文档库 最新最全的文档下载
当前位置:文档库 › 原子物理第七章

原子物理第七章

原子物理第七章
原子物理第七章

第七章原子的壳层结构

一、学习要点

1.原子的电子壳层:

主壳层:K LMNO P Q

次壳层:s p d f g h i

电子填充壳层的原则:包里不相容原理、能量最小原理

3.原子基态的电子组态(Z=1----20)、莫色勒定律

二、基本练习

2.选择题

(1)元素周期表中:

A.同周期各元素的性质和同族元素的性质基本相同;

B.同周期各元素的性质不同,同族各元素的性质基本相同

C.同周期各元素的性质基本相同,同族各元素的性质不同

D.同周期的各元素和同族的各元素性质都不同

(2)当主量子数n=1,2,3,4,5,6时,用字母表示壳层依次为:

A.K LMONP;B.KLMNOP;

C.KLMOPN;

D.KMLNOP;

(3)下列哪一个元素其最外层电子具有最小电离能?

A.氟(Z=9);B.氖(Z=10);C.钠(Z=11);D.镁(Z=12)(4)在原子壳层结构中,当l=0,1,2,3,…时,如果用符号表示各次壳层,依次用下列字母表示:

A.s,p,d,g,f,h....B.s,p,d,f,h,g...

C.s,p,d,f,g,h...D.s,p,d,h,f,g...

(5)电子填充壳层时,下列说法不正确的是:

A.一个被填充得支壳层,所有的角动量为零;

B.一个支壳层被填满半数时,总轨道角动量为零;

C.必须是填满一个支壳层以后再开始填充另一个新支壳层;

D.一个壳层中按泡利原理容纳的电子数为2n2

(6)实际周期表对K.L.M.N.O.P主壳层所能填充的最大电子数依次为:

A.2,8,18,32,50,72;B.2,8,18,18,32,50;

C.2,8,8,18,32,50;D.2,8,8,18,18,32.

(7)按泡利原理,主量子数n确定后可有多少个状态?

A.n2; B.2(2l+1); C.2j+1; D.2n2

(8)某个中性原子的电子组态是1s22s22p63s3p,此原子是:

A.处于激发态的碱金属原子;B.处于基态的碱金属原子;

C.处于基态的碱土金属原子;D.处于激发态的碱土金属原子;

(11)有一原子,n=1,2,3的壳层填满,4s支壳层也填满,4p支壳层填了一半,则该元素是:

A.Br(Z=35); B.Rr(Z=36); C.V(Z=23); D.As(Z=33)

(12)由电子壳层理论可知,不论有多少电子,只要它们都处在满壳层和满支壳层上,则其原子态就都是:

A.3S0;B.1P1;C.2P1/2;D.1S0.

(13)氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:

A.1P1;B.3S1;C.1S0;D.3P0.

2.简答题

(1)写出铍原子基态、第一激发态电子组态及相应光谱项.

(2)根据包里原理和洪特定则,分别写出硼原子和一次电离的氖原子基态光谱项. (3)解释下列概念:能量最小原理、莫塞莱定律.

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角-4 约为10rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) (3) (2) 作运算:(2)×sinθ±(3)×cosθ,得 (4) (5) 再将(4)、(5)二式与(1)式联立,消去V’与V, 化简上式,得 (6) 若记,可将(6)式改写为 (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 由此可得 θ≈10弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依和金的原子序数Z 2=79 -4 答:散射角为90o所对所对应的瞄准距离为. (2)要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n,问题不知道nA,但可从密度与原子量关系找出注意推导出n值.,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au=79,A Au=197,ρ Au=×10kg/m

