文档库 最新最全的文档下载
当前位置:文档库 › 精品 2014-2015年 高中数学解题思维策略

精品 2014-2015年 高中数学解题思维策略

精品 2014-2015年 高中数学解题思维策略
精品 2014-2015年 高中数学解题思维策略

高中数学解题的思维策略

01数学思维的变通性

一、概念

数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练:

(1)善于观察

心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。

任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。 例如,求和)

1(1431321211+++?+?+?n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且

1

11)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。

(2)善于联想

联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

例如,解方程组???-==+3

2xy y x .

这个方程指明两个数的和为2,这两个数的积为3-。由此联想到韦达定理,x 、y 是一元二次方程 0322=--t t 的两个根,

所以???=-=31y x 或???-==1

3y x .可见,联想可使问题变得简单。

(3)善于将问题进行转化

数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。 例如,已知c

b a

c b a ++=++1111,)0,0(≠++≠c b a abc , 求证a 、b 、c 三数中必有两个互为相反数。

恰当的转化使问题变得熟悉、简单。要证的结论,可以转化为:0))()((=+++a c c b b a

思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方法、套公式,使思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。

综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。要想提高思维变通性,必须作相应的思维训练。

二、思维训练实例

(1)观察能力的训练

虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。

例1.已知d c b a ,,,都是实数,求证.)()(222222d b c a d c b a -+-≥+++

思路分析 从题目的外表形式观察到,要证的 结论的右端与平面上两点间的距离公式很相似,而

左端可看作是点到原点的距离公式。根据其特点,

可采用下面巧妙而简捷的证法,这正是思维变通的体现。

证明:不妨设),(),,(d c B b a A 如图1-2-1所示, 则.)()(22d b c a AB -+-=

,,2222d c OB b a OA +=+=

在OAB ?中,由三角形三边之间的关系知: AB OB OA ≥+ 当且仅当O 在AB 上时,等号成立。

因此,.)()(222222d b c a d c b a -+-≥+++

思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。因此,平时应多注意数学公式、定理的运用练习。

例2.已知x y x 62322=+,试求22y x +的最大值。

解 由 x y x 62322=+得.20,032

3,0.3232222≤≤∴≥+-∴≥+-=x x x y x x y 又,2

9)3(2132322222+--=+-=+x x x x y x ∴当2=x 时,22y x +有最大值,最大值为.42

9)32(212=+-- 思路分析 要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,2

9)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值。上述解法观察到了隐蔽条件,体现了思维的变通性。

思维障碍 大部分学生的作法如下:

由 x y x 62322=+得 ,32

322x x y +-= ,2

9)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为2

9 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误。因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,

又要注意次要条件,这样,才能正确地解题,提高思维的变通性。

有些问题的观察要从相应的图像着手。

例3.已知二次函数),0(0)(2>=++=a c bx ax x f 满足关系)2()2(x f x f -=+,试比较)5.0(f 与)(πf 的大小。

思路分析 由已知条件)2()2(x f x f -=+可知,在与2=x 左右等距离的点的函数值相等,说明该函数的图像关于直线2=x

已知条件知它的开口向上,所以,可根据该函数的大致

图像简捷地解出此题。

解 (如图1-2-2)由)2()2(x f x f -=+,

知)(x f 是以直线2=x 为对称轴,开口向上的抛物线

它与2=x 距离越近的点,函数值越小。

)()5.0(25.02ππf f >∴->-

思维障碍 有些同学对比较)5.0(f 与)(πf 的大小,只想到求出它们的值。而此题函数)(x f 的表达式不确定无法代值,所以无法比较。出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。提高思维的变通性。

联想能力的训练

例4.在ABC ?中,若C ∠为钝角,则tgB tgA ?的值( )

(A) 等于1 (B)小于1 (C) 大于1 (D) 不能确定 思路分析 此题是在ABC ?中确定三角函数tgB tgA ?的值。因此,联想到三角函数正切的两角和公式tgB

tgA tgB tgA B A tg ?-+=+1)(可得下面解法。 解 C ∠ 为钝角,0<∴tgC .在ABC ?中)(B A C C B A +-=∴=++ππ

且均为锐角,、B A [].

