(金属封装)?NS[DA TA] LM318?高速运算放大器?NS[DATA] LM324(NS[DA TA])?四运算放大器?HA17324,/LM324N(TI) LM348?四运算放大器?NS[DA TA] LM358?NS[DA TA]?通用型双运算放大器?HA17358/LM358P(TI) LM380?音频功率放大器?NS[DATA] LM386-1?NS[DA TA]?音频放大器?NJM386D,UTC386 LM386-3?音频放大器?NS[DA TA] LM386-4?音频放大器?NS[DA TA] LM3886?音频大功率放大器?NS[DA TA] LM3900?四运算放大器 LM725?高精度运算放大器?NS[DATA] LM733?带宽运算放大器 LM741?NS[DA TA]?通用型运算放大器?HA17741 MC34119?小功率音频放大器 NE5532?高速低噪声双运算放大器?TI[DATA] NE5534?高速低噪声单运算放大器?TI[DATA] NE592?视频放大器 OP07-CP?精密运算放大器?TI[DATA] OP07-DP?精密运算放大器?TI[DATA] TBA820M?小功率音频放大器?ST[DA TA] TL061?BI-FET单运算放大器?TI[DA TA] TL062?BI-FET双运算放大器?TI[DA TA] TL064?BI-FET四运算放大器?TI[DA TA]

5V2A,3A车充IC,AT2601

Approved By Test By Miller Lin 深圳市天芯源电子有限公司 https://www.wendangku.net/doc/751211739.html, AT2601 TEST REPORT Product Model: USB CLA ● Test Status: ■Sample-test ● Input Voltage : 12V / 24V / 32V ● Dual Output Voltage: ● Dual Output Currant: ● The Duration Of Testing: 5V 2.1A 2012. 03. 30 ● Report Issue Date: : 2012. 03. 30

S W Circuit Diagram Dual Output Currant: 2.1A V in C3 C2 C1 R2 Q1 R1 10 4 1 0 0 u F /4 0 V 4 7 u F/4 0 V 51 0 2N39 04 0.12 U1 D1 V g ate Ip k G C1 V in FB G ND 1N41 48 G C2 TC R5 R4 C5 R6 1k 3K C6 10 3 16 0K L1 10 2 RX 10 0uH Vout R3 C4 22 C7 C9 51 0 15 0P D1 22 0uF 10 4 ZD 1 CX 10 2 SS 2 4 5.6V

Efficiency Test Output Ripple Test Output Capacitor 330uF/10V

常用门电路74系列芯片.

74ls00 2输入四与非门 74ls01 2输入四与非门 (oc 74ls02 2输入四或非门 74ls03 2输入四与非门 (oc 74ls04 六倒相器 74ls05 六倒相器 (oc 74ls06 六高压输出反相缓冲器 /驱动器 (oc,30v 74ls07 六高压输出缓冲器 /驱动器 (oc,30v 74ls08 2输入四与门 74ls09 2输入四与门 (oc 74ls10 3输入三与非门 74ls11 3输入三与门 74ls12 3输入三与非门 (oc 74ls13 4输入双与非门 (斯密特触发 74ls14 六倒相器 (斯密特触发 74ls15 3输入三与门 (oc 74ls16 六高压输出反相缓冲器 /驱动器 (oc,15v 74ls17 六高压输出缓冲器 /驱动器 (oc,15v 74ls18 4输入双与非门 (斯密特触发 74ls19 六倒相器 (斯密特触发 74ls20 4输入双与非门

74ls21 4输入双与门 74ls22 4输入双与非门 (oc 74ls23 双可扩展的输入或非门 74ls24 2输入四与非门 (斯密特触发 74ls25 4输入双或非门 (有选通 74ls26 2输入四高电平接口与非缓冲器 (oc,15v 74ls27 3输入三或非门 74ls28 2输入四或非缓冲器 74ls30 8输入与非门 74ls31 延迟电路 74ls32 2输入四或门 74ls33 2输入四或非缓冲器 (集电极开路输出 74ls34 六缓冲器 74ls35 六缓冲器 (oc 74ls36 2输入四或非门 (有选通 74ls37 2输入四与非缓冲器 74ls38 2输入四或非缓冲器 (集电极开路输出 74ls39 2输入四或非缓冲器 (集电极开路输出 74ls40 4输入双与非缓冲器 74ls41 bcd-十进制计数器 74ls42 4线 -10线译码器 (bcd输入 74ls43 4线 -10线译码器 (余 3码输入