原子物理第5-8章 复习用 综合练习 无答案

第五章多电子原子 一、学习要点 1.氦原子和碱土金属原子: (1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级 2.重点掌握L-S耦合,了解j-j耦合 3.洪特定则、朗德间隔定则、泡利不相容原理; 4.两个价电子原子的电偶极辐射跃迁选择定则; 5.复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合、普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等) 6.氦氖激光器 二、基本练习 1.褚书P168-169习题1. 2. 3. 4. 5. 6. 7.8 2.选择题 (1)关于氦原子光谱下列说法错误的是: A.第一激发态不能自发的跃迁到基态; B.1s2p 3P2,1,0能级是正常顺序; C.基态与第一激发态能量相差很大; D.三重态与单态之间没有跃迁 (2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为: A.0; B.2; C.3; D.1 (3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为: A.3; B.4; C.6; D.5 (4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是: A.单能级各线系皆为单线,三重能级各线皆为三线; B.单重能级各线系皆为双线,三重能级各线系皆为三线; C.单重能级各线系皆为单线,三重能级各线系皆为双线; D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线. (5)下列原子状态中哪一个是氦原子的基态? A.1P1; B.3P1 ; C.3S1; D.1S0; (6)氦原子的电子组态为n1pn2s,则可能的原子态: A.由于n不确定不能给出确定的J值,不能决定原子态; B.为n1pn2s 3D2,1,0和n1pn2s 1D1; C.由于违背泡利原理只存单态不存在三重态; D.为n1pn2s 3P2,1,0和n1pn2s 1P1. (7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线? A.6条;B.3条;C.2条;D.1条. (8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是: A.因为自旋为1/2,l1=l2=0 故J=1/2 ; B.泡利不相容原理限制了1s1s3S1的存在; C..因为三重态能量最低的是1s2s3S1; D.因为1s1s3S1和1s2s3S1是简并态 (9)泡利不相容原理说: A.自旋为整数的粒子不能处于同一量子态中; B.自旋为整数的粒子能处于同一量子态中; C.自旋为半整数的粒子能处于同一量子态中; D.自旋为半整数的粒子不能处于同一量子态中. (10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:

原子物理学第二章习题答案

第二章 原子的能级和辐射 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为1E E E i -=∞,把氢原子的能级公式2 /n Rhc E n -=代入,得: Rhc hc R E H i =∞-=)1 1 1(2=电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于电子伏特,3E 大于电子伏特。可见,具有电子伏特能量的电子不足以把基

态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。跃迁时可能发出的光谱线的波长为: ο ο ο λλλλλλA R R A R R A R R H H H H H H 102598 )3 111( 1121543)2 111( 1 656536/5)3 121( 1 32 23 22 22 1221 ==-===-===-= 试估算一次电离的氦离子+ e H 、二次电离的锂离子+ i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径: 3 1,2132,1,10529177.0443,2,1,44102 22 01212 2220= ======?==? ?===++++++ ++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e 径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππε b) 氢和类氢离子的能量公式: ??=?=-=3,2,1,)4(222 12 220242n n Z E h n Z me E πεπ 其中基态能量。电子伏特,是氢原子的6.13)4(22 204 21-≈-=h me E πεπ 电离能之比: 9 00,4002 222== --==--+ ++ ++ H Li H Li H He H He Z Z E E Z Z E E c) 第一激发能之比:

原子物理学 第一章习题参考答案

第一章习题参考答案 1.1速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏 离角约为10-4 rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: 222212121v m V M V M e +'=αα (1) ?θααcos cos v m V M V M e +'= (2) ?θαsin sin 0v m V M e -'= (3) 作运算:(2)×sinθ±(3)×cosθ,得 )sin(sin ?θθ α+=V M v m e (4) )sin(sin ?θ?αα+='V M V M (5) 再将(4)、(5)二式与(1)式联立,消去V’与V , )(sin sin )(sin sin 222 2 222 2 ?θθ?θ?ααα+++=V m M V M V M e 化简上式,得 θ??θα 222sin sin )(sin e m M + =+ (6) 若记 αμM m e = ,可将(6)式改写为 θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )](2sin 2sin [)]sin(2[sin ?θ?μ?θμθ? θ ++-=+-d d 令0=?θd d ,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 θ?μ?μ2202)(90si n si n si n +=-