1.01,0,0.01)()(?-∴>>

tgA tgB tgA B A tg B A tg tgC 即 π故应选择(B ) 思维障碍 有的学生可能觉得此题条件太少,难以下手,原因是对三角函数的基本公式掌握得不牢固,不能准确把握公式的特征,因而不能很快联想到运用基本公式。

例5.若.2,0))((4)(2z x y z y y x x z +==----证明:

思路分析 此题一般是通过因式分解来证。但是,如果注意观察已知条件的特点,不难发现它与一元二次方程的判别式相似。于是,我们联想到借助一元二次方程的知识来证题。

证明 当0≠-y x 时,等式 0))((4)(2=----z y y x x z

可看作是关于t 的一元二次方程0)()()(2=-+-+-z y t x z t y x 有等根的条件,在进一步观察这个方程,它的两个相等实根是1 ,根据韦达定理就有: 1=--y

x z y 即 z x y +=2 若0=-y x ,由已知条件易得 ,0=-x z 即z y x ==,显然也有z x y +=2. 例 6.已知c b a 、、均为正实数,满足关系式222c b a =+,又n 为不小于3的自然数,求证:.n n n c b a <+

思路分析 由条件222c b a =+联想到勾股定理,c b a 、、可构成直角三角形的三边,进一步联想到三角函数的定义可得如下证法。

证明 设c b a 、、所对的角分别为A 、B 、.C 则C 是直角,A 为锐角,于是 ,cos ,sin c

b A

c a A ==且,1cos 0,1sin 0<<<

于是有1cos sin cos sin 22=+<+A A A A n n 即 ,1)()(<+n n c

b c a 从而就有 .n n n c b a <+

思维阻碍 由于这是一个关于自然数n 的命题,一些学生都会想到用数学归纳法来证明,难以进行数与形的联想,原因是平时不注意代数与几何之间的联系,单纯学代数,学几何,因而不能将题目条件的数字或式子特征与直观图形联想起来。

问题转化的训练

我们所遇见的数学题大都是生疏的、复杂的。在解题时,不仅要先观察具体特征,联想有关知识,而且要将其转化成我们比较熟悉的,简单的问题来解。恰当的转化,往往使问题很快得到解决,所以,进行问题转化的训练是很必要的。

转化成容易解决的明显题目

例11.已知,1111=++=++c

b a

c b a 求证a 、b 、c 中至少有一个等于1。 思路分析 结论没有用数学式子表示,很难直接证明。首先将结论用数学式子表示,转化成我们熟悉的形式。a 、b 、c 中至少有一个为1,也就是说111---c b a 、、中至少有一个为零,这样,问题就容易解决了。

证明 .,1111abc ab ac bc c

b a =++∴=++ 于是 .0)()1()1)(1)(1(=+++-++-=---

c b a bc ac ab abc c b a

∴ 111---c b a 、、中至少有一个为零,即a 、b 、c 中至少有一个为1。

思维障碍 很多学生只在已知条件上下功夫,左变右变,还是不知如何证明三者中至少有一个为1,其原因是不能把要证的结论“翻译”成数学式子,把陌生问题变为熟悉问题。因此,多练习这种“翻译”,是提高转化能力的一种有效手段。

例12.直线L 的方程为2p x -=,其中0>p ;椭圆E 的中心为)0,2

2(p O +',焦点在X 轴上,长半轴为2,短半轴为1,它的一个顶点为)0,2

(p A ,问p 在什么范围内取值时,椭圆上有四个不同的点,它们中的每一点到点A 的距离等于该点到直线L 的距离。

思路分析 从题目的要求及解析几何的知识可知,四个不同的点应在抛物线 px y 22= (1)

是,又从已知条件可得椭圆E 的方程为14)]22([22=++

-y p x (2)

因此,问题转化为当方程组(1)、(2)有四个不同的实数解时,求p 的取

值范围。将(2)代入(1)得:.024

)47(22=++-+p p x p x (3) 确定p 的范围,实际上就是求(3)有两个不等正根的充要条件,解不等式组:

?????????<->+>+--0470240)24(4)47(2

2

2p p p p p p 在0>p 的条件下,得.130<

本题在解题过程中,不断地把问题化归为标准问题:解方程组和不等式组的问题。

逆向思维的训练

逆向思维不是按习惯思维方向进行思考,而是从其反方向进行思考的一种思维方式。当问题的正面考虑有阻碍时,应考虑问题的反面,从反面入手,使问题得到解决。

例13.已知函数n mx x x f ++=22)(,求证)1(f 、)2(f 、)3(f 中至少有一个不小于1.

思路分析 反证法被誉为“数学家最精良的武器之一”,它也是中学数学常用的解题方法。当要证结论中有“至少”等字样,或以否定形式给出时,一般可考虑采用反证法。

证明 (反证法)假设原命题不成立,即)1(f 、)2(f 、)3(f 都小于1。 则?????-<+<--<+<--<+<-??????<++<-<++<-<++<-???

