文档库 最新最全的文档下载
当前位置:文档库 › 氨基硫脲在盐酸中对碳钢的缓蚀性能研究

氨基硫脲在盐酸中对碳钢的缓蚀性能研究

氨基硫脲在盐酸中对碳钢的缓蚀性能研究
氨基硫脲在盐酸中对碳钢的缓蚀性能研究

Advances in Energy and Power Engineering 电力与能源进展, 2015, 3(5), 166-171 Published Online October 2015 in Hans. https://www.wendangku.net/doc/771702136.html,/journal/aepe https://www.wendangku.net/doc/771702136.html,/10.12677/aepe.2015.35023

文章引用: 李媛, 刘丽丽, 于元英, 刘克胜, 付文耀, 李克华. 氨基硫脲在盐酸中对碳钢的缓蚀性能研究[J]. 电力与能

Inhibition Performance of Thiosemicarbazide on Carbon Steel in Hydrochloric Acid

Yuan Li 1, Lili Liu 1, Yuanying Yu 1, Kesheng Liu 1, Wenyao Fu 1, Kehua Li 2

1

The 12th

Oil Production Plant of Changqing Oilfield Company, Qingyang Gansu 2

School of Chemistry and Environmental Engineering, Yangtze University, Jingzhou Hubei Email: likehua01@https://www.wendangku.net/doc/771702136.html,

Received: Oct. 7th , 2015; accepted: Oct. 26th , 2015; published: Oct. 29th

, 2015

Copyright ? 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/771702136.html,/licenses/by/4.0/

Abstract

The corrosion inhibition behavior of thiosemicarbazide for carbon steel in a hydrochloric acid so-lution was studied by weight loss and electrochemistry polarization method, and the absorbance of thiosemicarbazide on carbon steel was preliminary discussed. The results showed that thiose-micarbazide, as a complex inhibitor, gave nice inhibition efficiency on carbon steel in hydrochloric acid medium. The inhibition efficiency of thiosemicarbazide was up to 93.3% when the thiosemi-carbazide reached 30 mg/L at room temperature. The inhibition performance of thiosemicarba-zide is affected by temperature, and its absorbance behaviors can be expressed by the equation of Langmuir model.

Keywords

Thiosemicarbazide, Corrosion, Corrosion Inhibitor

氨基硫脲在盐酸中对碳钢的缓蚀性能研究

李 媛1,刘丽丽1,于元英1,刘克胜1,付文耀1,李克华2

1

中石油长庆油田分公司第十二采油厂,甘肃 庆阳 2长江大学化学与环境工程学院,湖北 荆州 Email: likehua01@https://www.wendangku.net/doc/771702136.html,

李媛 等

收稿日期:2015年10月7日;录用日期:2015年10月26日;发布日期:2015年10月29日

摘 要

采用失重法和电化学极化法研究了氨基硫脲在盐酸清洗剂中对碳钢的缓蚀行为,并初步探讨其吸附性能。结果表明:氨基硫脲属于混合型缓蚀剂,在盐酸介质中缓蚀作用良好,20℃下氨基硫脲为30 mg/L 时,其缓蚀效率可达93.3%。氨基硫脲的缓蚀效率受温度的影响较大,其在碳钢表面的吸附符合Langmuir 吸附规律。

关键词

氨基硫脲,腐蚀,缓蚀剂

1. 引言

在化学清洗中,盐酸是应用最广泛的清洗剂,它溶垢能力强,速度快,渗氢量少,金属的清脆敏感性小,但对铁却有不同程度的腐蚀。保护金属在酸洗过程免受或缓受腐蚀的最简捷、经济和实用的方法之一,就是添加金属缓蚀剂[1]。氨基硫脲含有N 、O 、S 等元素,容易吸附在金属表面,阻止金属与腐蚀介质接触,从而达到缓蚀的目的。本文以N80钢为例,通过研究氨基硫脲在盐酸体系下的缓蚀性能,探讨氨基硫脲对碳钢腐蚀的缓蚀机制,为酸性体系下金属防腐提供指导。

2. 试验部分

2.1. 主要仪器及试剂

主要仪器:有机合成装置、腐蚀测定装置、电子天平等。 主要试剂:氨基硫脲,盐酸,无水乙醇,丙酮等,均为分析纯。

2.2. 试验方法

2.2.1. 失重法

将钢片悬在盛有添加氨基硫脲的0.5 mol/L 盐酸的玻璃烧杯中,烧杯在测试温度下恒温4 h ,取出后,去除腐蚀产物后水洗,丙酮脱脂并用冷风吹干,分析天平称重。按下式计算腐蚀速率和缓蚀效率:

01

m m v st

?=

(1) 式中,v 为腐蚀速率(g ?m ?2?h ?1),0t 为碳钢片原重(g),1m 为钢片腐蚀后除去腐蚀产物的重量(g),s 为碳钢片暴露在酸洗液中的总面积(m 2),t 为腐蚀时间(h)。

01

100%v v v η

?× (2) 式中,η为缓蚀效率,0v 和1v 分别为不加和加入缓蚀剂时,钢片在酸洗液中的腐蚀速率(g ?m ?2?h ?1)。 2.2.2. 电化学极化法

电化学实验溶液为0.5 mol/L 的盐酸,测试仪器为辰华CHI660C 电化学工作站,采用传统的三电极体系[2]。参比电极为饱和甘汞电极,辅助电极为铂电极,工作电极由N80钢加工而成,工作面积为0.3 cm 2,其余部分用环氧树脂密封,测试温度为20℃。极化曲线测试扫描范围为相对开路电位?400~?700 mV ,扫

李媛 等

描速率5 mV/s 。

3. 实验结果与讨论

3.1. 氨基硫脲加量以及温度对缓蚀效率的影响

采用失重法,在0.5 mol/L 的盐酸溶液中静置4 h ,测得缓蚀剂的腐蚀速率。表1列出了浓度为10~50 mg/L 的氨基硫脲在20℃~50℃条件下对N80钢的腐蚀速率的影响情况,其缓蚀效果如图1和图2所示。

从图1中的变化趋势可以看出,温度对缓蚀效率的影响十分明显,在20℃~50℃的温度变化范围内,当氨基硫脲的添加量恒定时,随着实验温度的升高,缓蚀效率越来越低。因此,20℃为氨基硫脲发挥性能的最佳温度。

从图2中的变化趋势可以看出,当氨基硫脲的添加量在10 mg/L~30 mg/L 的范围内,缓蚀效率随氨基硫脲添加量的增大而增大,当添加量超过30 mg/L 之后,缓蚀效率随氨基硫脲添加量的增大而降低。查阅相关资料[3] [4]可知,这是因为硫脲在HCl 中易被还原成H 2S ,加速金属的溶解,当硫脲加量较少时,H 2S 的影响较小,但是硫脲加量超过一定值后,H 2S 的影响超过了硫脲自身的缓蚀作用,导致金属腐蚀速率增大。综上可知,温度为20℃,添加量在30 mg/L 时,硫脲的缓蚀性能达到最大,缓蚀效率为93.3%。

