文档库 最新最全的文档下载
当前位置:文档库 › 分辨率

分辨率

分辨率
分辨率

定义:

分辨率:分辨率就是屏幕图像的精密度,是指显示器所能显示的像素的多少。由于屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。

描述分辨率的单位有:(dpi点每英寸)、lpi(线每英寸)和

ppi(像素每英寸)。但只有lpi是描述光学分辨率的尺度的。虽然dpi 和ppi也属于分辨率范畴内的单位,但是他们的含义与lpi不同。而且lpi与dpi无法换算,只能凭经验估算。另外,ppi和dpi经常都会出现混用现象。但是他们所用的领域也存在区别。从技术角度说,“像素”只存在于电脑显示领域,而“点”只出现于打印或印刷领域。

分辨率是电视机的重要参数,直接决定着电视机的性能水平。同时也是衡量电视机档次和是否满足高清画质的重要参考因素。因此,挑选电视机选对分辨率非常重要。下面就让我们一起了解一下电视机的分辨率有哪些特点。

通常人们生活中提到的分辨率是指电视机的物理分辨率。电视机物理分辨率是电视机显示屏幕的固有特性。一旦显示屏幕被制造出来,物理分辨率就被固定了,不会随着应用或者其它情况的变化而改变。物理分辨率是分辨电视机产品性能指标的核心因素。它的含义是指电视机的整体屏幕拥有多少个可以显示图像的基本结构单位:像素。

像素是显示图像的基本单位。等离子电视机的屏幕像素通常由红、绿、蓝三个亚像素点水平或者纵向排列组成。三原色的亚像素点的色彩变化组合出整个像素的彩色的色彩变化。无数个像素点的变化则组成千变万化的图像。

电视机的分辨率的表示形式通常由两个数字相乘构成。比如852*480。其中第一个数字852表示等离子电视机的每行具有多个像素;

而480则表示纵向每列拥有多少个像素。不同的电视机具有不同的分辨率水平。常见的分辨率包括852*480、1024*168、1366*768、1920*1080等。其中,1024*168、1366*768、1920*1080是现在的主流分辨率,852*480则面临淘汰,而1920*1080则是未来的主要趋势。

852*480分辨率是标准清晰度的分辨率,不能真实还原高清电视画质。1028*768分辨率则接近720p的高清分辨率标准,属于准高清分辨率。1366*768、1920*1080达到了高清画质的要求,是观看高清电视机节目的良好选择。其中1920*1080的分辨率达到全高清的要求,是观看顶级高清电视节目、全高清影视的最佳选择。

除此之外,日立富士通公司还推出过一种特殊分辨率的等离子电视机:1024*1080i,1280*1080i。后者符合国家高清标准的要求,能够完全展示高清影音的魅力。这种分辨率后面的字母“i”表示分辨率采用隔行扫描。这使得电视机清晰度在纵向上有四分之一左右的损失。同时隔行刷新画面会有轻微的闪烁,通常不能够被消费者以视觉的方式观察到。

除了物理分辨率外,等离子电视机还具有兼容分辨率。兼容分辨率是指电视可以正确显示,或者接近正确显示的可以输入到电视的各种信号份额分辨率。兼容分辨率是电视机能够处理的各种信号的可能分辨率的集合,它体现了电视机的信号兼容能力。

液晶电视的分辨率(resolution)是关乎面板显示图像格式的的重要指标。通常我们所指的分辨率是指面板的物理分辨率,即画面显示的点数,是水平和垂直像素值,这个数值决定了液晶屏幕的清晰度。液晶电视有着固定的物理分辨率,同时也是它的最佳分辨率,高物理分辨率可以很容易做到兼容HDTV信号。对于任何不是液晶屏最佳分辨率的视频信号,液晶电视都需要将图像分辨率转换后再显示。目前26英寸至52英寸的液晶电视常见的分辨率为1366×768和1920×1080两种。

平板电视,FPD(Flat Panel Display)顾名思义,就是屏幕呈平面的电视,它是相对于传统显像管电视机庞大的身躯作比较而言的一类电

视机,主要包括液晶显示LCD(Liquid Crystal Display)、等离子显示PDP(Plasma Display Panel)、有机电致发光显示OLED(Organic Light Emitting Display)、表面传导电子发射显示SED(Surface-conduction Electron-emitter Display)等几大技术类型的电视产品。

液晶电视,LCD TV(Liquid Crystal Display Television),液晶电视通常采用TFT型的液晶显示面板,其主要的构成包括背光源、导光板、偏光板、滤光片、玻璃基板、配向膜、液晶材料、薄膜式晶体管等等。首先液晶电视必须先利用背光源投射出光线,这些光源会先经过一个偏光板然后再经过液晶,这时液晶分子的排列方式进而改变穿透液晶的光线角度。然后这些光线接下来还必须经过前方的彩色滤光片与另一块偏光板。因此只要改变驱动液晶的电压值就可以控制最后出现的光线强度与色彩,进而能在液晶面板上变

化呈现出不同色彩图像。

等离子电视,PDP TV(Plasma Display Panel),是指通过在两张薄玻璃板之间充填混合气体,施加电压使之产生离子气体,然后使等离子气体放电并与基板中的荧光体发生反应,从而产生彩色影像的电视产品。它以等离子管作为发光元件,大量的等离子管排列在一起构成屏幕,每个等离子对应的每个小室内都充有氖氙气体,在等离子管电极间加上高压后,封在两层玻璃之间的等离子管小室中的气体会产生紫外光,并激发平板显示屏上的红绿蓝三基色荧光粉发出可见光。每个等离子管作为一个像素,由这些像素的明暗和颜色变化组合使之产生各种灰度和色彩的图像,类似显像管发光。

HDTV:

我们知道DVD给了我们VCD时代所无法比拟的视听享受,但随着技术的进步和人们需求的不断跟进,人们对视频的各项品质提出了更高的要求:屏幕要更宽、画质要更高!于是,HD就孕育而生了。

什么是HD:

简单来说,通常把物理分辨率达到720p以上的格式则称作为高清,英文表述High Definition,简称HD。所谓全高清(Full HD),是指物理分辨率高达1920×1080逐行扫描,即1080p,是目前顶级的高清规格

