文档库 最新最全的文档下载
当前位置:文档库 › 靶向药大全以及靶标检测

靶向药大全以及靶标检测

靶向药大全以及靶标检测
靶向药大全以及靶标检测

靶向药大全以及靶标检测

表一:截至 2011年12月31日SFDA受理申报的小分子酪氨酸激酶抑制剂(国外公司产品,29个)

如何发现药物新靶标

如何发现药物新靶标 文献综述 摘要:药物靶标的发现是创造新药物的前提,也是药物筛选的基础,本文从有效单体化合物、基因表达差异、蛋白质表达差异、蛋白质相互作用和RNA干扰方面着手总结了一些药物新靶标的发现技术进行了综述。 关键词:药物靶标;基因表达差异;差异蛋白质组学;蛋白质相互作用;RNA 干扰 引言:药物靶标是药物作用而实现疗效的目标分子,靶标的发现是药物创新的前提,也是药物筛选的基础。新靶标的发现对于更优良的创新型药物的开发具有重大的促进作用。例如,利用HMG CoA还原酶作为药物靶标开发了一系列他汀类降脂药物,仅2000年,该类药物的销售额达120亿美元,并以每年15%~20%的速度增长。Novartis公司利用慢性粒细胞性白血病(CML)相关蛋白Bcr-Abl为靶标,在短时间内开发出有效治疗CML的新药—高活性Bcr-Abl激酶抑制剂STI571(Gleevac)。【1】从这些例子可以发现,生物医药公司花费大量的物力和财力寻找药物的新靶标。随着生命科学的发展,各种科技的创新,也出现了很多药物靶标的发现技术。 一、从有效单体化合物着手发现药物靶标 以疗效确定的单体化合物(天然产物或现有药物)为探针,然后利用计算机模拟单体分子与相关蛋白质三维结构及其相互作用,找到所有的能与其特定结合的蛋白质,这些蛋白质可能与活性药物单体发挥作用的机制相关,因此是潜在的药物靶标分子。蒋华良等便是用此方法发现了2个抗幽门螺旋杆菌活性的药物的作

用靶标蛋白def和TyX,并测定了def蛋白复合物的晶体结构。张永清【2】等利用基因芯片研究苦参碱诱导白血病K562细胞基因表达谱改变,发现CCNB1,cyclinD1,PCNA等基因表达发生明显改变,这些基因可能是苦参碱作用靶点之一。Chen【3】等也利用这个方法研究阿霉素处理MCF-7细胞后蛋白质表达的改变,发现阿霉素造成MCF-7细胞中热休克蛋白27(Hsp27)的3个异形体表达显著下降,由此推测Hsp27可能是控制乳腺癌生长的一个潜在药物靶标。 二、以正常组织与病理组织基因表达差异发现靶标 基因在不同组织和疾病发生发展的不同时空存在着明显的基因表达差异,表达明显发生变化的基因常与发病过程及药物作用途径密切相关,这些表达异常的基因很有可能是药物作用的靶点,可作为潜在的筛选药物的靶标【4】。基因芯片技术、mRNA差异显示技术、抑制性消减杂交技术和基因表达系列性分析技术等在现代生命科学研究中使用也日益广泛,这些技术在新的药物靶标的发现中同样扮演了重要的角色。 Heller【5】等利用基因芯片技术分析了正常及诱发病变的巨噬细胞、软骨细胞系、原代软骨细胞和滑膜细胞的mRNA,发现了数种变化明显的基因,其中包括基质金属弹性蛋白酶基因,为治疗类风湿关节炎提供了新的药物靶标。Kapp【6】等利用该技术分析了霍奇金病细胞系中950个基因的表达情况,并与EB病毒永生化的B淋巴细胞系LCL-GK的基因表达谱相比较,发现白细胞介素-13及其信号转导通路可能成为治疗HD新的药物靶标。 Yamamoto【7】等通过基因表达系列性分析技术分析Hela细胞中基因的表达模式,发现了许多高表达的基因,同时也发现了许多新的肿瘤特异性基因,这为肿瘤的治疗提供了新的靶标。Ryo【8】等利用该技术研究HIV-1病毒感染人T细胞株MOLT-4后基因表达模式变化,发现了53个发生显著表达变化的基因,这为艾滋病的研究提供了重要的线索。 Fisher【9】等将mRNA差异显示技术用于乳腺癌细胞与正常乳腺上皮细胞的对比研究中,发现周期蛋白D2在癌细胞中表达下降,并且进一步实验,结果暗示了周期蛋白D2基因可能是5-氮杂胞苷治疗乳腺癌的一个靶基因。Violette【10】等用该技术比较药物敏感的结肠癌细胞系HT-29与其耐药的3个子细胞系的基因表达,