CX8502 车载车充芯片

GENERAL DESCRIPTION The CX8502 is a constant current, constant voltage power supply controller, which incorporate a voltage mode, a current mode circuit, and pulse width modulation (PWM) switching regulator control circuit. An external sense resistor will set the charge current with ±8% accuracy. An internal resistor divider and precision reference set the final float voltage to 5V with±2% accuracy. With a 100 KHz switching frequency, the CX8502 provides a simple solution to the EMI problem. High efficiency up to 90% will minish application component heat. The CX8502 also has over-voltage protect, over-thermal protect, and short circuit protect function. At the beginning of the charge, the over-current circuit will limit the charge current not too high. The CX8502 is available in a 8-pin SOP8 package. FEATURES z Wide Input Supply Range: 10V to 40V z High Efficiency Current Mode PWM Controller with 100KHz Switching Frequency z±2% Charge Voltage Accuracy z Constant Switching Frequency for Minimum Noise z±8% Charge Current Accuracy z Cable compensation function z Automatic Battery Recharge z Automatic Shutdown When Input Supply is Removed z Available in a 8-pin SOP8 package APPLICATIONS z SMPS z Charger z Portable Computers z Handheld Instruments TYPICAL APPLICATION z Up to 2.6A Output Current CX8502

常用IC型号及功能查询

嵌入式常用IC 芯片 1.电源变换IC 芯片 7800 三端,固定正电压输出稳压器(块)芯片 7900 三端,固定负电压输出稳压器(块)芯片 AD580 三端,精密电压基准芯片 ADR290/291/292/293 高精度,新型XFET 3 端基准电源芯片 D14,D24 DC-DC 隔离电源模块 HV-2405E 50mA,5~24V,AC/DC 电源IC 芯片 HQA-2405E AC/DC 电源变换器模块 IMP706 低功耗,uP 电源监控IC 芯片 LM117/217/317 3端,可调正电压输出稳压芯片 LM137/237/337 3 端,可调负电压输出稳压(块)芯片 LM138/238/338 3 端,大电流,可调正电压输出稳压(块)芯片 LM150/250/350 3 端,大电流,可调正电压输出稳压(块)芯片 LM2930 汽车用3 端稳压器芯片 LT108X/SP116XX 3 端,低电压,输出可调稳压器芯片 M5236L/37L 灵活方便,低电压差,3 端稳压驱动芯片 MAX610 无变压器式,AC/DC 电源变换器IC 芯片 MAX619 输入2V,输出5V,充电泵DC/DC 变换器IC 芯片 MAX629 DC/DC 转换芯片 MAX638 过低电压检测报警,降压开关型,DC/DC 电源变换器IC 芯片MAX639 过低电压检测报警,降压开关型,DC/DC 电源变换器IC 芯片 MAX682-685 低电压差,微功耗稳压器芯片 MAX706 电压监控芯片 MAX813L 看门狗,电压监控芯片

MAX889 2MHZ 稳压型电荷泵,负电压输出,DC/DC 变换器芯片 MAX1606 输入5V,输出28V,LCD 偏置电源DC/DC 芯片 MAX1642/1643 输入电压仅为1V 的DC/DC 变换器芯片 MAX1692 1.8V,降压型,微型开关,DC/DC 芯片 MAX1725/1726 更低功耗,低压差,线性稳压器芯片 MAX1742/1842 内含1A开关,1MHz,降压型DC/DC 芯片 MAX1744/1745 36V 输入,10W输出,降压型转换器芯片 MAX1730/1759 稳压型,电荷泵,DC/DC 芯片 MAX1775 双路,降压型,2A 以上,DC/DC 芯片 MAX1832/1833/1834/1835 电池反接保护,升压型DC/DC 转换器芯片MAX1864/1865 降压型,DC/DC,5 路输出线缆MODEM 电源芯片 MAX5130+PIC 精确可编程,8000 基准电压值,DC/DC 发生器芯片 MAX6125 微封装,微功耗,微漂移,DC/DC 芯片 MAX6129 功耗更低,串联型,3 端,电压基准芯片 MAX6333 监视电压可低至1.6V 的新型单片复位IC 芯片 MAX6821-6825 手动复位,“看门狗”定时器,低功耗,UP 监控电路芯片MAX828/829 充电泵,反压型,DC/DC 芯片 MAX8880/8881 带有电源好2 (POWDWR-OK)输出的DC/DC 芯片MAX8883 双路,低压差,线性稳压器芯片 MC1403 8 脚精密电压基准芯片 MIC2141 微功耗,升压型,V0 可控,DC/DC 变换器芯片 PS0500-5 500mA,超小型,AC/DC 电源变换芯片 1

相关文档
相关文档 最新文档