Table 1. Effect of temperature and different thiosemicarbazide amount on corrosion rate 表1. 氨基硫脲添加量及温度对腐蚀速率的影响

氨基硫脲添加量/mg?L ?1

腐蚀速率/g·(m 2·h) ?1

20℃ 30℃ 40℃ 50℃ 对照 4.1568 4.9826 6.6501 7.6894 10 0.4476 0.6122 0.9573 1.4368 20 0.36 0.513 0.6941 1.3406 30 0.2767 0.3988 0.6513 0.9725 40 0.3945 0.5336 0.8177 1.4098 50

0.4917

0.6584

0.9906

1.5236

缓蚀率/%

温度/℃

Figure 1. Effect of different temperature on inhibition efficiency of thiosemicarbazide

图1. 不同温度对氨基硫脲缓蚀效率的影响

李媛 等

3.2. 氨基硫脲在盐酸中的极化曲线特征

室温下,不同氨基硫脲添加量在0.5 mol/L 盐酸体系中对N80钢的极化曲线,如图3所示。随着氨基硫脲的添加,N80钢的腐蚀电流密度显著减小,氨基硫脲对N80钢腐蚀产生明显的抑制作用,其缓蚀效率随着氨基硫脲的增加而增加。然而N80钢的自腐蚀电位随氨基硫脲的加入未发生明显移动,可以判断氨基硫脲属于混合型缓蚀剂[5]。氨基硫脲的缓蚀作用,可能是因为在N80钢的工作电极表面形成完整致密的保护膜,阻止了腐蚀介质与N80钢接触,起到缓蚀作用。

3.3. 氨基硫脲的吸附热力学

为了进一步氨基硫脲的缓蚀机制,现对0.5 mol/L 盐酸溶液体系下氨基硫脲在N80钢表面的吸附规律进行探讨。用温度为40℃,氨基硫脲添加量在10 mg/L~50 mg/L 的实验范围为例。通常认为缓蚀率η近似等同于表面覆盖率θ,将η = θ代入Langmuir 吸附等温式,结果表明Langmuir 吸附等温式与试验结果较符合。

根据Langmuir 吸附等温式:

缓蚀率/%

氨基硫脲浓度/mg·L -1

Figure 2. Effect of thiosemicarbazide amount on inhibition efficiency 图2. 氨基硫脲加量对缓蚀效率的影响

E c o r r /V

log[I corr /A·cm -2

]

Figure 3. Adsorption isotherm of thiosemicarbazide in steel N80 图3. 氨基硫脲在N80钢的吸附等温曲线

李媛 等

1kc θ

θ

=

? (3) (3)式中C 为缓蚀剂的浓度(mmol/L),θ为缓蚀剂在金属表面的覆盖度,K 为Langmuir 吸附平衡常数。 将(3)式变形后得到式:

1

c

c k

θ

=+

(4) 以C/θ为纵坐标,C 为横坐标作图得直线。从图4可以得出,相关系数为0.9983,说明氨基硫脲在N80钢表面形成单分子层吸附,从而形成保护膜,达到缓蚀的作用[6]。

3.4. 氨基硫脲对腐蚀体系活化能的影响

依据Arrhenius 方程,金属腐蚀速率可表示为:

()

e

a

E RT corr v A ?= (5)

式中:Vcorr 为腐蚀速率(由失重法计算);R 为摩尔气体常量;T 为热力学温度,E a 为表观活化能;A 为指前因子。以lnVcorr 为纵坐标,1/T 为横坐标作图,做出在氨基硫脲加入量不同情况下的不同的图,算得出N80钢在不同氨基硫脲添加量的0.5 mol/L HCl 介质中的Ea 值。

由表2可知,氨基硫脲的添加,增加了碳钢腐蚀反应的表观活化能,当氨基硫脲浓度从10 mg/L 增

c /θ(m m o l ·L -1)

c/(mmol·L -1)

Figure 4. Adsorption isotherm of thiosemicarbazide on steel N80 图4. 氨基硫脲在N80钢的吸附等温曲线

Table 2. Values of E a for N80 steel in 0.5 mol/L HCl solution with different thiosemicarbazide amount 表2. N80钢在不同氨基硫脲添加量的0.5 mol/LHCl 介质中的E a 值

氨基硫脲添加量

Ea(KJ/mol) 空白 19.82 10 mg/L 32.70 20 mg/L 35.19 30 mg/L 37.51 40 mg/L 36.89 50 mg/L

35.89

李媛等

至30 mg/L时,Ea由32.699 kJ/mol增加到了37.51 kJ/mol,这表明随着氨基硫脲的加入增加了反应的活化能,碳钢需要克服更高的能量障碍,从而减小了腐蚀速率,有效地抑制了反应的进行,而浓度从30 mg/L 增至50 mg/L时,活化能降低,碳钢需要克服的能量障碍降低,导致腐蚀速率增大,缓蚀效率降低[7]。

4. 结论

1) 氨基硫脲同样可以作为一种盐酸酸洗缓蚀剂。在0.5 mol/L盐酸溶液体系中,氨基硫脲的缓蚀效率随着温度的升高而降低,随着添加量的增加而先增大后减小。在20℃下氨基硫脲添加量30 mg/L时,其缓蚀效率可达93.3%。

2) 氨基硫脲是一种混合型缓蚀剂。

3) 氨基硫脲在N80钢上符合Langmuir吸附规律。

4) 在一定浓度范围内,适量氨基硫脲的加入使得腐蚀反应的活化能有所升高,从而减小了腐蚀速率,有效地抑制了反应的进行,当氨基硫脲浓度超过30 mg/L时,活化能降低,腐蚀速率增大,不利于抑制腐蚀的发生。

参考文献(References)

[1]杨昌炎, 杨光宏, 刘东, 等(2011) 糠醛对碳钢在盐酸中的缓蚀性能研究. 林产化学与工业, 31, 83-86.

[2]曹楚南(2008) 腐蚀电化学原理. 第三版, 化学工业出版社, 北京, 211-212.

[3]李广超, 路长青, 杨文忠, 等(2001) 硫脲及其衍生物的缓蚀行为研究. 腐蚀科学与防护技术, 13, 169-172.

[4]韩倩倩(2009) 硫脲在0.5mol/L硫酸溶液中对A3钢缓蚀作用的电化学研究. 表面技术, 38, 36-38.

[5]Ashassi-Sorkhabi, H., Majidi, M.R. and Seyyedi, K. (2004) Investigation of inhibition effect of some amino acids

against steel corrosion in HCl solution. Applied Surface Science, 225, 176-185.

[6]申慷尼, 李克华, 姜红娟, 等(2013) 新型硫脲类酸化缓蚀剂的合成与性能评价. 精细石油化工进展, 14, 25-28.

[7]李克华, 吴兰兰(2013) 曼尼希碱缓蚀剂XJ合成及其对N80钢的缓蚀性能. 油田化学, 30, 434-437.