原子物理学第八章习题答案

原子物理学第八章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章 X 射线 8.1 某X 光机的高压为10万伏,问发射光子的最大能量多大?算出发射X 光的最短波长。 解:电子的全部能量转换为光子的能量时,X 光子的波长最短。而光子的最大能量是:5max 10==Ve ε电子伏特 而 min max λεc h = 所以οελA c h 124.01060.1101031063.61958 34max min =?????==-- 8.2 利用普通光学反射光栅可以测定X 光波长。当掠射角为θ而出现n 级极大值出射光线偏离入射光线为αθ+2,α是偏离θ级极大出射线的角度。试证:出现n 级极大的条件是 λααθn d =+2 sin 22sin 2 d 为光栅常数(即两刻纹中心之间的距离)。当θ和α都很小时公式简化为λαθαn d =+)2(2 。 解:相干光出现极大的条件是两光束光的光程差等于λn 。而光程差为:2 sin 22sin 2)cos(cos ααθαθθ+=+-=?d d d L 根据出现极大值的条件λn L =?,应有 λααθn d =+2 sin 22sin 2 当θ和α都很小时,有22sin ;22222sin αααθαθαθ≈+=+≈+ 由此,上式化为:;)2(λααθn d =+ 即 λαθαn d =+)2(2

8.3 一束X 光射向每毫米刻有100条纹的反射光栅,其掠射角为20'。已知第一级极大出现在离0级极大出现射线的夹角也是20'。算出入射X 光的波长。 解:根据上题导出公式: λααθn d =+2 sin 22sin 2 由于'20,'20==αθ,二者皆很小,故可用简化公式: λαθαn d =+)2(2 由此,得:οαθαλA n d 05.5)2 (;=+= 8.4 已知Cu 的αK 线波长是1.542ο A ,以此X 射线与NaCl 晶体自然而成'5015ο角入射而得到第一级极大。试求NaCl 晶体常数d 。 解:已知入射光的波长ολA 542.1=,当掠射角'5015οθ=时,出现一级极大(n=1)。 οθλ θ λA d d n 825.2sin 2sin 2=== 8.5 铝(Al )被高速电子束轰击而产生的连续X 光谱的短波限为5ο A 。问这时是否也能观察到其标志谱K 系线? 解:短波X 光子能量等于入射电子的全部动能。因此 31048.2?≈=λεc h 电电子伏特 要使铝产生标志谱K 系,则必须使铝的1S 电子吸收足够的能量被电离而产生空位,因此轰击电子的能量必须大于或等于K 吸收限能量。吸收限能量可近似的表示为:

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4 rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: 222212121v m V M V M e +'=αα (1) ?θααcos cos v m V M V M e +'= (2) ?θαsin sin 0v m V M e -'= (3) 作运算:(2)×sinθ±(3)×cosθ,得 )sin(sin ?θθ α+=V M v m e (4) )sin(sin ?θ?αα+='V M V M (5) 再将(4)、(5)二式与(1)式联立,消去V’与V , )(sin sin )(sin sin 222 2 2 22 2 ?θθ?θ?ααα+++=V m M V M V M e 化简上式,得 θ??θα 222sin sin )(sin e m M + =+ (6) 若记 αμM m e = ,可将(6)式改写为 θ?μ?θμ222sin sin )(sin +=+ (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )](2sin 2sin [)]sin(2[sin ?θ?μ?θμθ?θ ++-=+-d d 令0=?θd d ,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 θ?μ?μ2202)(90si n si n si n +=- 由此可得 183641 ?= = =αμθM m e sin θ≈10-4 弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依 2cot 2θa b =和E e Z Z a 02 214πε≡金的原子序数Z 2=79 ) (10752.2245cot 00.544 .1792cot 42211502m E e Z b o -?=?=?=θπε 答:散射角为90o所对所对应的瞄准距离为. (2) 要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n ,问题不知道nA ,但可从密度与原子量关系找出注意推导出n 值. A N A N A V V V N V N n ρ ρ==?== )(1mol A A 总分子数,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au =79,A Au =197,ρAu =×104 kg/m 3