???<<<173197

29131318112811211)3(1)2(1)1(n m n m n m n m n m n m f f f ③②① ①+③得 9211-<+<-n m , 与②矛盾,所以假设不成立,即)1(f 、)2(f 、)3(f 中至少有一个不小于1。 ○

3 一题多解训练 由于每个学生在观察时抓住问题的特点不同、运用的知识不同,因而,同一问题可能得到几种不同的解法,这就是“一题多解”。通过一题多解训练,可使学生认真观察、多方联想、恰当转化,提高数学思维的变通性。

例14.已知复数z 的模为2,求i z -的最大值。

解法一(代数法)设,、)(R y x yi x z ∈+=.25)1(.42222y y x i z y x -=-+=-+=则

.32,2max =--=∴≤i z y y 时,当

解法二(三角法)设),sin (cos 2θθi z +=

则 .sin 45)1sin 2cos 422θθθ-=-=-+(i z .31sin max =--=∴i z 时,当θ

解法三(几何法)

。所对应的点之间的距离与表示上的点,

是圆点i z i z y x z z -=+∴=4,222

如图1-2-3 所示,可知当i z 2-=时,.3max =-i z 解法四(运用模的性质) 312=+=-+≤-i z i z

而当i z 2-=时,.3.3max =-∴=-i z i z

解法五(运用模的性质)

1)()()(2+-+=--=-i z z z z i z i z i z .)((),(25的虚部)表z z I z I += 又.3,9,2)(max 2

max =-∴=-∴≤i z i z z I

图1-2-3

02 数学思维的反思性

一、概述

数学思维的反思性表现在思维活动中善于提出独立见解,精细地检查思维过程,不盲从、不轻信。在解决问题时能不断地验证所拟定的假设,获得独特的解决问题的方法,它和创造性思维存在着高度相关。本讲重点加强学生思维的严密性的训练,培养他们的创造性思维。

二、思维训练实例

(1) 检查思路是否正确,注意发现其中的错误。

例1 已知b

x ax x f +=)(,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。 错误解法 由条件得 ??

???≤+≤≤+≤-622303b a b a ②① ②×2-①得 156≤≤a ③

①×2-②得 3

2338-≤≤-b ④ ③+④得 .3

43)3(310,34333310≤≤≤+≤f b a 即 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数

b

x ax x f +=)(,其值是同时受b a 和制约的。当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。

正确解法 由题意有?????+=+=22)2()1(b a f b a f 解得:)],2()1(2[3

2)],1()2(2[31f f b f f a -=-= ).1(9

5)2(91633)3(f f b a f -=+

=∴ 把)1(f 和)2(f 的范围代入得 .337)3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。

例2.证明勾股定理:已知在ABC ?中,?=∠90C ,求证.222b a c +=

错误证法 在ABC Rt ?中,,cos ,sin c

b A

c a A ==而1cos sin 22=+A A , 1)()(22=+∴c

b c a ,即.222b a c += 错误分析 在现行的中学体系中,1cos sin 22=+A A 这个公式本身是从勾股定理推出来的。这种利用所要证明的结论,作为推理的前提条件,叫循环论证。循环论证的错误是在不知不觉中产生的,而且不易发觉。因此,在学习中对所学的每个公式、法则、定理,既要熟悉它们的内容,又要熟悉它们的证明方法和所依据的论据。这样才能避免循环论证的错误。发现本题犯了循环论证的错误,正是思维具有反思性的体现。

(2)验算的训练

验算是解题后对结果进行检验的过程。通过验算,可以检查解题过程的正确性,增强思维的反思性。

例2.已知数列{}n a 的前n 项和12+=n n S ,求.n a

错误解法 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a

错误分析 显然,当1=n 时,1231111=≠==-S a ,错误原因,没有注意公式1--=n n n S S a 成立的条件是).(2N n n ∈≥因此在运用1--=n n n S S a 时,必须检验

1=n 时的情形。即:???∈≥==),2()1(1N n n S n S a n n

例3.实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 2

12=有两个公共点。 错误解法 将圆012222=-+-+a ax y x 与抛物线 x y 2

12=联立,消去y , 得 ).0(01)2

12(22≥=-+--x a x a x ① 因为有两个公共点,所以方程①有两个相等正根,得???????>->-=?.

01021202a a 解之,得.8

17=a

错误分析 (如图2-2-1;2-2-2)显然,当0=a 时,圆与抛物线有两个

要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。

当方程①有一正根、一负根时,得???<->?.010

2a 解之,得.11<<-a

因此,当8

17=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

思考题:实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 2

12=, (1) 有一个公共点;

(2) 有三个公共点;

(3) 有四个公共点;

(4) 没有公共点。

养成验算的习惯,可以有效地增强思维反思性。如:在解无理方程、无理不等式;对数方程、对数不等式时,由于变形后方程或不等式两端代数式的定义域可能会发生变化,这样就有可能产生增根或失根,因此必须进行检验,舍弃增根,找回失根。

(3)独立思考,敢于发表不同见解

受思维定势或别人提示的影响,解题时盲目附和,不能提出自己的看法,这不利于增强思维的反思性。因此,在解决问题时,应积极地独立思考,敢于对题目解法发表自己的见解,这样才能增强思维的反思性,从而培养创造性思维。

例4.30支足球队进行淘汰赛,决出一个冠军,问需要安排多少场比赛?