金属缓蚀剂及其研究进展

金属缓蚀剂及其研究进展 课程:腐蚀与材料保护 主讲老师: 陈存华 院系:化学学院 专业:应用化学 学号: 2010214131 姓名:张伟 华中师范大学化学学院 2012年12月

金属缓蚀剂及其研究进展 摘要:金属的缓蚀一直是人们极为关注的重要课题,本文综合近十年来文献简述了缓蚀剂的机理,常见的分类,重点叙述了金属缓蚀剂的前沿发展和技术缓蚀剂的应用,总结了缓蚀剂的研究意义,并对未来缓蚀剂的发展方向做展望。 关键词:金属缓蚀剂分类前沿应用意义 一、前言: 金属腐蚀,就是指金属在外界环境的作用下引起的破坏或变质。它不仅影响了原有金属的光泽,而且带来了很大的经济损失。据报道2000年美国由于金属腐蚀造成的直接经济损失约为1300 多亿美元,在2005年我国由于腐蚀所造成的直接经济损失约占国民经济总产值的2%-4%,而间接损失几乎无法估量。金属腐蚀不但限制了科学技术的发展,破坏了工艺过程和生产节奏,而且污染环境,影响人类的身体健康。所以,怎样防止金属腐蚀已成为世界性的问题。 缓蚀剂(Corrosion Inhibitor)是一种无机物或有机物,加到腐蚀介质中,借助于这种物质在金属和腐蚀介质的界面上的物理和化学作用,可以防止或降低金属的腐蚀速度,减少金属在所在介质中的腐蚀。缓蚀剂在金属防护中的应用,是腐蚀科学与表面工程学科发展的一项重要成就。百余年来,缓蚀剂的开发、应用在化工、石油、电力、机械、金属加工、交通运输、核能及航天等领域中,起着极其重要的作用。近半个世纪以来,缓蚀剂的品种、质量得到了进一步扩大和提高。30年代以前,缓蚀剂的品种只有百余种。到80年代中期,仅酸性介质缓蚀剂的品种就已超过5000 余种。这种发展速度是其他化学助剂、添加剂类无以伦比的。当前,世界各国相关的科技界、企业界对它的开发和应用前景极为关注。 二、缓蚀剂的机理研究简述 金属的缓蚀有多种机理,其中主要的作用有:(1) 屏蔽效应。这主要是由于缓蚀剂的存在阻碍了金属颜料与腐蚀介质的接触,降低了腐蚀速度,同时也可能因为缓蚀剂分子上的基团与腐蚀介质的分子基团形成了螯合作用,减低了腐蚀介质对金属颜料的侵害。(2) 电化学防护:当缓蚀剂、金属颜料与腐蚀介质之间由于电化学反应形成了一层保护膜,这层膜的形成减少了介质对颜料的腐蚀,从而保护了金属颜料。大多数的有效保护作用都是这些效应相互结合得到的。 三、金属缓蚀剂的分类 1.按化学组成分类 (1)无机缓蚀剂—无机化合物。多用于氧作为腐蚀物质的中性水介质体系中,也叫中性缓蚀剂。如铬酸盐,磷酸盐,硝酸盐,硅酸盐等。无机缓蚀剂的特征是能是金属表面氧化,并是金属的腐蚀电位向高电位方向移动,即具有是金属钝化的作用。 (2)有机缓蚀剂—有机化合物。多用于酸性腐蚀介质中,化合物种类很多。有机缓蚀剂对腐蚀电位几乎无影响,主要是以分子状态在金属表面进行吸附,从

碳素钢牌号

一、国内外常用钢钢号对照表 中国国际原苏联美国日本德国英国法国 GB/T 700 ISO 3573 ISO 630 GOST 535 GOST 380 ASTM A283M ASTM A573M ASTM A284M ASTM A709M JIS G3101 JIS G3131 JIS G3106 DIN EN10025 BS 970 Part1 BS EN10025 NF EN10025 Q 195 HR2 CT1KP CT1CP CT1PC Gr.B SS 330 (SS34) SPHC SPHD 040A10 Q 215 A HR1 CT2KP-2 CT2PC-2 CT2CP-2 Gr.C Gr.58 SS 330 (SS34) SPHC Fe 360 C 040A12 Fe 360 C Fe 360 C Q 215 B CT2KP-3 CT2PC-3 CT2CP-3 Gr.C Gr.58 Gr.C SS 330 (SS34) SPHC SPHD 040A12 Q235 A Fe 360 A CT3KP-2 CT3PC-2 CT3CP-2 Gr.D SS 400 (SS41) SM 400A (SM41A) Fe 360 B Fe 360 C 080A15 Fe 360 B Fe 360 C Fe 360 B Fe 360 C Q 235 B Fe 360 D CT3KP-3 CT3PC-3 CT3CP-3 Gr.D SS 400 (SS41) SM 400A (SM41A) Fe 360 B Fe 360 C 080A15 Fe 360 B Fe 360 C Fe 360 B Fe 360 C Q 235 C Fe 360 D CT3KP-4 CT3PC-4 CT3CP-4 Gr.D Gr.65 Gr.D SS 400A (SS41A) SM 400B (SM41B) Fe 360 C 080A15 Fe 360 C Fe 360 C Q 235 D Fe 360 D CT3KP-4 CT3PC-4 CT3CP-4 SS 400A (SS41A) Fe 360D1 Fe 360D2 Fe 360D1 Fe 360D2 Fe 360D1 Fe 360D2

国内外特殊钢产业发展现状与工艺技术比较

国内外特殊钢产业发展现状与工艺技术比较 点击次数:9 发表时间:2013-5-31 13:25:38 所属分类:工作学习 一、现状研究 特殊钢是重大装备制造和国家重点工程建设所需的关键材料,是钢铁材料中的高技术含量产品,其生产和应用代表了一个国家的工业化发展水平。虽然中国已是名副其实的钢铁生产大国,但还不能称为钢铁强国,中国钢铁质量尤其是特殊钢质量水平还落后于日、美、欧等发达国家。 发展现代国防军工、高速铁路和电气化铁路、发展国产轿车制造业、油田开采设备换代、轴承行业装备换代、研制现代化的新型武器装备等,都需要高性能的特钢产品作为关键材料。在中国装备制造业升级换代时,也需要越来越多的特钢支持。从某种程度上来说,特钢行业将会成为中国经济发展的一个基础行业,其发展将直接影响中国其他关键行业的发展。因此高品质特殊钢成为国家“十二五”重点扶植的战略新兴产业中新材料之一。 1.特殊钢产业国际发展现状 全球优特钢年产量约8000万t,占粗钢总量10%左右。世界特殊钢生产主要集中在日、美、德、法、英、意大利、韩国和瑞典,这些国家特殊钢年产量550 0万t左右,约占世界特殊钢产量的70%。工业发达国家的特钢产量一般占15%~ 20%,其中瑞典比例最高,达50%,其次为德国22%,日本19%,意大利17%,韩国13%,中国仅为5%。 特殊钢产业总体水平最高的国家首推日本和德国。日本特钢产量占世界特钢产量的23%,达2300万t。德国特钢产量占据世界特钢产量的20%。其他一些发达国家在某些特殊钢品种上居领先地位,如瑞典是世界上“特殊钢比重”最高的国家,其OVAKO公司的轴承钢、山德维克公司的工模具钢在国际上具有很高的知名度;法国的不锈钢和精密合金、奥地利的工模具钢、美国和英国的高温合金都处于国际一流水平。 2.特殊钢产业国内发展现状