什么是HDTV:

HDTV 是Hign Definition Television的简称,翻译成中文是“高清晰度电视”的意思,HDTV技术源之于

DTV(Digital Television)“数字电视” 技术,HDTV技术和DTV技术都是采用数字信号,而HDTV技术则属于DTV的最高标准,拥有最佳的视频、音频效果。HDTV与当前采用模拟信号传输的传统电视系统不同,HDTV采用了数字信号传输。由于HDTV从电视节目的采集、制作到电视节目的传输,以及到用户终端的接收全部实现数字化,因此 HDTV给我们带来了极高的清晰度,分辨率最高可达1920×1080,帧率高达60fps,是足够让目前的DVD汗颜的。除此之外,HDTV的屏幕宽高比也由原先的4:3变成了16:9,若使用大屏幕显示则有亲临影院的感觉。同时由于运用了数字技术,信号抗噪能力也大大加强,在声音系统上,HDTV支持杜比5.1声道传送,带给人Hi-Fi级别的听觉享受。和模拟电视相比,数字电视具有高清晰画面、高保真立体声伴音、电视信号可以存储、可与计算机完成多媒体系统、频率资源利用充分等多种优点,诸多的优点也必然推动HDTV成为家庭影院的主力。

HDTV也是DTV标准中最高的一种,拥有最佳的视频、音频效果。DTV 是一种数字电视技术,是目前传统模拟电视技术的接班人。所谓的数字电视,是指从演播室到发射、传输、接收过程中的所有环节都是使用数字电视信号,或对该系统所有的信号传播都是通过由二进制数字所构成的数字流来完成的。

此外DTV技术还可分为LDTV(Low Definition Tele Vision)低清晰度电视,其图像水平清晰度大于250线,分辨率为340×255,采用4:3的幅型比,主要是对应现有VCD的分辨率量级;标准清晰度电视(SDTV Standard Definition TeleVision)其图像水平清晰度为500-

-600线,最低为480线,分辨率为720×576,采用4:3的幅型比,主要是对应现有DVD的分辨率量级。目前应用于广播级的后期制作中的视频标准主要是SDTV及HDTV。和模拟电视相比,数字电视具有高清晰画面、高保真立体声伴音、电视信号可以存储、可与计算机完成多媒体系统、频率资源利用充分等多种优点。

显示格式的规格:

D1:480i格式,和NTSC模拟电视清晰度相同,行频为15.25kHz

D2:480P格式,和逐行扫描DVD规格相同,行频为31.5kHz

D3:1080i格式,分辨率为1920×1080i/60Hz,行频为33.75kHz

D4:720p格式,分辨率为1280×720p/60Hz,行频为45kHz

D5:1080p格式,分辨率为1920×1080逐行扫描,专业格式

扫描方式:

通常显示器分隔行扫描和逐行扫描两种扫描方式。逐行扫描相对于隔行扫描是一种先进的扫描方式,它是指显示屏显示图像进行扫描时,从屏幕左上角的第一行开始逐行进行,整个图像扫描一次完成。因此图像显示画面闪烁小,显示效果好。先进的显示器大都采用逐行扫描方式。

隔行扫描就是每一帧被分割为两场,每一场包含了一帧中所有的奇数扫描行或者偶数扫描行,通常是先扫描奇数行得到第一场,然后扫描偶数行得到第二场。由于视觉暂留效应,人眼将会看到平滑的运动而不是闪动的半帧半帧的图像。但是这种方法造成了两幅图像显示的时间间隔比较大,从而导致图像画面闪烁较大。 因此该种扫描方式较为落后,通常用在早期的显示产品中。

在电视的标准显示模式中,i表示隔行扫描,p表示逐行扫描。

逐行扫描独有非线性信号处理技术将普通隔行扫描电视信号转换成480行扫描格式,帧频由普通模拟电视的每秒25帧提高到60至75帧,实

现了精确的运动检测和运动补偿,从而克服了传统扫描方式的三大缺陷。我们可以来做个比较,在50分之一秒的时间内,隔行扫描方式先扫描奇数行,在紧跟着的50分之一秒内再扫描偶数行,然而逐行扫描则是在50分之一秒内完成整幅图像的扫描。经逐行扫描出来的画面清晰无闪烁,动态失真较小。若与逐行扫描电视、数字高清晰度电视配合使用则完全可以获得胜似电影的美妙画质。

光电成像系统

光电成像系统 [教学目的] 1、掌握CCD的结构和工作原理、光电成像原理、光电成像光学系统; 2、了解微光像增强器件和纤维光学成像原理。 [教学重点与难点] 重点:CCD的结构和工作原理、光电成像原理、光电成像光学系统的组成。 难点:CCD的结构和工作原理、调制传递函数的分析。 成像转换过程有四个方面的问题需要研究: 能量方面——物体、光学系统和接收器的光度学、辐射度学性质, 解决能否探测到目标的问题 成像特性——能分辨的光信号在空间和时间方面的细致程度,对多 光谱成像还包括它的光谱分辨率 噪声方面——决定接收到的信号不稳定的程度或可靠性 信息传递速率方面 (成像特性、噪声——信息传递问题,决定能被传递的信息量大小) 景噪声景 噪 声 声声 光电成像器件是光电成像系统的核心。 §1 固体摄像器件

固体摄像器件的功能:把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号——视频信号,而视频信号能再现入射的光辐射图像。 固体摄像器件主要有三大类: 电荷耦合器件(Charge Coupled Device,即CCD) 互补金属氧化物半导体图像传感器(即CMOS) 电荷注入器件(Charge Injenction Device,即CID) 一、电荷耦合摄像器件 电荷耦合器件(CCD)特点)——以电荷作为信号 CCD的基本功能——电荷存储和电荷转移 CCD工作过程——信号电荷的产生、存储、传输和检测的过程1.电荷耦合器件的基本原理 (1)电荷存储 构成CCD的基本单元是MOS(金属-氧化物-半导体)电容器 电荷耦合器件必须工作在瞬态和深度耗尽状态 (2)电荷转移 以三相表面沟道CCD为例 表面沟道器件,即SCCD(Surface Channel CCD)——转移沟道在界面的CCD器件