解 因为每场要淘汰1个队,30个队要淘汰29个队才能决出一个冠军。因此应安排29场比赛。

思 路 分 析 传统的思维方法是:30支队比赛,每次出两支队,应有15+7+4+2+1=29场比赛。而上面这个解法没有盲目附和,考虑到每场比赛淘汰1个队,要淘汰29支队,那么必有29场比赛。

例5.解方程.cos 322x x x =+-

考察方程两端相应的函数x y x y cos ,2)1(2=+-=,它们的图象无交点。

所以此方程无解。

例 6.设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )

不存在)(;18)(;8)(;449)(D C B A -

思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。

利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα

.4

49)43(42)(22)(1

212)1()1(222222--=++--+=+-++-=-+-∴k βααββαββααβα 有的学生一看到4

49-

,常受选择答案(A )的诱惑,盲从附和。这正是思维缺乏反思性的体现。如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。

原方程有两个实根βα、, ,0)6(442≥+-=?∴k k .32≥-≤∴k k 或

当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18;

这时就可以作出正确选择,只有(B )正确。

03 数学思维的严密性

一、概述

在中学数学中,思维的严密性表现为思维过程服从于严格的逻辑规则,考察问题时严格、准确,进行运算和推理时精确无误。数学是一门具有高度抽象性和精密逻辑性的科学,论证的严密性是数学的根本特点之一。但是,由于认知水平和心里特征等因素的影响,中学生的思维过程常常出现不严密现象,主要表现在以下几个方面:

概念模糊 概念是数学理论体系中十分重要的组成部分。它是构成判断、推理的要素。因此必须弄清概念,搞清概念的内涵和外延,为判断和推理奠定基础。概念不清就容易陷入思维混乱,产生错误。

判断错误 判断是对思维对象的性质、关系、状态、存在等情况有所断定的一种思维形式。数学中的判断通常称为命题。在数学中,如果概念不清,很容易

导致判断错误。例如,“函数x y -=)3

1(是一个减函数”就是一个错误判断。 推理错误 推理是运用已知判断推导出新的判断的思维形式。它是判断和判断的联合。任何一个论证都是由推理来实现的,推理出错,说明思维不严密。 例如,解不等式.1x

x > 解 ,1,12>∴>x x x

,1>∴x 或 .1-

x 1>推导12>x 时,没有讨论x 的正、负,理由不充分,所以出错。

二、思维训练实例

思维的严密性是学好数学的关键之一。训练的有效途径之一是查错。

(1) 有关概念的训练

概念是抽象思维的基础,数学推理离不开概念。“正确理解数学概念是掌握数学基础知识的前提。”《中学数学教学大纲》(试行草案)

例1.不等式 ).23(log )423(log 2)

2(2)2(22+->--++x x x x x x 错误解法 ,

122>+x ,2342322+->--∴x x x x .22

3,0622-<>∴>-+∴x x x x 或 错误分析 当2=x 时,真数0232=+-x x 且2=x 在所求的范围内(因 232>),

说明解法错误。原因是没有弄清对数定义。此题忽视了“对数的真数大于零”

这一条件造成解法错误,表现出思维的不严密性。

正确解法 122>+x

?????+->-->+->--∴234230

2304232222x x x x x x x x ????

?????-<><>-<+>∴2231231313131x x x x x x 或或或.22-<>∴x x 或 例2.求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

错误解法 设所求的过点)1,0(的直线为1+=kx y ,则它与抛物线的交点为 ???=+=x

y kx y 212,消去y 得:.02)1(2=-+x kx 整理得 .01)22(22=+-+x k x k 直线与抛物线仅有一个交点,

,0=?∴解得∴=.21k 所求直线为.12

1+=x y 错误分析 此处解法共有三处错误:

第一,设所求直线为1+=kx y 时,没有考虑0=k 与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的。

第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况。原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透。

第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即,0≠k 而上述解法没作考虑,表现出思维不严密。

正确解法 当所求直线斜率不存在时,即直线垂直x 轴,因为过点)1,0(,所以,0=x 即y 轴,它正好与抛物线x y 22=相切。

当所求直线斜率为零时,直线为,1=y 平行x 轴,它正好与抛物线x y 22=只有一个交点。

设所求的过点)1,0(的直线为1+=kx y )0(≠k 则???=+=x

y kx y 21

2, ∴.01)22(22=+-+x k x k 令,0=?解得∴=.21k 所求直线为.12

1+=x y 综上,满足条件的直线为:.12

1,0,1+===x y x y 判断的训练:造成判断错误的原因很多,我们在学习中,应重视如下几个方面。 ①注意定理、公式成立的条件

数学上的定理和公式都是在一定条件下成立的。如果忽视了成立的条件,解题中难免出现错误。

例3.实数m ,使方程021)4(2=++++mi x i m x 至少有一个实根。

错误解法 方程至少有一个实根,.020)21(4)4(22≥-=+-+=?∴m mi i m ,52≥∴m 或.52-≤m

错误分析 实数集合是复数集合的真子集,所以在实数范围内成立的公式、定理,在复数范围内不一定成立,必须经过严格推广后方可使用。一元二次方程根的判别式是对实系数一元二次方程而言的,而此题目盲目地把它推广到复系数一元二次方程中,造成解法错误。