原子物理学杨福家第一章答案

第一章习题1、2解 1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: 2 2 2 2 1 2 1 2 1 v m V M V M e + ' = α α(1) ? θ α α cos cos v m V M V M e + ' =(2) ? θ α sin sin 0v m V M e - ' =(3) 作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e(4) ) sin( sin ? θ ? α α+ ='V M V M(5)

再将(4)、(5)二式与(1)式联立,消去V’与v , 化简上式,得 (6) θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令 θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0 (1) 若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 则 θ=90o-2φ (9) 将(9)式代入(7)式,有 θ ?μ?μ2202)(90si n si n si n +=-

由此可得 θ≈10-4弧度(极大) 此题得证。 1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几? 要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值. 其他值 解:(1)依 金的原子序数 Z2=79 答:散射角为90o所对所对应的瞄准距离为22.8fm. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出) 从书后物质密度表和原子量表中查出 Z Au=79,A Au=197, ρAu=1.888×104kg/m3

原子物理学杨福家第六章习题答案

练习六习题1-2解 6-1 某一X 射线管发出的连续X 光谱的最短波长为0.0124nm ,试 问它的工作电压是多少?解:依据公式 答:它的工作电压是100kV . 6-2莫塞莱的实验是历史上首次精确测量原子序数的方法.如测得某元素的K α )(10Z ;将值代入上式, 10 246.0101010 )??= = =1780 Z =43 即该元素为43号元素锝(Te). 第六章习题3,4 6-3 钕原子(Z=60)的L 吸收限为0.19nm ,试问从钕原子中电离一个K 电子需作多少功? 6-4 证明:对大多数元素K α1射线的强度为K α2射线的两倍. 第六章习题5,6参考答案 6-5 已知铅的K 吸收限为0.014 1nm,K 线系各谱线的波长分别为:0.016 7nm(K α);0.0146nm(K β);0.0142nm(K γ),现请: (1) 根据这些数据绘出有关铅的X 射线能级简图; (2) 计算激发L 线系所需的最小能量与L α线的波长. 分析要点:弄清K 吸收限的含义. K 吸收限指在K 层产生一个空穴需要能量. 即K 层电子的结合能或电离能.

解: (1)由已知的条件可画出X 射线能级简图. K K α L α K β K γ (2) 激发L 线系所需的能量: K 在L 壳层产生一个空穴所需的能量 E LK = φK -φL φL =φK - E LK =87.94 keV -84.93keV=3.01 keV φ为结合能. 或

即有 m 即L α线的波长为0.116nm. 6-6 一束波长为0.54 nm 的单色光入射到一组晶面上,在与入射束偏离为120?的方向上产生一级衍射极大,试问该晶面的间距为多大? ?的方向上产生一级衍射极大sin θ n =1 解得 d =0.312 nm 第六章习题8参考答案 6-7 在康普顿散射中,若入射光子的能量等于电子的静止能,试求散射光子的最小能量及电子的最大动量. 6-8 在康普顿散射中,若一个光子能传递给一个静止电子的最大能量为10 keV ,试求入射光子的能量. (1)其中c m 光子去的能量为电子获得的能量 k E h h ='-νν 依题意,如果电子获得最大能量,则出射光子的能量为最小,(1)式E 由此可算出: ν γγh E E 22=+

原子物理学习题答案(褚圣麟)