超高分辨活细胞成像系统技术

GE超高分辨活细胞成像系统 利用活细胞成像工作站进行细胞和基因的功能研究,是生物医学研究的最新趋势。固定细胞观察仅能提供固定瞬间细胞的静态信息,无法反映细胞在正常生理生化条件下的状态。活细胞观察,对处于正常生理状况下的细胞进行全程扫描和记录,获得其连续、全面、动态过程由于其显示的正常细胞动态的活动过程,很容易发现和确定细胞间相互作用和信号传导的过程,以及在活细胞水平上的生物分子间的相互作用,不仅可以解决长期以来悬而未解的问题,更为未来的研究提出新的问题,指出新的方向。 一、活细胞成像系统原理 目前主流的活细胞成像系统从原理上可以分为两大类: 基于宽场反卷积技术 基于共聚焦技术 两种技术作为目前最流行的活细胞成像技术,均可以实现在维持细胞存活的情况下,快速获取单一焦平面的信号,在具体性能上则各有擅长。 宽场反卷积技术 对光线进行反卷积运算是光学成像领域的成熟技术,最早由美国国家航空航天局开发并成为观察微弱天体信号的标准技术。去卷积和共聚焦技术是光学显微镜领域获得单一焦平面光线的两大主流技术(J.M.Murray, live cell imaging, 2010)。通过将非焦平面的光线还原至焦平面上,大大提高了样品信号的强度以及图像的信噪比。由于去卷积技术设计到大量的后期运算,因此在高性能计算机发明以前,一直受制于运算能力,没有得到大规模的推广。随着近年来计算机性能的大幅提升和价格的下降,去卷积技术逐渐成为光学显微镜的主流技术。一个点光源经过显微镜的光路,由于镜片对光线的衍射和散射,最终呈现在观察者面前的是一个模糊的点,所以点光源变成模糊的点的过程即为卷积。反卷积就是把模糊的点还原成点光源的过程。 以API 公司的DeltaVision系统为例,其反卷积过程经历以下几步: 1)首先通过无数的计算和实验,得到点光源经过显微镜物镜后变模糊的规律,建立模型。 2)选择完美的物镜,保证样品信号经过物镜后变模糊的规律符合步骤一中得到的模型。 3)将通过显微镜光路的所有的光信号进行收集,因为点光源经过显微镜光路后会变成一个空 间中的倒圆锥形,所以在收集信号的时候需要很准确的记录信号的Z 轴信息。 4)对收集到的所有光信号按照步骤一中的模型进行还原,最终将模糊的点还原成清晰的点, 客观反映它在空间的位置和强度。 目前去卷积技术越来越广泛地应用于生物学图像的研究中。 共聚焦技术 共聚焦显微镜它采用点光源(point lightsource) 照射标本,在焦平面上形成了一个轮廓分明 的小的光点(light spot ) ,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到探测器。探测器前方有一个针孔(pinhole) ,几何尺寸可调。这样,来自焦平面的光,可以会聚在探 测针孔范围之内,而其它来自焦平面上方或下方的散射光,都被挡在探测针孔之外而不能成象。 光束扫描器又分为单光束、多光束或狭缝扫描器几种。其中单光束扫描获得的图像质量最好, 狭缝扫描器虽然产生图像的速率很高(可达实时水平) ,但其图像信噪比低于单光束扫描,这是 因为从狭缝长轴来的漫射光不能被有效遮挡。多光束扫描如碟片式共聚焦是由电动马达驱动

光电成像系统的分辨率鉴定与测量技术

光电成像系统的分辨率鉴定与测量技术 摘要:论述了光电成像系统中广泛使用的分辨率指标及分类,对空间分辨率模拟度量法的原理和测量方法进行了论述和分析。通过研究指出用空间分辨率指标来描述成像系统的质量,具有较好的直观性和归一性。由于单一的空间分辨率测量指标还不可能给出总的图像系统的性能,仅仅基于分辨率指标的图像评估不可能同时保证系统灵敏度设计的技术要求。因此,结合模拟度量法研究光电成像系统的分辨率测量法,给出成像分辨率测量准则。 关键词:MTF;SRF;空间分辨率;DAS;GRD 中图分类号:TP29文献标识码:A 文章编号:1004-373X(2010)01-177-03 Resolution Identification and Measuring Technique of Photoelectric Image System ZHANG Bin,LI Zhaohui (Chinese Flight Test Establishment,Xi′an,710089,China) Abstract:Index and classification of resolution which are widely used in the photoelectric image system is discussed with analysis of the principle and method of the simulated measurement of spatial resolution.The investigation shows that

the index of spatial resolution which describes quality of the image-forming system is more direct and unitary than other methods.However,the single spatial resolution can not show the capability of the whole image system.Besides,the evaluation which it is only based on the index of spatial resolution can not ensure the designed technical requirement of the system sensitivity.Therefore,on the basis of the resolution measuring method of the photoelectric image system,a measuring criterion of the imaging resolution is obtained. Keywords:MTF;SRF;spatial resolution;DAS;GRD 0 引言 物理系统中对分辨率指标的使用由来已久,它是确定成像系统性能指标的基本要素,尤其是用分辨率作为衡量图像质量的指标之一,人们会因此认为具有较高分辨率的系统具有较好的图像质量[1]。一般情况下,对于类似于系统设计这样的问题确实如此(例如,将两个EMUX系统相比),其MTF(调制传递函数)具有相同的函数形式。 分辨率有四类不同内容[2]:时间分辨率(以时间分类事件的能力);灰度分辨率(由A/D变换器设计、噪声低限、或监视器性能指标决定);谱分辨率;空间分辨率。