正确解法 设a 是方程的实数根,则.0)24(1,021)4(2

2=++++∴=++++i m a ma a mi a i m a

由于m a 、都是实数,???=+=++∴0

24012m a ma a 解得 .2±=m 例4.已知双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,求双曲线方程。

错解1 .60,40,10,422222

=-=∴=∴===a c b a c c

a x 故所求的双曲线方程为.1604022=-y x 错解2 由焦点)0,10(F 知,10=c .75,5,2222=-==∴==a c

b a a

c e 故所求的双曲线方程为.175

2522=-y x 错解分析 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题

设条件,都会产生错误解法。

正解1 设),(y x P 为双曲线上任意一点,因为双曲线的右准线为4=x ,右焦点

)0,10(F ,离心率2=e ,由双曲线的定义知.2|

4|)10(22=-+-x y x

整理得 .148

16)2(22=--y x 正解2 依题意,设双曲线的中心为)0,(m

则 ?????????==+=+.21042

a

c m c m c a 解得 ?????===.284m c a 所以 ,481664222=-=-=a c b 故所求双曲线方程为 .148

16)2(22=--y x ②注意充分条件、必要条件和充分必要条件在解题中的运用

我们知道:

如果A 成立,那么B 成立,即B A ?,则称A 是B 的充分条件。

如果B 成立,那么A 成立,即A B ?,则称A 是B 的必要条件。

如果B A ?,则称A 是B 的充分必要条件。

充分条件和必要条件中我们的学习中经常遇到。像讨论方程组的解,求满足条件的点的轨迹等等。但充分条件和必要条件中解题中的作用不同,稍用疏忽,就会出错。

例5.解不等式.31-≥-x x

错误解法 要使原不等式成立,只需,)3(10

30

12??

???-≥-≥-≥-x x x x 解得.53≤≤x 错误分析 不等式B A ≥成立的充分必要条件是:?????≥≥≥200B A B A 或 ???≤≥0

0B A

原不等式的解法只考虑了一种情况?????-≥-≥-≥-2)3(10

301x x x x ,而忽视了另一种情况

???<-≥-0

301x x ,所考虑的情况只是原不等式成立的充分条件,而不是充分必要条件,其错误解法的实质,是把充分条件当成了充分必要条件。

正确解法 要使原不等式成立,则??

???-≥-≥-≥-2)3(10301x x x x 或???<-≥-0301x x

53≤≤∴x ,或.31≤≤x ∴原不等式的解集为 }51|{≤≤x x

例6.(轨迹问题)求与y 轴相切于右侧,并与

⊙06:22=-+x y x C 也相切的圆的圆心 的轨迹方程。 错误解法 如图3-2-1所示,

已知⊙C 的方程为.9)3(22=+-y x 设点)0)(,(>x y x P 为所求轨迹上任意一点,并且⊙P 与y 轴相切于M 点,

与⊙C 相切于N 点。根据已知条件得3||||+=PM CP ,即.3)3(22+=+-x y x 化简得).0(122>=x x y

错误分析 本题只考虑了所求轨迹的纯粹性(即所求的轨迹上的点都满足条件),而没有考虑所求轨迹的完备性(即满足条件的点都在所求的轨迹上)。事实上,符合题目条件的点的坐标并不都满足所求的方程。从动圆与已知圆内切,可以发现以x 轴正半轴上任一点为圆心,此点到原点的距离为半径(不等于3)的圆也符合条件,所以)30(0≠>=x x y 且也是所求的方程。即动圆圆心的轨迹方程是和)0(122>=x x y )30(0≠>=x x y 且。因此,在求轨迹时,一定要完整的、细致地、周密地分析问题,这样,才能保证所求轨迹的纯粹性和完备性。 ③防止以偏概全的错误

以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问

-1

题的全部答案,从而表现出思维的不严密性。

例7.设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .

错误解法 ,2963S S S =+ q

q a q q a q q a --?=--+--∴1)1(21)1(1)1(916131 .012(363)=整理得--q q q

124,

0)1)(12(.012033336=-=∴=-+∴=--≠q q q q q q q 或得方程由

错误分析 在错解中,由q

q a q q a q q a --?=--+--1)1(21)1(1)1(916131 .012(363)=整理得--q q q 时,应有.101≠≠q a 和在等比数列中,01≠a 是显然的,但公比q 完全可能为1,因此,在解题时应先讨论公比1=q 的情况,再在1≠q 的情况下,对式子进行整理变形。

正确解法 若1=q ,则有.9,6,3191613a S a S a S ===

但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .

又依题意 ,2963S S S =+可得 q

q a q q a q q a --?=--+--1)1(21)1(1)1(916131 .012(363)=整理得--q q q 即,0)1)(12(33=-+q q

因为1≠q ,所以,013≠-q 所以.0123=+q 所以 .2

43

-=q 说明 此题为1996年全国高考文史类数学试题第(21)题,不少考生的解法同错误解法,根据评分标准而痛失2分。

④避免直观代替论证

我们知道直观图形常常为我们解题带来方便。但是,如果完全以图形的直观联系为依据来进行推理,这就会使思维出现不严密现象。

例8 (如图3-2-2),具有公共y 轴的两个直角坐标平面α和β所成的二面角

βα轴-y -等于?60.已知β内的曲线C '的方程是)0(22>'=p x p y ,

求曲线C '在α内的射影的曲线方程。

错误解法 依题意,可知曲线C '是抛物线,

在β内的焦点坐标是.0),0,2

(>'p p F 因为二面角βα轴-y -等于?60,

且轴,轴轴,轴y x y x ⊥⊥'所以.60?='∠x xo

设焦点F '在α内的射影是),(y x F ,那么,F 位于x 轴上,

从而,90,60,0?='∠?='∠=FO F OF F y 所以.4

21260cos p p F O OF =?=??'=所以点)0,4(p F 是所求射影的焦点。依题意,射影是一条抛物线,开口向右,顶点在原点。所以曲线C '在α内的射影的曲线方程是.2px y =

错误分析上述解答错误的主要原因是,凭直观误认为曲线)的焦点,是射影(F

其次,未经证明C '默认条抛物线内的射影(曲线)是一在α。

正确解法 在β内,设点),(y x M ''是曲线上任意一点

(如图3-2-3)过点M 作α⊥MN ,垂足为N ,

过N 作y NH ⊥轴,垂足为.H 连接MH ,

则y MH ⊥轴。所以MHN ∠是二面角

图3

βα轴-y -的平面角,依题意,MHN ∠?=60. 在.2

160cos ,x HM HN MNH Rt '=??=?中 又知x HM '//轴(或M 与O 重合),x HN //轴(或H 与O 重合),设),(y x N ,

则 ?

??='='∴?????'='=.221y y x x y y x x 因为点),(y x M ''在曲线)0(22>'=p x p y 上,所以).2(22x p y =

即所求射影的方程为 ).0(42>=p px y

(2) 推理的训练

数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心。以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程。在推理过程中,必须注意所使用的命题之间的相互关系(充分性、必要性、充要性等),做到思考缜密、推理严密。

例9 设椭圆的中心是坐标原点,长轴x 在轴上,离心率2

3=

e ,已知点)2

3,0(P 到这个椭圆上的最远距离是7,求这个椭圆的方程。 错误解法 依题意可设椭圆方程为)0(12222>>=+b a b y a x 则 43122222222=-=-==a b a b a a c

e ,所以 4

122=a b ,即 .2b a = 设椭圆上的点),(y x 到点P 的距离为d ,则2

22)23(-+=y x d .34)21(3493)1(222222

+++-=+-+-=b y y y b y a 所以当2

1-=y 时,2d 有最大值,从而d 也有最大值。 所以 22)7(34=+b ,由此解得:.4,122==a b 于是所求椭圆的方程为.1422

=+y x

高中数学解题八个思维模式和十个思维策略

高中数学解题八种思维模式 和十种思维策略 引言 “数学是思维的体操” “数学教学是数学(思维)活动的教学。” 学习数学应该看成是学习数学思维过程以及数学思维结果这二者的综合,因而可以说数学思维是动的数学,而数学知识本身是静的数学,这二者是辩证的统一。作为思维载体的数学语言简练准确和数学形式具有符号化、抽象化、结构化倾向。 高中数学思维中的重要向题 它可以包括: 高中数学思维的基本形式 高中数学思维的一般方法 高中数学中的重要思维模式 高中数学解题常用的数学思维策略 高中数学非逻辑思维(包括形象思维、直觉思维)问题研究; 高中数学思维的指向性(如定向思维、逆向思维、集中思维和发散思维等)研究; 高中数学思维能力评估:广阔性、深刻性、灵活性、敏捷性、批判性、创造性 高中数学思维的基本形式 从思维科学的角度分析,作为理性认识的人的个体思维题可以分成三种:逻辑思维、形象思维、直觉思维 一数学逻辑思维的基本形式1、概念是逻辑思维的最基本的思维形式,数学概念间的逻辑关系,a同一关系b从属关系c交叉关系以及d对立关系e矛盾关系12、判断是逻辑思维在概念基础上的发展,它表现为对概念的性质或关系有所肯定或否定,是认识概念间联系的思维形式。3、推理是从一个或几个已知判断推出另一个新判断的思维形式,是对判断间的逻辑关系的认识。 二数学形象思维的基本形式1图形表象是与外部几何图形的形状相一致的脑中示意图,2图式表象是与外部数学式子的结初关系相一致的模式形象。3形象识别直感是用数学表象这个类象(普遍形象)的特征去比较数学对象的个象,根据形象特征整合的相似性来判别个象是否与类象同质的思维形式。4模式补形直感是利用主体已在头脑中建构的数学表象模式1,对具有部分特征相同的数学对象进行表象补形,实施整合的思维形式。5形象相似直感是以形象识别直感和模式补形直感为基础基础的复合直感。6 象质转换直感是利用数学表象的变化或差异来判别数学在对象的质变或质异的形象特征判断。7图形