碳钢热处理及性能分析

实验五碳钢热处理及性能分析 清华大学金工教研室 一、实验目的 1.了解热处理的基本操作过程。 2.了解热处理后碳钢的性能特点。 3.了解硬度计的正确使用。 二、实验内容 1.对45钢试件进行正火、淬火(水淬和油淬)、回火(低温和高温回火)等项热处理操作。 2.测定45钢试件退火、正火、淬火和不同温度下回火后的硬度值。 三、实验设备及使用 SRJX—4—9箱式电阻炉3台,洛氏硬度计4台。 硬度的测量 硬度是金属材料力学性能的主要指标之一,常用的测量方法是压入法,包括布氏、洛氏、维氏硬度等。硬度测量设备简单、操作方便,并可近似反映材料的其它力学性能,所以硬度测量成为工业中不可缺少的力学性能试验方法之一。本试验采用最广泛的洛氏硬度测量法。 1.洛氏硬度的测量原理 洛氏硬度的测量原理是用金钢石圆锥体或硬钢球做压头,在一定负荷作用下压入试样表面,以有面的压痕深度来表示材料的硬度,如图5-1所示。 负荷分两次加,先加预负荷P1,后加主负荷P2,总负荷为P=P1+P2。图5-1中: 图5-1 洛氏硬度试验原理图 0-0 压头没接触试样的位置。 1-1 压头施加预负荷P1后压入试样的位置,压痕深夜为h0。此时压头和试样接触良好,做为测量的起点。 2-2 压头施加总负荷P后压入的位置,试样表面的变形包括塑性变形和弹性变形。 3-3 卸除主负荷P2后,试样由于弹性变形的恢复而使压头略提高后的位置,压痕深度为h1。此时由于主负荷作用压头实际压入的深度h=h1-h0(mm),用来

表示被测材料的硬度。 为适应数值越大硬度越高的习惯,引入一常数K ,并规定压入深度每0.002mm 为一个洛氏硬度单位。则洛氏硬度公式为: 对HRA 和HRC ,K=0.2mm;对HRB ,K=0.26mm 。HR 值为一个无名数。 在一种硬度计上可采用不同的压头和总负荷,组成几种不同的洛氏硬度标尺,如HRA ,HRB ,HRC 等,以测定从软到硬的不同金属材料的硬度,其试验 度(HV )相对比较。 2.洛氏硬度计的构造简图见图5-2。 图5-2 洛氏硬度计构造简图 洛氏硬度的测量过程如下: ①试样去除氧化皮并磨平擦净后放在工作台上,顺时针动手轮,使工作台上升至度样与压头接触为止。 ②加预负荷。继续上升工作台,直到表盘上短针由黑点位置转至红点位置。 ③调零点。使表盘上长针对准B —C 刻度线。 ④加主负荷。加荷手柄板至加荷位置,并停留10s 。 ⑤卸主负荷、读数。加荷手柄板回到卸荷位置,读出硬度值。然后下降载物合,取下试样。 四、钢的热处理简介 钢的热处理是通过钢在固态下的加热、保温和冷却,以改变钢的内部组织,0.002 h K HR -=

缓蚀剂研究进展

缓蚀剂的研究、开发与应用经历了不同阶段。最初, 由于冶金工业的发展, 为钢铁材料酸洗除锈和设备的除垢, 研制了酸洗缓蚀剂。随后, 因石油工业油井酸化技术的需要, 研究开发了油井酸化缓蚀剂和油气田缓蚀剂。此后, 随着石油化工、电力、交通运输工业的发展, 海水、工业用水等冷却系统用的中性介质无机缓蚀剂迅速发展。二次世界大战期间和战后, 由于武器军械的防锈, 促进了气相和油溶性缓蚀剂的迅猛发展。19 43 年美国S hel lDev el o pmen t C o . 研制生产了亚硝酸二环己胺, 次年又推出亚硝酸二异丙胺产品, 用于军事工业, 取得很好的防锈效果。5 0 年代初, 苯三唑( BT A ) 对铜及其合金的优异防锈性能, 引起科技界和企业人员广泛重视, 缓蚀剂研究引起人们极大兴趣和关心。随着工业技术和高新技术的迅猛发展, 缓蚀剂得到较快发展。 6 0 年代是腐蚀科学技术发展最活跃的时期, 重要的腐蚀与防护方面的国际学术会议( 世界金属腐蚀会议、欧洲缓蚀剂会议等) 均在6 0 年代初举行首届会议; 一批腐蚀专业刊物( M at er i alPer f or man ce ( 美) , C or r os i o n S ci en ce ( 英) , Br i t i s h C o rr os i o nJ ou rn al ( 英) , !? # ?? % %& ?( 俄) , 材料保护( 中) , C o rr os i o nA bs t r act s ( 美) , ! ?# ?% & ?() ! % ?+ . ! ?# . 66 . ! ?# ! ? # ??# % % # & !! ( 俄) ) 亦均于60 年代创刊发行。这些学术活动及专业刊物的出版发行, 对促进缓蚀剂学科的学术交流和发展起着重要的作用。 Hacker man . N 在第一届欧洲缓蚀剂会议( 1 96 1) 上宣读了关于“软硬酸碱( HS A B ) 原则”的论文, 对缓蚀剂分子设计、筛选和应用有重要意义, 引起参会各国代表的重视和兴趣。日本荒牧国次等人对软硬酸碱理论在缓蚀剂研究中的应用做了系统的工作, 取得了卓有成效的成绩, 推动了缓蚀剂理论发展。 Br oo k M于19 62 年, 收集整理了3 0 ~5 0 年代期间, 海外期刊、专利上发表的约15 0 种缓蚀剂的名称、组成及应用范围( 金属及腐蚀介质) 等资料, 其中大部分为单一组分。 同年, M err i ck . R . D 等人在美国国家腐蚀工程师协会( N A C E ) 主办的学术年会上, 详尽地介绍了美国投放市场的一批商品缓蚀剂( 如: Ro di n e- 93 、Ro di n e- 1 15、Ro di ne- 21 3、Ar mo hi t -25 、Ar moh i b - 28 、DoW el l - A 1 2、DoW el l - A 73 、……) 的牌号、组成、物化性质及在几种酸溶液( H2S O 4、HC l 、HN O 3、H3PO 4、……) 中的缓蚀剂效果。 吉野努于1 96 3 年采用有机化合物与无机化合物复配, 有效地解决了盐酸、硫酸、氨基磺酸等对低碳钢的腐蚀问题。这种复合型缓蚀剂由硫脲- 乌洛托品- C u2+三组分组成。 加藤正义于196 4 年研究了阿拉伯胶、可溶性淀粉、琼脂等高分子多糖类化合物作为碱液中铝用缓蚀剂的问题, 试验结果表明, 大多数试样的缓蚀效率在80 % 以上。但多糖类一旦水解为单糖类时, 则会促进铝的腐蚀。 60 ~70 年代, 印度的Des ai . M . N 教授等先后在A nt i c o r ro si on 及其他专业刊物上, 连续发表数十篇论文, 阐述有关铜、铝及其合金在工业冷却水、盐酸、硫酸、硝酸、碱液及盐类溶液中, 各种有机缓蚀剂的缓蚀性能的研究结果。缓蚀剂的品种涉及广泛, 有硫脲、苯胺、苯甲酸、苯酚、醛类及其各种衍生物。此外,还有天然高分子化合物等。 Wal k er . R指出苯三唑( BT A ) 在一定条件下, 可以作为铜在盐酸、硝酸、硫酸、磷酸及盐类溶液中的缓蚀剂。J . V os t a对氢氟酸用缓蚀剂进行了试验研究, 提出苄基亚砜、二苯基硫脲、二苯胍等 1 0 余种有机化合物可以作为氢氟酸用缓蚀剂的有效成分。中国科学院长春应用化学研究所为引进的大型电厂锅炉氢氟酸酸洗缓蚀剂提