7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么? 答:电子的状态可用四个量子s l m m l n ,,,来描写。根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。 3d 此壳层上的电子,其主量子数n 和角量子数l 都相同。因此,该次壳层上的任意两个电子,它们的轨道磁量子数和自旋磁量子数不能同时相等,至少要有一个不相等。对于一个给定的l m l ,可以取12;,....,2,1,0+±±±=l l m l 共有个值;对每个给定的s l m m ,的取值是 2 1 21-或,共2个值;因此,对每一个次壳层l ,最多可以容纳)(122+l 个电子。 3d 次壳层的2=l ,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。 7.4 原子中能够有下列量子数相同的最大电子数是多少? n l n m l n )3(;,)2(;,,)1(。 答:(1)m l n ,,相同时,s m 还可以取两个值:2 1 ,21-==s s m m ;所以此时最大电子数为2个。 (2)l n ,相同时,l m 还可以取两12+l 个值,而每一个s m 还可取两个值,所以l n ,相同的最大电子数为)12(2+l 个。 (3)n 相同时,在(2)基础上,l 还可取n 个值。因此n 相同的最大电子数是: 21 2)12(2n l N n l =+=∑-= 7.5 从实验得到的等电子体系K Ⅰ、Ca Ⅱ……等的莫塞莱图解,怎样知道从钾Z=19开始不填s d 43而填次壳层,又从钪Z=21开始填s d 43而不填次壳层? 解:由图7—1所示的莫塞莱图可见,S D 2 2 43和相交于Z=20与21之间。当Z=19和 20时,S 24的谱项值大于D 23的值,由于能量同谱项值有hcT E -=的关系,可见从钾Z=19 起到钙Z=20的S 2 4能级低于D 2 3能级,所以钾和钙从第19个电子开始不是填s d 43而填次壳层。从钪Z=21开始,S 2 4谱项低于D 2 3普项,也就是D 2 3能级低于S 2 4能级,所以,从钪Z=21开始填s d 43而不填次壳层。 7.6 若已知原子阿Ne,Mg,P 和Ar 的电子壳层结构与“理想”的周期表相符,试写出这些原子组态的符号。

最新原子物理学杨福家1-6章 课后习题答案

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 杨福家著(高等教育出版社) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ? θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵ 基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式 =Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV 讨论:锂离子激发需要极大的能量

原子物理第六章课后习题

第六章X 射线 6.1.The minimum wavelength of the continuous x-ray spectra from an x-ray tube is 0.124A .What is its working potential? 某一X 射线发出的连续X 光谱的最短波长为0.0124nm ,它的工作电压是多少?解:依据公式()min 1.24nm V kV λ= ,得到工作电压为:() min 1.24 1.24 1000.0124 V nm kV λ===6.3.The L absorption edge of a neodymium atom(Z=60)is 1.9A .How much work is required to ionize a K electron from a neodymium atom? 钕原子(Z=60)的L 吸收限为0.19nm ,从钕原子中电离一个K 电子需作多少功?解:L 吸收限指的是在L 层产生一个空穴需要能量,即电离一个L 电子的能量: ,(1) L L L L hc E E E hv λ∞?=-== K 吸收限是指在K 层产生一个空穴需要能量,即电离一个K 电子的能量: ,(2) K k K K hc E E E hv λ∞?=-== 式(1)代入式(2)有:,(3) K L K L hc E E E λ?=-+ 由莫塞莱公式有:()2111,(4) K L K E E E hRc Z α? ??=-=-- ??? 式(4)代入式(3)得电离一个K 电子的能量为: ()()32 2213 1.24101113.660142.024 0.19K L hc E hRc Z keV λ?? ??=--+≈?-+= ???6.5.Prove that for most of the elements,the intensities of the 1K αx-rays are double the intensities of the 2K αx-rays. 证明:对大多数元素,1K α射线的强度为2K α射线的两倍。 K 系激发机理:K 层电子被击出时,K 壳层形成空位,原子系统能量由基态升到K 激发态, 原子系统能量升高,使体系处于不稳定的激发态,按能量最低原理,L 、M 、N 层中的电子会跃迁到K 层的空位,为保持体系能量平衡,在跃迁的同时,这些电子会将多余的能量以X 射线光量子的形式释放。高能级电子向K 层空位填充时产生K 系辐射,L 层电子填充空位时,产生K α辐射,M 层电子填充空位时产生K β辐射。