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

高中数学解题思维策略

高中数学解题思维策略文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第四讲 数学思维的开拓性 一、概述 数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。 “数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。从而培养创新精神和创造能力。 在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。 数学思维的开拓性主要体现在: (1)一题的多种解法 例如 已知复数z 满足1||=z ,求||i z -的最大值。 我们可以考虑用下面几种方法来解决: ①运用复数的代数形式; ②运用复数的三角形式; ③运用复数的几何意义; ④运用复数模的性质(三角不等式)||||||||||||212121z z z z z z +≤-≤-; ⑤运用复数的模与共轭复数的关系z z z ?=2||; ⑥(数形结合)运用复数方程表示的几何图形,转化为两圆1||=z 与r i z =-||有公共点时,r 的最大值。 (2)一题的多种解释 例如,函数式22 1ax y =可以有以下几种解释: ①可以看成自由落体公式.2 12gt s = ②可以看成动能公式.2 12mv E = ③可以看成热量公式.2 12RI Q = 又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。“1”可以变换为:x tg x a b x x x x a b a a 2222sec ),(log )(log ,cos sin ,,log -?+,等等。 1. 思维训练实例 例1 已知.1,12222=+=+y x b a 求证:.1≤+by ax 分析1 用比较法。本题只要证.0)(1≥+-by ax 为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

高中数学八种思维方法如何训练数学思维

高中数学八种思维方法如何训练数学思维 在数学学习中,比运算更重要的是思维方式。下面介绍几种适合大家的数学学习思维 方法以及如何训练数学思维,欢迎阅读。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 一、转化方法: 转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到 障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻 求最佳方法,使问题变得更简单、更清晰。 二、逻辑方法: 逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等 思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻 辑思维,在解决逻辑推理问题时使用广泛。 三、逆向方法: 逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的 一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深 入地进行探索,树立新思想,创立新形象。 四、对应方法: 对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。 五、创新方法: 创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维 的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可 分为差异性、探索式、优化式及否定性四种。 点击查看:学好数学的核心概念与思维方法 六、系统方法: 系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一 个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种 类型,以及对应的解决方法。

高中数学解题的思想方法

高中数学解题的思想方法(经典) 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; ④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助大家掌握解题的金钥匙,掌握解题的思想方法,咱们就先介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题。 在每一个方法,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。 一、配方法 从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

高中最全数学解题的思维策略资料全

一、《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,
昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们
下午物理上完之后再给大家补课,再给大家补 5 天的课程,
去年高考难,很多学生数学考得也很不错,,很多人可能会问补课
有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留
学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,
补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高
考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,
家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主
体还是我们学生,次要的才是老师,家长,环境,据去年那批学生
反映最后对我们 3 个教的还不错,
我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点
基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多
好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家
讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下
一些英语,语文和其他科目的技巧。


数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效
的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻
牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分
钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填
空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道

高中数学函数解题技巧与方法

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

高中数学解题四大思想方法(数学)

思想方法一、函数与方程思想 方法1 构造函数关系,利用函数性质解题 根据题设条件把所求的问题转化为对某一函数性质的讨论,从而使问题得到解决,称为构造函数解题。通过构造函数,利用函数的单调性解题,在解方程和证明不等式中最为广泛,解题思路简洁明快。 例1 (10安徽)设232555322(),(),(),555 a b c ===则,,a b c 的大小关系是( ) ....A a c b B a b c C c a b D b c a >>>>>>>> 例2 已知函数21()(1)ln , 1.2 f x x ax a x a =-+-> (1) 讨论函数()f x 的单调性; (2) 证明:若5,a <则对任意12121212 ()(),(0,),, 1.f x f x x x x x x x -∈+∞≠>--有 方法2 选择主从变量,揭示函数关系 含有多个变量的数学问题中,对变量的理解要选择更加合适的角度,先选定合适的主变量,从而揭示其中的函数关系,再利用函数性质解题。 例3 对于满足04p ≤≤的实数p ,使243x px x p +>+-恒成立的x 的取值范围是 . 方法3 变函数为方程,求解函数性质 实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式,我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题一般是通过方程来实现的……函数与方程是密切相关的。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 例4 函数()2)f x x π=≤≤的值域是( ) 11111122.,.,.,.,44332233A B C D ????????----?????????? ??????