钢材的力学性能

B 钢材的力学性能 含碳2%以下的铁碳合金称为钢。炼钢的主要任务是按所炼钢种的质量要求,调整钢中碳和合金元素含量到规定范围之内,并使P 、S 、H 、O 、N 等杂质的含量降至允许限量之下。炼钢过程实质上是一个氧化过程,炉料中过剩的碳被氧化,燃烧生成CO 气体逸出,其它Si 、P 、Mn 等氧化后进入炉渣中。S 部分进入炼渣中,部分则生成SO 2排出。当钢水成份和温度达到工艺要求后,即可出钢。为了除去钢中过剩的氧及调整化学成份,可以添加脱氧剂和铁合金或合金元素。 1、拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 (1)强度 金属材料在外力作用下,抵抗变形和断 裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 (2)比例极限 对金属施加拉力,金属存在着力与 变形成直线比例的阶段,而这个阶段的最大极限负荷Pp 除以试样的原横截面积即为比例极限,用σP 表示。 (3)弹性极限 金属受外力作用发生了变形,外力 去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe 表示。 (4)抗拉强度 试样拉伸时,在拉断前所承受的最大 负荷除以原横截面积所得的应力,称作抗拉强度,用σb 表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb 越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb 的最小值为400MPa ,超高强度钢是指σb ≥1373MPa 的钢。 (5)屈强比 屈强比即屈服强度与抗拉强度之比值 (σS /σb )。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS /σb ≥0.90)。此外,疲劳寿命与抗拉强度及表面质 量往往有很大关联。 (6)塑性 金属材料在受力破坏前可以经受永久变 形的性能称为塑性。塑性指标通常用伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 2、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk 表示。 目前常用的10mm ×10mm ×55mm 、带2mm 深的V 形缺口夏氏冲击试样,标准上直接采用冲击功AK ,而不是采用αk 值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT (断口面积转化温度)要低于某一温度的技术条件。所谓FATT ,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm 的钢板,可取得3/4小尺寸冲击试样(7.5mm ×10mm ×55mm )或1/2小尺寸冲击试样(5mm ×10mm ×55mm )。但是一定要注意,同规格及同温度下的冲击功值才可相互比较。只有在标准规定的条件下,才可按标准的换算方法,折算成标准冲击试样的冲击功,再相互比较。 3、硬度试验 金属材料抵抗压头(淬硬的钢球或具有1200圆锥或角锥的金刚石压头)压陷表面的能力称为硬度。根据试验方法和适用范围的不同,硬度可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度以及显微硬度、高温硬度等。冶金产品常用的是布氏硬度和洛氏硬度。 4、宝钢企业标准(Q/BQB ) 宝钢企标中的钢号大致可分为3个来源:即从日本JIS 标准、德国DIN 标准移植及自行开发研制的钢号。从日本JIS 标准中移植来的钢号,一般首位常为S (Steel );从DIN 标准移植来的钢号,一般常以ST 开头(Stahl 德文中的“钢”);宝钢自行开发研制的钢号,一般首位常以宝钢的拼音首位B 开头。(作者单位:辽阳县产品质量监督检验所) □谷迎春王立伟 质量论谈 4

碳钢热处理后的显微组织观察与分析

碳钢热处理后的显微组织观察与分析 实验目的实验说明实验内容实验方法指导实验报告要求思考题一:实验目的 (1)观察和研究碳钢经不同形式热处理后显微组织的特点。 (2)了解热处理工艺对碳钢硬度的影响。 二:实验说明 碳钢经热处理后的组织可以是接近平衡状态(如退火、正火)的组织,也可以是不平衡组织(如淬火组织)。因此在研究热处理后的组织时,不但要用铁碳相图,还要用钢的C曲线来分析。图1为共析碳钢的C曲线,图2为45钢连续冷却的CCT曲线。 图1 共析碳钢的c曲线 图2 45钢的CCT曲线 C曲线能说明在不同冷却条件下过冷奥氏体在不同温度范围内发生不同类型的转变过程及能得到哪些组织。 1.碳钢的退火和正火组织 亚共析碳钢(如40、45钢等)一般采用完全退火,经退火后可得接近于平衡状态的组织,其组织形态特征已在实验l中加以分析和观察(图3)过共析碳素工具钢(如T10、T12钢等)则

采用球化退火,T12钢经球化退火后,组织中的二次渗碳体和珠光体中的渗碳体都呈球状(或粒状),图中均匀分散的细小粒状组织就是粒状渗碳体。 2.钢的淬火组织 含碳质量分数相当于亚共析成分的奥氏体淬火后得到马氏体。马氏体组织为板条状或针状,20钢经淬火后将得到板条状马氏体。在光学显微镜下,其形态呈现为一束束相互平行的细条状马氏体群。在一个奥氏体晶粒内可有几束不同取向的马氏体群,每束条与条之间以小角度晶界分开,束与束之间具有较大的位向差,如图4所示。 图3 T12 钢球化退火组织图4 低碳马氏体组织 45钢经正常淬火后将得到细针状马氏体和板条状马氏体的混合组织,如图5所示。由于马氏体针非常细小,故在显微镜下不易分清。 45钢加热至860℃后油淬,得到的组织将是马氏体和部分托氏体(或混有少量的上贝氏体),如图6所示。碳质量分数相当于共析成分的奥氏体等温淬火后得到贝氏体,如T8钢在550~350℃及350℃~ Ms温度范围内等温淬火,过冷奥氏体将分别转变为上贝氏体和下贝氏体。上贝氏体是由成束平行排列的条状铁素体和条间断续分布的渗碳体所组成的片层状组织,当转变量不多时,在光学显微镜下可看到成束的铁素体在奥氏体晶界内伸展,具有羽毛状特性,如图7所示。