分辨率的定义

分辨率的定义 什么是XGA,SXGA,UXGA,UWXGA,WXGA? 通常区分这几种名词的重要技术指标是液晶屏(TFT LCD)的分辨率. 一般分辨率为1024x768或800x600的液晶屏被称为XGA, 分辨率为1400x1050的液晶屏被称为SXGA, 分辨率为1600x1200的液晶屏被称为UXGA, 分辨率为1024x480或1280x600的液晶屏被称为UWXGA(例如SONY 的C1系列), 分辨率为1024x512的液晶屏被称为WXGA 。 TFT是英文Thin Film Transistor的缩写,中文意思是薄膜晶体管。 VGA、SVGA、XGA、SXGA、UXGA是对就不同的分辨率的叫法,具体如下: VGA 640 x 480 SVGA 800 x 600 XGA 1024 x 768 SXGA 1280 x 1024 &1400 x 1050 UXGA 1600 x 1200 标准规格: 规格分辨率尺寸 XGA 1024×768 15.1"、14.1"、13.3"、12.1"、11.3"、10.4" TFT/SVGA 800×600 12.1" SXGA+(SXGA) 1400×1050 15"、14.1" UXGA 1600×1200 15"IBM A22P显示屏 不标准规格: UWXGA 1024×480 8.9" SONY C1系列

WXGA 1024×512 8.8" FUJITSU P1000 . 1152×768 15.2" Apple PowerBook G4 注:投影机的分辨率,可分为VGA、SVGA、XGA、SXGA和UXGA。投影机的分辨率是与所连接的电脑密不可分的。电脑分辨率大致有以下几种标准: VGA(640×480) SVGA(800×600) XGA(1024×768) SXGA(1280×1024) UXGA(1600×1200) QXGA(2048×1536)

ad信噪比分析及高分辨率

在雷达、导航等军事领域中,由于信号带宽宽(有时可能高于10MHz),要求ADC的采样率高于30MSPS,分辨率大于10位。目前高速高分辨率ADC器件在采样率高于10MSPS 时,量化位数可达14位,但实际分辨率受器件自身误差和电路噪声的影响很大。在数字通信、数字仪表、软件无线电等领域中应用的高速ADC电路,在输入信号低于1MHz时,实际分辨率可达10位,但随输入信号频率的增加下降很快,不能满足军事领域的使用要求。 针对这一问题,本文主要研究在不采用过采样、数字滤波和增益自动控制等技术条件下,如何提高高速高分辨率ADC电路的实际分辨率,使其最大限度地接近ADC器件自身的实际分辨率,即最大限度地提高ADC电路的信噪比。为此,本文首先从理论上分析了影响ADC信噪比的因素;然后从电路设计和器件选择两方面出发,设计了高速高分辨率ADC电路。经实测表明,当输入信号频率为0.96MHz时,该电路的实际分辨率为11.36位;当输入信号频率为14.71MHz日寸,该电路的实际分辨率为10.88位。 1 影响ADC信噪比因素的理论分析 ADC的实际分辨率是用有效位数ENOB标称的。不考虑过采样,当满量程单频理想正弦波输入时,实际分辨率可用下式表示: ENOB=[SINA0(dB)-1.76]/6.02 (1) 式中,SINAD表示ADC的信噪失真比,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(包括谐波分量,但不包括直流允量)的总有效值之比。 ADC的信噪比SNR,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(不包括直流分量和谐波分量)总有效值之比。

米级车载高分辨率光电成像系统光学设计_刘莹奇

第40卷第8期红外与激光工程2011年8月Vol.40No.8Infrared and Laser Engineering Aug.2011 米级车载高分辨率光电成像系统光学设计 刘莹奇1,2,王志1,刘欣悦1,卫沛峰1 (1.中国科学院长春光学精密机械与物理研究所,吉林长春130033; 2.中国科学院研究生院,北京100049) 摘要:研究了一套能实现机动式布站的米级车载可见光和红外高分辨率光学成像系统新方案。主系统口径1.2m,采用无焦卡塞格林形式,遮拦比1:10;机上中、长波红外成像通道采用共口径光谱分光、二次成像的形式,冷阑匹配效率100%,F数为4;机下成像光学系统焦距47m,F数为39,光学设计满足高分辨率与白天成像的要求,且成像质量达到衍射极限;各通道光学系统结构紧凑。光学设计与分析结果表明:该套光学系统能够用于空中和空间目标的全天时移动式高分辨率可见、红外成像。 关键词:大口径望远镜;高分辨率成像;白天成像;移动式光电跟踪系统;光学设计 中图分类号:TB133文献标志码:A文章编号:1007-2276(2011)08-1512-05 Optical design of vehicle-based high resolution E-O imaging system using meter class telescope Liu Yingqi1,2,Wang Zhi1,Liu Xinyue1,Wei Peifeng1 (1.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun130033,China; 2.Graduate University of the Chinese Academy of Sciences,Beijing100049,China) Abstract:A set of meter class aperture and vehicle-based optical system including visible,infrared imaging, which was used for motional E-O imaging,was studied.The main system aperture was1.2m,the form of afocal Cassegrain was adopted,and obstruction ratio was1:10.The front aperture of on-vehicle imaging system was shared by MWIR and LWIR,then the spectrum was separately reimaged in the terminal.The F number was4,and100%cold shield efficiency was realized.The focal length of the off-vehicle imaging system was47m and the F number was39.The optical design meet the requiement of high resolution and daylight imaging,and the imaging quality of each channel reached diffraction limit in the off-vehicle imaging system.The optical system configuration of each channel was compact.The design and analysis results indicate that mobile high resolution imaging and all-day imaging of targets in the air and space can be realized with the optical system. Key words:large aperture telescope;high resolution imaging;daylight imaging; mobile E-O tracking system;optical design 收稿日期:2010-12-05;修订日期:2011-01-03 基金项目:中国科学院长春光学精密机械与物理研究所三期创新研究项目专项资金 作者简介:刘莹奇(1984-),男,研究实习员,博士研究生,主要从事新型光学系统设计工作。Email:a1032510210@https://www.wendangku.net/doc/731248892.html, 导师简介:卢振武(1955-),男,研究员,博士生导师,主要从事衍射光学等方面的研究。Email:luzw@https://www.wendangku.net/doc/731248892.html,