高中数学解题方法及解析大全

最全面的高考复习资料 目录 前言 (2) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第一章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和 演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想 等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

《高中最全数学解题的思维策略》

一、 《高中数学解题的思维策略》
很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图, 昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们 下午物理上完之后再给大家补课,再给大家补 5 天的课程, 去年高考难,很多学生数学考得也很不错, ,很多人可能会问补课 有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留 学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了, 补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高 考中分数的重要性, ,我姐是个老师,我姐经常说孩子们考好了, 家长就说, ,考不好,家长就说老师和郭师哥教的不好,实际上主 体还是我们学生,次要的才是老师,家长,环境,据去年那批学生 反映最后对我们 3 个教的还不错, 我先讲一下我补课大概基本要讲的内容, 把大家数学必修的知识点 基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多 好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家 讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下 一些英语,语文和其他科目的技巧。 导 读
数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效 的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解: 一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻 牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分 钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填空 题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道大 题都快做完了,这下就慌了,心想肯定完了,最后整个卷子全部慌了,后面计算正确率 也不高了,整个考试最后也可想而知。应该怎么办呀,先做会的,把整个卷子会做的做 完了,再去做会做的,即使有些题不会做也没关系,大题都是按步骤给分,步骤对了,

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学7大解题思路

高中数学的7大解题方法 想要提高数学成绩,不是多做题就可以了。创世教育认为,保证做题量是学好数学的必要条件,在做题的同时要保证做题的质量,善于分析,对题型进行深入思考。我教过的学生很多,好学生和成绩不好的学生之间差别在于,好学生是很善于总结与归纳的。总结题型归纳方法是数学学习的更高境界,只有用数学的思想武装自己,灵活运用各种解题方法,才能更有效的学习数学。高中数学常用的无非就是七种解题方法与四大思想,熟练掌握,成绩想不提高都难。这里创世教育先讲一讲方法: 第一大解题方法:配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简.何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方.有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方.它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺项的二次曲线的平移变换等问题。 第二大解题方法:换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来,或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。问题变成了熟悉的求三角函数值域.为什么会此想到如此设,其中主要应该是发现值域的联系,又有去根号的需要.如变量x,y。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。

高中数学解题思维提升专题08数列大题部分训练手册

专题08 数列大题部分 【训练目标】 1、 理解并会运用数列的函数特性; 2、 掌握等差数列,等比数列的通项公式,求和公式及性质; 3、 掌握根据递推公式求通项公式的方法; 4、 掌握常用的求和方法; 5、 掌握数列中简单的放缩法证明不等式。 【温馨小提示】 高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。总之,此类题目难度中等,属于必拿分题。 【名校试题荟萃】 1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和, 且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1 { }n a 的前n 项和n T ,求使得成立的n 的最小值. 【答案】(1)2n n a = (2)10 (2)由(1)可得112n n a ??= ??? ,所以 , 由 ,即21000n >,因为 ,所以10n ≥,于是使得 成立的n 的最小值为10. 2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈) 。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为1 2ln 2-,求数列 { }n n a b 的前n 项和n T . 【答案】(1) (2) (2)由 函数()f x 的图象在点22(,)a b 处的切线方程为 所以切线在x 轴上的截距为21 ln 2 a -,从而,故22a = 从而n a n =,2n n b =, 2n n n a n b = 所以 故。 3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N . (1)求1a ,2a ; (2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和.

高中数学解题方法谈线性规划求最值问题

线性规划求最值问题 一、与直线的截距有关的最值问题 例1 已知点()P x y ,在不等式组2010220x y x y -??-??+-? ,,≤≤≥表示的平面区域上运动,则z x y =-的 取值范围是( ). (A )[-2,-1] (B )[-2,1] (C )[-1,2] (D )[1,2] 解析:由线性约束条件画出可行域如图1,考虑z x y =-, 把它变形为y x z =-,这是斜率为1且随z 变化的一族平行 直线.z -是直线在y 轴上的截距.当直线满足约束条件且 经过点(2,0)时,目标函数z x y =-取得最大值为2; 直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C ). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y 的取值范围为[-1,2]更为简单.这需要有最值在边界点取得的特殊值意识. 二、与直线的斜率有关的最值问题 例2 设实数x y ,满足20240230x y xc y y --??+-??-? ,,,≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2),00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴312P ?? ???,.故答案为32 . 注:解决本题的关键是理解目标函数00y y z x x -= =-的 几何意义,当然本题也可设y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . 三、与距离有关的最值问题

相关文档
相关文档 最新文档