绿色缓蚀剂的研究现状及举例

绿色缓蚀剂的研究现状及举例 总结国内外缓蚀剂的发展不难发现,虽然各种介质中缓蚀剂的研究成果层出不穷,但其在实际运用中却不够完善和成熟。尤其是绿色环保型缓蚀剂研究仍处于实验探索阶段,在该领域仍需要在提高缓蚀作用效果、机理研究和低成本低污染等方面做得更深入的研究。 我国近10年对各类缓蚀剂的研究和应用发展很快,部分产品性能达到国际领先水平, 但总体水平与国外还有很大差距。研究人员认为今后应着重从以下几个方面探索绿色缓蚀剂的发展: 1从天然植物、海产植物中,提取、分离、加工新型绿色缓蚀剂有效成分的方法。 2利用医药、食品、工农业副产品提取有效缓蚀剂组成,并进行复配或改性处理,开发新型绿色缓蚀剂。 3运用量子化学理论、灰色关联分析、人工神经网络方法等科学技术合成高效低毒多功能新工艺型绿色缓蚀剂和低聚体新型绿色缓蚀剂。 4对钼酸盐、钨酸盐、稀土元素金属等无机缓蚀剂深入进行研究,研制出新型高效绿色缓蚀剂。 5利用先进的分析测试仪器和新的研究方法,研究缓蚀剂的作用机理及协同作用机理,指导新型绿色缓蚀剂的开发。 以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓材料的化学物质或复合物. (1)根据产品化学成分,可分为无机缓蚀剂、有机缓蚀剂、聚合物类缓蚀剂。 ①无机缓蚀剂无机缓蚀剂主要包括铬酸盐、亚硝酸盐、硅酸盐、钼酸盐、钨酸盐、聚磷酸盐、锌盐等。 ②有机缓蚀剂有机缓蚀剂主要包括膦酸(盐)、膦羧酸、琉基苯并噻唑、苯并三唑、磺化木质素等一些含氮氧化合物的杂环化合物。 ③聚合物类缓蚀剂聚合物类缓蚀剂只要包括聚乙烯类,POCA,聚天冬氨酸等一些低聚物的高分子化学物。 (2)根据缓蚀剂对电化学腐蚀的控制部位分类,分为阳极型缓蚀剂,阴极型缓蚀剂和混合型缓蚀剂。 ①阳极型缓蚀剂阳极型缓蚀剂多为无机强氧化剂,如铬酸盐、钼酸盐、钨酸盐、钒酸盐、亚硝酸盐、硼酸盐等。它们的作用是在金属表面阳极区与金属离子作用,生成氧化物或氢氧化物氧化膜覆盖在阳极上形成保护膜。这样就抑制了金属向水中溶解。阳极反应被控制,阳极被钝化。硅酸盐也可归到此类,它也是通过抑制腐蚀反应的阳极过程来达到缓蚀目的的。阳极型缓蚀剂要求有较高的浓度,以使全部阳极都被钝化,一旦剂量不足,将在未被钝化的

缓蚀剂的缓蚀效率及其评价方法(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 缓蚀剂的缓蚀效率及其评价方 法(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

缓蚀剂的缓蚀效率及其评价方法(最新版) 缓蚀剂的评价采用的是金属腐蚀速率的测试方法,即测定金属在添加一定缓蚀剂的腐蚀介质中的腐蚀速率,并与此金属在不加缓蚀剂的腐蚀介质中的腐蚀速率进行对比,从而确定缓蚀效率和最佳使用条件。 (1)缓蚀剂的缓蚀效率 缓蚀效率是表征缓蚀剂性能的重要参数,定义为: 式中v0 ——未加缓蚀剂时金属的腐蚀速率,单位为g/(m2 ·h)或mm/a等; v——加缓蚀剂后金属的腐蚀速率,单位为g/(m2 ·h)或mm/a等; η——缓蚀剂的缓蚀效率。 (2)缓蚀剂缓蚀效果的评价方法

①实验室测试方法: a.失重法失重法是最常见的、最简单的测定缓蚀剂缓蚀效果的方法。它通过实验室模拟腐蚀介质环境和现场试验来进行。分别测取金属在未加缓蚀剂和加入缓蚀剂后的腐蚀介质中的腐蚀失重,从而确定其腐蚀速率,再比较缓蚀剂的缓蚀效果。缓蚀剂配方的筛选、浓度、用量的选用、失效期的测定及复配物的选择也可采用失重法。 b.电化学法电化学方法采用电化学极化手段,利用电化学动力学理论和测试手段,通过对缓蚀剂加入前后在腐蚀介质中金属表面的极化特征的研究,以及利用T如l曲线外推法和极化电阻法对金属腐蚀速率的测定,来评价金属在缓蚀剂中缓蚀性能的优劣。 c.光谱法和表面谱法近年来,采用光谱法和表面谱法对添加缓蚀剂后金属表面膜结构的作用的研究,也已成为评价缓蚀剂的手段和技术。例如利用吸收光谱、拉曼散射光膜、X线光电子能谱和俄歇电子能谱等技术。 ②现场评价方法在现场腐蚀敏感部位进行“挂片”试验检测,定期取出样片检测其失重和局部腐蚀情况;定期分析腐蚀介质中的

112 碳钢的力学性能

【课题】1、1、2 了解碳钢的力学性能(授课人:王竞男) 【授课类型】理论课 【教学目标】 【知识与技能目标】 1、了解碳钢常见的力学性能:强度、塑性、硬度、韧性与疲劳强度的含义及其衡量指标; 2、了解拉伸试验的原理、过程,常见的硬度测试方法及其指标; 3、进一步理解常见类型碳钢及其力学性能特点。 【过程与方法目标】 1、通过学习碳钢常见的力学性能及其衡量指标,理解力学性能对碳钢应用的重要影响; 2、通过学习拉伸试验的原理、观瞧拉伸试验过程的视频,了解碳钢强度、塑性衡量指标的来源 与含义; 3、了解硬度测试方法与类型,能根据材料类型初步选择合适的硬度。 【情感态度与价值观目标】 1、通过对材料的拉伸试验、硬度测试方法的学习,形成科学严谨的学习态度; 2、通过对碳钢的力学性能与其衡量指标的学习,懂得方法的选择以合适、恰当为最好。 【教学重点】1、碳钢常见的力学性能:强度、塑性、硬度、韧性与疲劳强度的含义及其衡量指标; 2、拉伸试验过程与硬度测试方法。 3、常见类型碳钢及其力学性能特点。 【教学难点】常见类型碳钢及其力学性能特点。 【教学方法】 学情分析:学生已经对碳钢及其成分有了一定的认识,但对碳钢力学性能及其衡量指标缺乏系统的认知,且由于学生在力学相关的物理学科知识方面基础薄弱,所以在学习力学性能部分时,应联系生活、生产中生动形象的实际例子帮助学生理解。 教法:读书指导法、问题引导法、小组讨论法 学法:以自学法为主,配合讨论法 【教学用具】多媒体设备及多媒体课件 【教学时间】2课时(90分钟) 【教学过程】 一、新课导入(7分) 师:同学们,本节课我们将进一步深入学习与了解碳钢的力学性能。假如您已经步入工作岗位,现在需要为一批订单选购适于数控车削的原材料,那么您会从哪些方面来挑选?请简要说明原因。下面给大家半分钟思考时间,然后分别请几位同学为大家举例。 生:材料的软硬程度,这将决定其就是否适宜车削加工…… 师:碳钢之所以获得广泛应用,就是由于它具有良好的力学性能。碳钢的力学性能不但就是设计零件、选用材料的重要依据,而且也就是按验收标准来鉴定材料的依据以及对产品工艺进行质量控制的重要参数。 下面,就让我们进入到今天这节课的学习——碳钢的力学性能。 二、明确目标 结合PPT展示,明确本节课的学习目标与学习重、难点,让学生将任务了然于胸。 三、讲授新课 1、强度与拉伸试验