分辨率确定之标准反恐精英

分辨率确定之标准反恐精英 ??都?640/480! 引?f0e s t的话:因为我从1.3就开始玩,那个时候机器太烂只能?640,所以……这句话也是?多数??的?声。 b:640扫射有优势! 这?的优势其实就是上?所说的伤害效果。但是由于s t e a m已经修正,并且改良了h i t b o x,所以现在?少在640,800,1024这?个常见分辨率效果下的扫射效果也没有分别。 c:640以下扫射弹道?800密集! 这个其实最容易造成错觉。因为你单凭?眼看,在同等条件下640的确?800密集。其实道理很简单,因为640分辨率?800分辨率低,图象看起来更粗糙?已。同样的道理,玩极品飞车的时候,640分辨率下的车灯和800分辨率下的车灯??也不?样…… d:640以下敌?的头?较?! 咳咳…………其实,?家头都?样?……但是,640下的头发长点?已……玩笑……640以下觉得敌?脑袋?较?的原因其实是因为画?粗糙?已。如果真的那样头?较?,或许现在很多?仍然在?500或者400的分辨率在?赛吧……还不理解?上?的车灯理论就能很好的解释你的答案。 3:?分辨率的好处 ?家听了很多640分辨率的好处,例如很多??在?之类的。那么,这?我就给你们说说?分辨率的好处。喜欢去查职业选?的设置并且统计的?都知道,单纯的从?率来看,?个队伍中狙击?的分辨率往往集中在800和1024之间,?且经常?640的?应该都有这种经历,狙击镜开着,感觉上明明是狙到了,但是实际上却没有伤害。这个是为什么?就是因为画?过于粗糙的缘故。C o u n t e r-S t r i k e?的是即时演算,说的更直?点就是数据包的传输。所以并不存在提前量(不是预瞄)。这和什么模型碰撞之类没有关系。其实从?些细节就很容易发现,例如S p a w n或者w a l l e这种AW P 技术很好选?,他们瞄点都集中在胸部或者腹;但是象f R o d,他们在瞄准时,特别是?范围瞄准,例如d u s t2上B点的那个窗?时,会习惯性的把AW P瞄在头部位置。其实,在他们眼中,头部由于分辨率?,所以更??些。在S K中,虽然有S p a w n和?s k e r这种曾经的第?和第?狙击?,也有S n j a和G o o d f e l l a这种狙击也不弱的全能型,他们的主?狙击从来都是 v i l d e n,虽然他已经好长时间没打到?了…… ?分辨率的坏处?嘿嘿,放到最后再说…… 4:忽悠 这?是?个?故事:在R a w就饱受关注,被H y p e r称做为瑞典最有希望的明星选?a l l e n,来到了S K。某?,a l l e n看到G o o d f e l l a在?640分辨率练习,于是凑前问道:640分辨率怎么样?G o o d f e l l a头也不回的答到:?从?了640,吃饭?睡觉好,打起?来就是爽!a l l e n又回头看看?s k e r,?样的640,?样的答案。所以,a l l e n也从800改成了640,然后就是不停的换准星??,反复适应,直到找到现在的设置。虽然,他完全忘记了S n j a 和Vi l d e n在?800。同样的例?,也发?在A c h i?上。 不要笑……这个是真的事情……当然,对话是虚构的…… 另外?个?故事:变态男m e t h o d从N o A转会到了3D。看到了Vo l c a n o稳定和令?惊讶的M4后,下定决?,?上了800的不归路……当然,这个事情也发?在K I M?上。但是令?遗憾的是,在他修改分辨率的那段时间,

分辨率表

专用词分辨率像素总数QQVGA(Qua rter-Quarter- VGA) 160×120 19,200 QVGA(Quart er-VGA) 320×240 76,800 WQVGA(Wid e Quarter-VGA ) 400×240 96,000 HVGA(Half VGA) 640×240 320×480 153,600 VGA640×480 307,200 SVGA(Super- VGA) 800×600 480,000 XGA1024×768 786,432 WXGA(Wide XGA) 1280×768 1280×800 1366×768 983,040 1,024,000 1,049,088 WSXGA(Wid e Super-XGA) 1280×854 1,093,120 Quad-VGA1280×960 1,228,800 WXGA+(Wid e XGA+) 1440×900 1,296,000 SXGA(Super- XGA) 1280×1024 1,310,720 WXGA++(Wi de XGA++) 1600×900 1,440,000 SXGA+1400×1050 1,470,000 WSXGA+(Wi de Super-XGA+) 1680×1050 1,764,000 UXGA(Ultra- XGA) 1600×1200 1,920,000 WUXGA(Wid e Ultra-XGA) 1920×1200 2,304,000 QXGA(Quad- XGA) 2048×1536 3,145,728 WQXGA(Wid e Quad-XGA) 2560×1600 4,096,000 QSXGA(Qua2560×2048 5,242,880

CCD相机成像分辨率自动测试的过程与方法介绍

CCD相机成像分辨率自动测试的过程与方法介绍 引言 目前传输型CCD相机已取代传统胶片相机成为主流摄影设备,然而各生产厂家对相机成像分辨率这一核心指标的测量还基本采用基于人工判读的测试方法。 人工判读测试分辨率,对胶片相机而言简单、方便,但由于不同人眼的视觉灵敏度不同以及检测条件的差异,因此难免引入不同程度的主观误差,时常难以达成统一的测量结果,从而影响了测试精度。 对于CCD 相机,可利用其对特定目标生成的数字影像,通过实施高效的数据分析处理技术,自动实现对相机分辨率量化测试,从而客观判定相机成像质量。 1 理论分析 影响CCD相机成像分辨率的因素主要包括:光学系统、CCD器件及相应电路处理系统等。其中光学系统可利用干涉检测法或传递函数等对其像质进行测试,从而客观地获取相应的分辨率量化结果;CCD器件本身的理论极限分辨率可以根据其像元尺寸直接计算求得;对于电路处理系统,在理想情况下其对图像分辨率测试方面的影响可忽略不计,在此暂不予以考虑。综合上述因素,CCD 相机整机理想情况下的分辨率N 可由下式计算求得: 式中:N光为光学系统分辨率;NCCD 为CCD器件的分辨率。 虽然上述计算可以估算出CCD相机整机的理论分辨率,但由于存在整机装配误差、系统控制误差以及依靠人工判读测试带来的主观不确定性,经常难以准确反映相机最终成像水平,因此需要在CCD 相机整机检测时对分辨率指标实施精确量化测试,从而客观综合反映CCD相机整机成像质量。 为此,本文提出基于光栅目标影像对比度分析的分辨率自动测试方法。该方法是将CCD 相机整体作为光能量信息传递系统,根据系统传递函数测试原理,按照正弦级数展开的定义,将矩形分布函数展开成不同频率正弦分布的叠加,则对比度传递函数可表示为:

(新)X射线实时成像系统分辨率及其影响因素_

X射线实时成像系统分辨率及其影响因素 X射线实时成像系统 X射线实时成像检测技术作为一种新兴的无损检测技术,已进入工业产品检测的实际应用领域。与其他检测技术一样,X射线实时成像检测技术需要一套设备(硬件与软件)作为支撑,构成一个完整的检测系统,简称X射线实时成像系统。X射线实时成像系统使用X射线机或加速器等作为射线源,X射线透过后被检测物体后衰减,由射线接收/转换装置接收并转换成模拟信号或数字信号,利用半导体传感技术、计算机图像处理技术和信息处理技术,将检测图像直接显示在显示器屏幕上,应用计算机程序进行评定,然后将图像数据保存到储存介质上。X射线实时成像系统可用金属焊缝、金属或非金属器件的无损检测。 2 X射线实时成像系统的基本配置及影响因素 X射线实时成像系统主要由X射线机、X射线接收转换装置、数字图像处理单元、图像显示单元、图像储存单元及检测工装等组成。 2.1 X射线机 根据被检测工件的材质和厚度范围选择X射线机的能量范围,并应留有一定的的能量储备。对于要求连续检测的作业方式,宜选择直流恒压强制冷却X射线机。X射线管的焦点尺寸对检测图像质量有较大的影响,小焦点能够提高系统分辨率,因此,应尽可能选用小焦点X射线管。 目前探伤机厂能够提供的小焦点X射线探伤机是:160 kV恒压式X射线系统,焦点尺寸≤ 0.4mm×0.4mm;225 kV恒压式X射线系统,焦点尺寸≤0.8mm×0.8mm;320 kV 恒压式X射线系统,焦点尺寸≤1.2mm×1.2mm;450 kV恒压式X射线系统,焦点尺寸≤1.8mm×1.8mm。对焦点的要求也不宜过小,如果焦点过小且冷却不好,焦点容易"烧坏"。 2.2 X射线接收转换装置 X射线接收转换装置的作用是将不可见的X光转换为可见光,它可以是图像增强器或成像面板或者线性扫描器等射线敏感器件。X射线接收转换装置的分辨率应不小于3.0LP/mm。 X射线接收转换装置子系统又称为图像成像系统,按目前成像的技术水平可分为两种。一种是以图像增强器为主的传统成像器系统。图像增强器为一种真空管,射线输入屏由较薄的铝或钛材料制成,屏的基层涂有钠(Na)-碘化铯(CsI)作为输入闪烁体(CsI∶Na),它能够将不可光的X光图像转换为可见光图像,再经过光电阴极板的作用将可见光图像转换为相应的电子束,电子束在高电压作用下加速并聚焦于荧光输出屏(ZnCdS:Ag闪烁体材料),从而形成可视的检测图像。在输出屏后端配有聚焦光学镜头和CCD (charge-coupled device电荷耦合器件)摄像机,将可视图像的模拟信号采集输入图像采集卡进行A/D转换,再输入计算机进行图像处理。当前可供选用的图像增强器按输

图像大小和分辨率解析

图像大小和分辨率 与数码照片有关的工作中一个比较复杂的话题,就是对图像大小与分辨率之间的关系的理解。作为照片处理者,你随时都会遇见ppi值(每英寸像素的数量)、像素大小以及输出大小。要想获得精确的图像效果,尤其是打印后的图像效果,把这两个概念整理清楚是非常必要的。 图像大小 图像文件的两个重要特征是它的图像大小(不要与图像文件的大小混淆了)以及它的分辨率。图像大小涉及的是图像中点的数量。以像素乘以像素来说明,第二个像素值指的是垂直方向的像素数量。例如一个图像的大小可以是4368×2912像素,也就是共有12719616或者取整为1200万个图像点,也就是1200万像素。图像文件大小则与它所需的存储空间有关,以字节为单位。 一个图像的像素越大,所含的图像信息就越多,被清楚还原的尺寸也就越大。在输出大小相同的情况下,像素越大,单个细节就显示得越清楚,就越会形成清晰的视觉效果。但这里的视觉图像大小只是一个非实体的、虚拟的值,单独这个值既不能以厘米计算纸上的图片大小,也不能说明显示器上的图像大小。为了对图像上的大小进行确切的描述,还需要另外一个值,那就是分辨率,因为只有通过介质的显示,数字的像素信息才能有一个实际的载体。 分辨率 分辨率是用来表示一定长度的线段上的图像点数量的参数,用每英寸像素(ppi)来表示。它描述的是一个特定的输出介质在一个区域内所能显示的像素数量,同时也表明了在这个介质上正确展示一张照片的最低要求。每个输出介质的分辨率都是不同的。