原子物理课件 第8章 x射线

第八章 x 射线 一、学习要点 1.x 射线的产生与性质 2.x 射线的连续谱 3.x 射线的标识谱、莫色勒定律;4.x 射线的吸收、吸收限; 5. 康普顿效应 二、基本练习 1.褚书P248—P249习题:1.3.4.5.7.8 2.选择题: (1)伦琴连续光谱有一个短波限λmin ,它与: A.对阴极材料有关; B.对阴极材料和入射电子能量有关; C .对阴极材料无关,与入射电子能量有关;D.对阴极材料和入射电子能量无关 . (2)原子发射伦琴射线标识谱的条件是: A.原子外层电子被激发;B.原子外层电子被电离; C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强 . (3)各种元素的伦琴线状谱有如下特点: A.与对阴极材料无关,有相仿结构,形成谱线系; B.与对阴极材料无关,无相仿结构,形成谱线系; C.与对阴极材料有关,无相仿结构,形成谱线系; D.与对阴极材料有关,有相仿结构,形成谱线系. (4)莫色勒定律是一个实验定律,理论上也可以给予解释,它的适用范围是: A.只对K 线系成立; B.对K 线系成立,其他实验没观察到; C.对K、L、M线系成立;D.对K、L、M线系理论上都成立,实际上只观察到K线系 . 3.简答与计算 (1)简述康普顿散射实验原理、装置、过程和结果分析,如何用该实验来测定普朗克常数? (2)简述X 射线连续谱的特点、产生机制. 什么是轫致辐射? (3)简述X 射线标识谱的特点、产生机制. 写出K 线系的莫色莱定律. (4)在康普顿散射中,入射光子的波长为0.0030nm ,反冲电子的速度为光速的0.6倍,求散射光子的波长和散射角.(1998中山大学) (5)证明:在康普顿散射中反冲电子的动能K 和入射光子的能量E 之间的关系为 2sin 22sin 2202θ λλθλλλc c E K +=?=,其中nm 0024.0==c m h e c λ为康普顿波长.(2000中山大学)

原子物理第一章知识点总结

第一章原子的基本状况 教学内容 §1.1 原子的质量和大小 §1.2 原子的核式结构 §1.3 同位素 教学要求 (1)掌握原子的静态性质;理解阿伏加德罗常数的物理意义。(2)掌握电子的发现、α粒子散射实验等实验事实。 (3)掌握库仑散射公式和卢瑟福散射公式的推导。 (4)掌握卢瑟福公式的实验验证、原子核大小的估计和原子的核式结构。 重点 ?α粒子散射实验 ?卢瑟福散射公式 ?库仑散射公式 ?原子的核式模型。 难点 ?库仑散射公式 ?卢瑟福散射公式推导 §1.1 原子的质量和大小 一、原子的质量 二、原子的大小 三、原子的组成 一、原子的质量 质量最轻的氢原子:1.673×10-27kg 原子质量的数量级:10-27kg~~10-25kg ? 1.原子质量单位和原子量 ?原子质量单位u:规定自然界中含量最丰富的一种元素12C的质量的1/12 1u=1.994×10-26kg/12=1.661×10-27kg ?原子量A:将其他原子的质量同原子质量单位相比较,所得的数值即为原子量A。 ?MA=A·u ?A是原子质量的相对值 ?MA是原子质量的绝对值 ?知道了原子量,就可以求出原子质量的绝对值。 2.阿伏伽德罗定律 ?1811年,意大利物理学家阿伏伽德罗提出: ?一摩尔任何原子的数目都是NA NA=6.02214?1023/mol,称为阿伏伽德罗常数 ?如果以A代表原子量,NA代表阿伏伽德罗常数,MA 代表一个原子的质量绝对值,那么 ?式中原子量A代表一摩尔原子的以克为单位的质量数,只要NA知道,MA就可以算出。 测量阿伏伽德罗常数的几种方法 1.电解法: 在电解实验中发现:分解出的正离子的量与流过电解流的电荷成正比, NA= = A A N A M= 一个离子所带的电量 原子的物质需要的电量 分解出mol 1 e F