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

缓蚀剂及其发展现状

缓蚀剂及其发展现状 在很久以前,人们就发现往腐蚀介质中添加少到不至于改变介质性质的某化学物质能够明显抑制腐蚀的发生。这就是缓蚀剂(英文:Corrosioninhibitor)。按照其应用的环境,缓蚀剂可分为酸性介质缓蚀剂、中性介质缓蚀剂。本论文主要研究中性盐水介质中的缓蚀剂,故仅对中性介质用缓蚀剂的发展作以回顾和展望。中性介质中使用的缓蚀剂又分为无机缓蚀剂、有机缓蚀剂、聚合物缓蚀剂等。 1.3.1无机缓蚀剂 较早应用的无机缓蚀剂有铬酸盐、重铬酸盐、硅酸盐、亚硝酸盐、钼酸盐、锌盐、磷酸盐。这些无机缓蚀剂在应用中被证明是有效的,而今有的仍被广泛的应用,后来又发展应用了聚磷酸盐。但是,无机缓蚀剂的应用有很多缺点。例如,无机缓蚀剂的用量一般较大,这就增加了应用的成本。并且,多数无机缓蚀剂对环境是不友好的,其应用从而受到制约。目前,无机缓蚀剂的使用多数是与有机缓蚀剂复配。这样,不但大大减少了其用量,而且由于两者之间的协同效应也提高了其缓蚀效果。 1.3.2有机缓蚀剂 有机缓蚀剂是含N 、P 、S 等杂原子的有机化合物。根据所含杂原子的不同有机缓蚀剂又可分为以下几类。 (1)含氮类有机缓蚀剂 这类缓蚀剂应用最早,最广。盐水体系中常用的是有机胺类吸附型缓蚀剂,该类缓蚀剂是通过氮原子吸附到钢铁表面而疏水基团伸展于水相形成一种致密的物理膜,阻挡介质与钢铁表面的接触,从而降低腐蚀速度。正是由于起作用的是物理膜,其应用有很大的局限性。如高温会发生物理膜脱附而失去缓蚀效果,它也阻挡不了氯离子的穿透。这类缓蚀剂的代表是季 铵盐、胺类、酰胺类。包括直链及环状化合物。 (2)含硫类缓蚀剂 作为盐水体系用的含硫类缓蚀剂的发展是近十几年的事情。这类缓蚀剂的代表是硫氰酸盐及硫脲类化合物。据资料介绍,该类缓蚀剂主要应用在高温环境中,而在低温(低于120"C)盐水中,其缓蚀效果不超过50%。该类缓蚀剂的作用机理尚不清楚。一般认为,硫原子在一定的温度下与金属发生化学反应(是腐蚀过程)。形成一层致密的保护膜。这层保护膜较致密,在高温条件下稳定性很好,所以,在高温下才能显示其优良的缓蚀效果。但是,硫的化合物对环境的影响也是不用忽视的问题。例如,含硫的化合物排放到土壤中,能使土壤酸化结块影响植物的生长。

螺栓强度等级对照表

钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。例如,性能等级4.6级的螺栓,其含义是: 1、螺栓材质公称抗拉强度达400MPa级; 2、螺栓材质的屈强比值为0.6; 3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到: 1、螺栓材质公称抗拉强度达1000MPa级; 2、螺栓材质的屈强比值为0.9; 3、螺栓材质的公称屈服强度达1000×0.9=900MPa级 螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。强度等级所谓8.8级和10.9级是指螺栓的抗剪切应力等级为8.8GPa和10.9Gpa 8.8公称抗拉强度800N/MM2 公称屈服强度640N/MM2 一般的螺栓是用"X.Y"表示强度的, X*100=此螺栓的抗拉强度, X*100*(Y/10)=此螺栓的屈服强度 (因为按标识规定:屈服强度/抗拉强度=Y/10)

=============== 如4.8级 则此螺栓的 抗拉强度为:400MPa 屈服强度为:400*8/10=320MPa ================= 另:不锈钢螺栓通常标为A4-70,A2-70的样子,意义另有解释度量 当今世界上长度计量单位主要有两种,一种为公制,计量单位为米(m)、厘米(cm)、毫米(mm)等,在欧州、我国及日本等东南亚地区使用较多,另一种为英制,计量单位主要为英寸(inch),相当于我国旧制的市寸,在美国、英国等欧美国家使用较多。 1、公制计量:(10进制) 1m =100 cm=1000 mm 2、英制计量:(8进制) 1英寸=8英分 1英寸=25.4 mm 3/8¢¢×25.4 =9.52 3、1/4¢¢以下的产品用番号来表示其称呼径,如: 4#, 5#, 6#, 7#, 8#, 10#, 12# 螺纹 一、螺纹是一种在固体外表面或内表面的截面上,有均匀螺旋线凸起的形状。根据其结构特点和用途可分为三大类:

1、我国线材发展现状及工艺技术探索(文献综述)

我国线材发展现状及工艺技术探索 前言 近几年我国线材无论是生产能力还是消费水平均得到了快速发展,2007年我国线材实际产量已达7921万t,2008年尽管受到国际金融危机的影响,线材实际产量仍然增长到8024万t。目前我国已成为世界上最大的线材生产国,年产量己超过世界线材生产总量的三分之一,在线材生产规模不断扩大的同时,我国在线材生产技术进步、产品研发方面也取得了可喜成效。但是,在看到我国线材产业飞速发展的同时,也要清醒的看到我国线材产业目前仍然存在不少的问题;尤其是应该看到生产规模不断扩大与现有产品结构的不相适应,已成为困扰我国线材产业发展的主要问题,这也是造成我国线材产业处于生产能力相对过剩而高附加值产品实物质量仍落后于国外发达国家的根本原因。 总之,我国线材产业离科学发展、可持续发展的要求,离国民经济各用钢行业的需要,离发达产钢国的先进水平,还有相当大的距离。 1 线材轧机在国内外的发展动态 按钢种和用途,通常将线材分为两大类:即一般建筑和结构用线材<普通线材)及特殊用途专用线材。在我国线材消费中,一般建筑和结构用线材为最大的消费品种,其消费量占线材总消费量的70%左右,专用线材<指中高碳钢线材<硬线)、预应力钢丝及钢绞线专用线材、钢帘线用线材、易切削钢线材、冷镦钢线材、焊接材料用线材、弹簧钢线材、轴承钢线材、不锈钢线材等)线材消费量占线材总消费量的30%左右。 1.1 国内线材生产消费现状 线材是我国第二大钢材生产品种(第一大钢材生产品种为钢筋,年总产量已超过10000万t>,在国内钢铁产量中所占的比重一直较高,长期保持在16%--一19%。近几年国内线材产量基本与国内粗钢产量增长速度差不多,保持在20%的水平上。2007年我国线材生产量7921万t,进口6l万t,出口624万t,扣除库存变化因素,表观消费量约为7476万t,占钢材实际消费总量的18.02%。由于受全球金融危机的影响,2008年国内线材生产情况与2007年基本持平,全年总产量仅略增1.2%。从国内线材生产消费平衡看,目前国内线材产量已大于消费需要,从线材进出口情况来看,长期以来,线材一直是我国主要钢材出口品种,也是我国一直保持净出口状态的钢材品种,特别是近几年出口增长特别迅速。另外,普通线材属于低附加值产品,销售半径小(一般小于800km>,市场竞争激烈。线材生产应充分考虑区域承受能力,今后线材品种发展的重点是生产高强度硬线品种,提高线材的使用效率。 1.2 我国线材制品行业现状