你可以把一个图像想象成一个大的马赛克,每个像素中都含有关于各个马赛克“小石子儿”所应有的色彩信息。输出介质决定着单颗小石子儿的大小——显示器上的单颗小石子儿较大,而打印照片时相纸上的单颗小石子儿较小。因此在平铺面积相同的情况下,相纸所能容纳的小石子儿要比显示器容纳的多。也可以说,显示器在相同面积中所需要的小石子儿较少。相应的,在小石子儿数量相同的情况下,在显示器上所铺出来的面积就更大。但是在这两种显示介质前,在与这两个马赛克保持相应距离时,你会看到同样的图像。 此外,比较难以理解的是,分辨率这个概念也被应用于其他与摄影相关的情况,但是不同情况下的所指少有不同。 ——镜头分辨率描述的是这个镜头将黑白相间的细线条分辨开来成像的能力,即解像能力 ——相机的感光元件用分辨率来描述垂直方向和水平方向上的测量像素的数量,也就是可以成像的测量像素的总量(通常用“百万像素”表示) ——与相机的感光元件非常相似的是,显示器把垂直方向和水平方向上所可能显示的像素的总量也口语化地叫做分辨率,虽然这更多地是在描述显示器的大小(在这个意义上,更接近“图像大小”的概念) 但是一张照片的分辨率并没有说出这个图像文件中真正的像素数量。在一个特定的输出介质上,一张大图和一张小图的显示分辨率是完全相同的,但是大图要比小图显得大得多。为了理解这其中的关联,请你在后面的叙述中想象一下两个不同的图片文件,它们展示的是同一个主题:照片1的图像大小是6048×4032像素,照片2只有300×200像素。这两张照片将在显示器上和相纸上被展示出来。

X射线实时成像分辨率

X射线实时成像系统分辨率及其影响因素 摘要: 概述了X射线实时成像系统的基本配置和反映系统质量特性的调制传递函数以及提高X射线实时成像系统分辨率的基本方法。 关键词:系统分辨率质量特性调制传递函数 The Resolution and Influencing Factor in X-Ray Real Time Image System Zeng Xiangzhao (Nanhai Yuehai Steel Products Co.,Ltd Guangdong 528247) Abstract: This article introduced the basic configure and the modulating transfer function which reflect the systemic quality speciality in x-ray real timeimage system, and introduced the basic technique for enhance the systemic resolution in X-Ray real time image system Keywords:System Resolution Quality speciality The modulating transfer function 1 X射线实时成像系统 X射线实时成像检测技术作为一种新兴的无损检测技术,已进入工业产品检测的实际应用领域。与其他检测技术一样,X射线实时成像检测技术需要一套设备(硬件与软件)作为支撑,构成一个完整的检测系统,简称X射线实时成像系统。X射线实时成像系统使用X射线机或加速器等作为射线源,X射线透过后被检测物体后衰减,由射线接收/转换装置接收并转换成模拟信号或数字信号,利用半导体传感技术、计算机图像处理技术和信息处理技术,将检测图像直接显示在显示器屏幕上,应用计算机程序进行评定,然后将图像数据保存到储存介质上。X射线实时成像系统可用金属焊缝、金属或非金属器件的无损检测。 2 X射线实时成像系统的基本配置及影响因素 X射线实时成像系统主要由X射线机、X射线接收转换装置、数字图像处理单元、图像显示单元、图像储存单元及检测工装等组成。 2.1 X射线机 根据被检测工件的材质和厚度范围选择X射线机的能量范围,并应留有一定的的能量储备。对于要求连续检测的作业方式,宜选择直流恒压强制冷却X射线机。X射线管的焦点尺寸对检测图像质量有较大的影响,小焦点能够提高系统分辨率,因此,应尽可能选用小焦点X射线管。 目前探伤机厂能够提供的小焦点X射线探伤机是:160 kV恒压式X射线系统,焦点尺寸≤ 0.4mm×0.4mm;225 kV恒压式X射线系统,焦点尺寸≤0.8mm×0.8mm;320 kV恒压式X射线系统,焦点尺寸≤1.2mm×1.2mm;450 kV恒压式X射线系统,焦点尺寸≤1.8mm×1.8mm。对焦点的要求也不宜过小,如果焦点过小且冷却不好,焦点容易"烧坏"。 2.2 X射线接收转换装置 X射线接收转换装置的作用是将不可见的X光转换为可见光,它可以是图像增强器或成像面板或者线性扫描器等射线敏感器件。X射线接收转换装置的分辨率应不小于3.0LP/mm。 X射线接收转换装置子系统又称为图像成像系统,按目前成像的技术水平可分为两种。一种是以图像增强器为主的传统成像器系统。图像增强器为一种真空管,射线输入屏由较薄的铝或钛材料制成,屏的基层涂有钠(Na)-碘化铯(CsI)作为输入闪烁体(CsI∶Na),它能够将不可光的X 光图像转换为可见光图像,再经过光电阴极板的作用将可见光图像转换为相应的电子束,电子束在高电压作用下加速并聚焦于荧光输出屏(ZnCdS:Ag闪烁体材料),从而形成可视的检测图像。在输出屏后端配有聚焦光学镜头和CCD(charge-coupled device电荷耦合器件)摄像机,将可视图像的模拟信号采集输入图像采集卡进行A/D转换,再输入计算机进行图像处理。当前可供选用的图像增强器按输入屏直径有Φ225mm(9″)、Φ150mm(6″)、Φ100mm(4″) 三种;Φ225mm(9″)图像增强器直径较大,视野宽阔,一次检测长度较大,但清晰度较低,价格较高;Φ100mm(4″)图像增强器直径较小,重量较轻,便于携带式作业,且清晰度较高,但视野较狭小,一次检测长