原子物理学杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为的光电子,必须使用多少波长的光照射 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =××10-19/×10-34 =×1014 ∵ hc /λ=w λ=hc /w =×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ = h ν ν=h λ=c /ν=hc /(m)=×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e Z n a ∴H: r 1H =×12/1nm= r 2 H =×22/1= V 1H = ×106×1/1= ×106(m/s) V 2H = ×106×1/2= ×106(m/s) ∴He+: r 1He+=×12/2nm= r 2He+=×22/2= V 1 He+= ×106×2/1= ×106(m/s) V 2 He+= ×106×2/2= ×106(m/s) Li ++: r 1 Li++=×12/3nm= r 2 Li++=×22/3=

V 1 Li++= ×106×3/1= ×106(m/s) V 2 Li++= ×106×3/2= ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它等于把电子从基态电离掉所需要的能量。 ∵ 基态时n =1 H: E 1H = He+: E 1He+=×Z 2=×22= Li ++: E 1Li+=×Z 2=×32= (3) 由里德伯公式 Z 2××3/4= 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为 Z n ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32××3/4eV= 讨论:锂离子激发需要极大的能量 2-4 运动质子与一个处于静止的基态氢原子作完全非弹性的对心碰撞,欲使氢原子发射出光子,质子至少应以多大的速度运动 要点分析:质子与氢原子质量相近,要考虑完全非弹性碰撞的能量损失.计算氢原子获得的实际能量使其能激发到最低的第一激发态. 解: 由动量守恒定律得 m p V =(m p +m H )V ' ∵ m p =m H V’=V /2 由能量守恒定律,传递给氢原子使其激发的能量为:

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 福家著(高等教育) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为 10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不 动).注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散 射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ?θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理学课后习题详解第6章(褚圣麟)

第六章 磁场中的原子 6.1 已知钒原子的基态是2/34F 。(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。 解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为412 3 212=+?=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。 (2)J J P m e g 2=μ h h J J P J 2 15)1(= += 按LS 耦合:5 2 156)1(2)1()1()1(1==++++-++ =J J S S L L J J g B B J h m e μμμ7746.05 15 215252≈=???= ∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距 厘米/467.0~=?v ,试计算所用磁场的感应强度。 解:裂开后的谱线同原谱线的波数之差为: mc Be g m g m v πλλ4)(1'1~1122-=-=? 氦原子的两个价电子之间是LS 型耦合。对应11 P 原子态,1,0,12-=M ;1,1,0===J L S , 对应01S 原子态,01=M ,211.0,0,0g g J L S =====。 mc Be v π4/)1,0,1(~-=? 又因谱线间距相等:厘米/467.04/~==?mc Be v π。 特斯拉。00.1467.04=?= ∴e mc B π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。

最新原子物理学 第一章答案

原子物理学第一章答 案

第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞, 试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材 中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入 射;碰撞后,速度为V ',沿θ方向散射。电子质量用m e 表 示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反 冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: 2222 12121v m V M V M e +'=αα (1) ?θααcos cos v m V M V M e +'= (2) ?θαsin sin 0 v m V M e -'= (3) 作运算:(2)×sin θ±(3)×cos θ,得 )sin(sin ?θθα+=V M v m e (4)

(5) 再将(4)、(5)二式与(1)式联立,消去V’与v , 化简上式,得 (6) θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0 (1) 若 sin θ=0, 则 θ=0(极小) (8)

(2)若cos(θ+2φ)=0 则 θ=90o-2φ (9) 将(9)式代入(7)式,有 θ ?μ?μ2202)(90si n si n si n +=- 由此可得 θ≈10-4弧度(极大) 此题得证。 1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时, 它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射 (称为背散射)的粒子数是全部入射粒子的百分之几? 要点分析:第二问是90°~180°范围的积分.关键要知道n , 注 意推导出n 值 . 其他值从书中参考列表中找. 解:(1)依 金的原子序数Z 2=79 答:散射角为90o所对所对应的瞄准距离为22.8fm. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.

相关文档
相关文档 最新文档