缓蚀剂的作用原理、研究现状及发展方向_7942.docx

缓蚀剂的作用原理、研究现状及发展方向 1缓蚀剂概述 在美国材料与实验协会《关于腐蚀和腐蚀试验术语的标准定义》中,缓蚀剂 是“一种以适当的浓度和形式存在于环境(介质)中时,可以防止或减缓腐蚀的 化学物质或几种化学物质的混合物” 。 缓浊剂是具有抑制金属锈蚀性质的一类无机物质和有机物质的总称。某些有 机物质,被有效地吸附在金属的表面上,从而明显地影响表面的电化学行为。其作用机理有抑制表面的阳极反应和抑制阴极反应两种,结果都是使腐蚀电流降 低。 缓蚀剂的作用不仅如此,它作为金属的溶解抑制剂还有许多实用价值。如用 在化学研磨、电解研磨、电镀和电解冶炼中的阳极解、刻蚀等。总之,在同时发 生金属溶解的工业方面,或县为了抑制过度溶解或是为了防止局部浸蚀使之均匀 溶解。缓蚀剂都起着重要的作用。另外,电镀中的整平剂,从其本来的定义备不 属于缓蚀剂的畴;但是,其作用机理( 吸附 ) 和缓蚀剂的机理类似。具有整平作 用的物质,同时有效地作为该金属的缓蚀剂的情况也是常的。下图给出了有无缓 蚀剂的不同效果:

图 1 缓蚀剂的效果 2不同类型的缓蚀剂及其作用原理 2.1阳极型缓蚀剂及其作用原理 阳极型缓蚀剂也称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀速度减缓。如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、硅酸盐、苯甲酸钠等,它们能 增加阳极极化,从而使腐蚀电位正移。通常是缓蚀剂的阴离子移向金属阳极使金属钝化。该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快腐蚀。 作用过程:(a)具有强氧化作用的缓蚀剂,使金属钝化(亚硝酸钠,高铬酸等);(b)具有阴极去极化性的钝化剂,在阴极被还原,加大阴极电流,使体系的氧化还原电位向正方移动,超过钝化电位,而使腐蚀电流达到很低的值。(亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷酸盐、钼酸盐、钨酸盐等在 酸性溶液中也属于此类。) 图 2 阳极型缓蚀剂作用原理 2.2阴极型缓蚀剂及其作用原理 阴极型缓蚀剂也称阴极型抑制,其主要包括:酸式碳酸钙、聚磷酸盐、硫酸

建筑用钢的生产现状

建筑用钢的生产现状 2005年,中国钢产量已高达3.49亿t、钢材产量达3.71亿t,其中建筑用钢材占全国钢材消费总量的55%以上[1]。在目前中国经济发展阶段中,国家的基础设施建设(包括交通建设、城镇化建设、住房建设和农村基础设施建设等)仍会蓬勃地开展,建筑用钢材在短期内不会有较大变化。分析和研究建筑用钢材的需求现状和发展趋势,以及对钢铁工业发展的重大影响,科学评价钢材消耗结构状况,无疑是一项十分有意义的工作。 我们先认识一下建筑钢材建筑钢材通常可分为钢结构用钢和钢筋混凝土结构用钢筋。钢结构用钢主要有普通碳素结构钢和低合金结构钢。建筑钢材品种有型钢、铜管和钢筋。型钢中有角钢、工字钢和槽钢。钢筋混凝土结构用钢筋,按加工方法可分为:热轧钢筋、热处理钢筋、冷拉钢筋、冷拔低碳钢丝和钢绞线管;按表面形状可分为光面钢筋和螺纹;按钢材品种可分为低碳钢、中碳钢、高碳钢和合金钢等。我国钢筋强度可分为I、Ⅱ、Ⅲ、Ⅳ、V 五类级别。 1 建筑用钢材的现状分析 建筑用钢包括线材、棒材(主要指钢筋)、板材、型钢、钢管和涂镀层板等品种。当前,国内的基础设施建设仍是以钢筋、混凝土为主要材料,多年来线材和钢筋也一直是建筑用钢材中消费量最大的品种。 1.1 房地产业在建筑业的发展中成为用钢材大户 建筑业是国民经济建设中的重要产业之一,国内城镇化建设和住房建设的加快势必会推动建筑业的发展,提高人建房约30亿m2。随着国民经济和第三产业的发展、人民生活水平的提高和国家安居工程的实施,预计中国在今后几年内的城镇住宅建设每年可达1.6亿m2以上,农村及其他个人住宅建设每年在6亿m2以上,宾馆、饭店、写字楼、商店及其它公用建设等每年约2亿m2左右,工业厂房及其它建筑约6亿m2左右。建筑业的迅速发展促使房地产业成为耗用钢材的大户。 1.2 钢材用量在钢结构建筑的发展中大幅度提高 随着科学技术的进步和人们生活水平的提高,国内钢结构建筑得到了快速的发展,特别是大型场馆和工业建筑采用钢结构业已成为发展趋势。大跨度钢结构研发的成功,多种类型的H型钢产能的扩张,为钢结构的应用提供了物质基础;建筑设计在理论和实践的结合上不断取得新成就,也为钢结构的广泛应用起到了积极的促进作用。 1.3 钢材应用领域在优质钢材的研发中迅速拓展 大口径和高拉力的高质量钢丝绳为大跨度斜拉索桥的建设提供了可靠的技术保证;耐候钢、耐高温钢材、不锈钢品种的开发和生产量的增加,为国内高建筑用钢材的消费量。据统计,中国每年的房屋施工面积在15亿m2以上,农村及其他个层建筑、铁路和交通建设用钢增添光彩;合金钢和低合金钢品种的开发,也进一步为钢铁产品拓宽了应用领域。 2 建筑用钢材存在的主要技术问题 多年来,中国一直沿用质量较低的II级钢筋。在生产制造、建筑设计和建筑施工单位也在使用一些老的标准。为加速钢铁产品的升级换代,促进建筑领域的科技进步,建设部于2005年提出了推动Ⅲ级钢筋的使用要求。Ⅲ级钢筋因加入了钒、铌、钛等合金元素而具有强度高、韧性好和焊接性能优良等特点。

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

相关文档
相关文档 最新文档