分辨率及英文简称

分辨率及英文简称 HqVGA 160×240(反过来也一样) 这个诡异的分辨率见于GameBoy的掌机。 qVGA320×240 很多MP4播放器在2005年前后就达到了这个分辨率,不过后来很多入门手机保留了这一经典分辨率。 比如,索尼爱立信Xperia X10 mini、HTC Wildfire以及任天堂3DS的底部屏幕都采用这个分辨率。 WqVGA 384×240(16:10)或400×240(5:3) 也有16:9的分辨率,大约在428×240或者432×240。 这样的手机比较少见,比如索尼爱立信U10(240×432),还有初代的iPod nano(240×376)。HVGA 480×320 HVGA是VGA分辨率的一半,分辨率根据图像比例也分为几个版本,480×320是3:2的比例,480×360则是4:3的比例,另外还有16:9的480×272,以及更为诡异的640×240. 采用HVGA分辨率的手机很多,早期的PDA很多都是采用3:2比例的HVGA,比如索尼在2002年推出的CLI PEG NR70,当时这部手机还运行的是Palm OS 4.1。另外,前三代iPhone 也就是iPhone、iPhone 3G、iPhone 3GS都采用了HVGA也就是320×480的分辨率。此外,RIM最经典的黑莓Bold 9000,以及第一部Android手机HTC Dream也同样采用这个分辨率。VGA 640×480 VGA的全称是Video Graphics Array,中文名为视频图形阵列,这个标准其实是1987年通过的标准,现在来看早已过时,不过几乎每个电脑都支持VGA标准的图像输出。当然,在谈到显示分辨率时,VGA指的就是480×640. VGA分辨率的手机有很多,不过基本以全键盘机型为主,比如黑莓的Bold 9900、Torch 9810、诺基亚E6、HTC Touch Diamond WVGA 480×800 WVGA分辨率是最常见的了。Android系统在2010年几乎所有的产品都是这个分辨率。Android之外,Windows Phone 7.x的全部机型以及Windows Phone 8的部分低端机型也采用WVGA分辨率。 WVGA分辨率的机型很常见,比如三星GALAXY S/S2、HTC Desire、Nexus One、Nexus S 等,还有诺基亚800/900、三星Omnia 7、HTC 7,近期上市的比如HTC 8S、诺基亚Lumia 620这样的入门级别Windows Phone 8. FWVGA 480×854 全宽屏VGA的缩写,这个比例接近16:9,不过也没有确切的分辨率数据,屏幕切割的原因,可能是848×480或者854×480,采用后一种分辨率的手机更常见一些,比如诺基亚N9、摩托罗拉Droid X(国行ME811)、大名鼎鼎的摩托罗拉Droid或者说里程碑,再就是索尼爱立信的Xperia Arc了。 qHD 540×960 四分之一的HD分辨率,HD分辨率则为1280×720。这个分辨率的Android旗舰很快就继续演进到720P了,没做过多停留,不过qHD分辨率的机型还真不少,摩托罗拉Atrix 4G(国行ME860)、HTC Sensation、摩托罗拉Droid RAZR。除此之外,索尼的PS Vita也采用这个分辨率。 DVGA 640×960

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

X射线实时成像系统分辨率及其影响因素

X射线实时成像系统分辨率及其影响因素 1 X射线实时成像系统 X射线实时成像检测技术作为一种新兴的无损检测技术,已进入工业产品检测的实际应用领域。与其他检测技术一样,X射线实时成像检测技术需要一套设备(硬件与软件)作为支撑,构成一个完整的检测系统,简称X射线实时成像系统。X射线实时成像系统使用X射线机或加速器等作为射线源,X射线透过后被检测物体后衰减,由射线接收/转换装置接收并转换成模拟信号或数字信号,利用半导体传感技术、计算机图像处理技术和信息处理技术,将检测图像直接显示在显示器屏幕上,应用计算机程序进行评定,然后将图像数据保存到储存介质上。X射线实时成像系统可用金属焊缝、金属或非金属器件的无损检测。 2 X射线实时成像系统的基本配置及影响因素 X射线实时成像系统主要由X射线机、X射线接收转换装置、数字图像处理单元、图像显示单元、图像储存单元及 检测工装等组成。 2.1 X射线机 根据被检测工件的材质和厚度范围选择X射线机的能量范围,并应留有一定的的能量储备。对于要求连续检测的作业方式,宜选择直流恒压强制冷却X 射线机。X射线管的焦点尺寸对检测图像质量有较大的影响,小焦点能够提高系统分辨率,因此,应尽可能选用小焦点X射线管。 2.2 X射线接收转换装置 X射线接收转换装置的作用是将不可见的X光转换为可见光,它可以是图像增强器或成像面板或者线性扫描器等射线敏感器件。X射线接收转换装置的分辨率应不小于3.0LP/mm。 2.3 图像处理单元 图像处理单元应具有图像数据采集和处理功能。图像数据采集方式可以是图像采集卡或其它数字图像合成装置。图像采集分辨率应不低于768×576像素,且保证水平方向分辨率与垂直方向分辨率之比为4∶3;动态范围即灰度等级应不小于256级。 2.4 图像处理软件 图像处理软件应具有降噪、亮度对比度增强、边缘增强等基本功能。图像处

高分辨率活细胞成像系统

高分辨率活细胞成像系统 一总体要求 ★1满足科研科室要求,凡涉及设备安装及施工由中标方负责,按照科室要求提供交钥匙工程 2投标时要求提供原厂家的检验报告、技术参数表及产品彩页 3投标产品应为国际知名品牌,最先进机型及配置,适用于科研、教学并满足将来科研发展需要。 ★4仪器配备所有软件使用最新版本且终身免费升级,端口免费开发,能够与我院各信息系统无缝对接 5数量:1台 二技术要求 1光源部分 1.1固态激发光源,由不少于7个独立单色激发光源组成,发射端能量22-89mW;包括如下光源 1.1.1381-399nm(DAPI,BFP),能量>50mW 1.1.2426-450nm(CFP,Pacific Blue)能量>80mW 1.1.3461-489nm(GFP,EGFP)能量>50mW 1.1.4505-515nm(YFP)能量>20mW 1.1.5529-556nm(OFP,RFP,DsRed)能量>80mW 1.1.6563-588nm(mCherry)能量>80mW 1.1.7621-643nm(Cy5)能量>40mW 1.2瞬时开关,光源通电至稳定工作间隔时间低于100微秒,非工作时光源自动关闭。光源工作寿命>10000小时 1.3激发光经过光纤传输,通过光强探测器实时监测入射光强变化 2显微镜部分 2.1高性能减震台 2.2研究型倒置显微镜 ★2.3提供科勒照明和临界照明两种照明方式并可根据用户是目镜观察还是成像自动电动切换 2.4物镜配备:60X平场复消色差物镜(油镜),数值孔径>1.42 40X平场半复消色差物镜(油镜),数值孔径>1.3 40X长工作距离(2.7-4mm)半复消色差物镜,数值孔径>0.6 20X长工作距离(6.6-7.8mm)半复消色差物镜,数值孔径>0.45 10X平场复消色差物镜,数值孔径>0.4

相关文档