一位肿瘤医生患癌后,总结出三个治癌秘笈丨肿瘤消失了

一位肿瘤医生患癌后,总结出三个治癌秘笈丨肿瘤消失 了。。。 日前,安徽省举办了一个“十佳”医生护士”的事迹报告会,这其中有一个人格外引人注目,他就是——黄山市人民医院胸外科副主任医师徐林友。2016年6月2日徐林友医生在报告会上讲话他本身是肺癌医生,2011年1月自己却被查出肺癌脑转移,当时被医生判定为“很难活过100天”,如今5年过去了,仍旧活得很健康。5年,所谓五年生存率,对于一个癌症病人来说,从临床标准来看,可以说是临床治愈了!那么他是怎么做到的,健康时报微信综合媒体公开报道,以及徐林友的公开受访,还原一位癌症医生的是“治癌奇迹”!做了20多年肺癌医生,自己也得了肺癌看了20多年的肺癌患者,做了无数台肺癌手术,可以说我接诊、治疗了数不清的肺癌患者。万万没想到,2011年1月17日,我自己居然被确诊为肺癌……2011年1月17日上午,我做完手术,中午简单地吃了快餐,突然间我全身抽搐、扭曲,晕倒在地……等意识稍清醒后我发现自己已经躺在了CT机上。当我被送至病房时,我开始感觉到气氛有一丝诡异,同事们躲着我,护士不肯多说一句话,要看CT片子也没有,问病情说还在确诊。“我究竟是怎么了?”未知的恐惧深深地笼罩着我。我忍不住侧着耳朵想要探听同事们在门外的交

谈,隐隐约约听到了“肺癌”的字眼。“难道我得了肺癌吗?”出于医务工作者的敏感,我不由自主地自问。我想想自己并没有咳嗽、咳血、胸闷、胸痛这些肺癌常见的病症,也没有感冒等症状,当时认为自己患肺癌的可能性微乎其微。我用医生惯有的理性强迫自己不要胡思乱想:开什么玩笑,我是治肺癌的医生啊,怎么会得肺癌?医生说,无法保证活过100天当天就去了上海,住进上海肺科医院的第4天,做完支气管穿刺检查,我估摸着病理结果应该出来了,找护士和医生要,还是没人肯给。我叫来了妻子,问到底是非小细胞肺癌,还是肺腺癌。妻子含泪说了实话——我猜对了,是肺腺癌,而且是晚期肺腺癌伴脑转移,晕倒是因为肿块已经压迫到脑组织。当我从上海肺科医院胸科专家姜格宁主任口中亲耳听到自己的病情为“晚期肺腺癌伴脑转移”,虽然我已做足心理准备,却还是忍不住绝望了。作为标准治疗程序,上海市肺科医院胸外科主任姜格宁教授建议我进行化疗。我问:“姜主任您能保证我活过100天吗?!”姜主任迟疑了片刻回答道:“这……是无法保证的。”因为作为肺癌医生我心理知道,晚期肺腺癌伴脑转移的病人从没有活过100天的...反思:我为什么会得肺癌?确诊之后的几日,我不停问自己“我作为肺癌医生,自己为什么会得肺癌?”虽然我吸烟、喝酒,但很少,并不是老烟枪,也不是老酒友,而我所患的非小细胞肺腺癌与吸烟饮酒并没有直接关系。我所居住的黄山市地处

药物设计学简答题

简答题 11、理想的药物靶点应具有哪些特点? (1)药物作用于靶点对疾病治疗的有效性。 (2)中靶后引起的毒副作用反应小。 (3)便于筛选药物的靶点成药性 13、骨架迁越及在药物设计中的应用? 骨架迁越:由苗头或先导化合物分子产生新结构的分子,保留原有的生物活性,通过结构骨架变换,连接适宜的药效团,产生新结构类型的药物,骨架迁越涉及丰富的药物化学内涵和技巧。 应用:(1)将化合物转化成为类药分子-----改善药物动力学性质; 刚-柔骨架的变换,改善药代性质;亲脂-极性骨架变换,改善溶解性和分配性;新的骨架若参与同受体结合,可改善与受体的亲和力;骨架适中的策略如果过小的骨架如苯环缺乏有用信息;过于复杂的骨架带来成本过高问题。 (2)创制具有自主知识产权的新药或IP产品--破专利,Me-too,Me-better; 14、前药设计应注意哪些原则? (1)在母体药物最适宜功能基处键合载体分子。 (2)前药应无活性或活性较低,转运基团应无活性。 (3)明确前药在体内的活化机制。 (4)转化为母体药物的速度应该是快速动力学过程,并降低母体药物的直接代谢,以保证母体药物在靶点有足够的浓度。 (5)应容易合成与纯化,最好是一步反应,且载体廉价易得。 1、简述基于靶点结构的药物设计的基本流程。 定义活性位点→产生配体分子→配体分子打分→合成及活性测定→先导物 2、根据设计来源不同软药可以分为几种类型?软药和前药的区别有几个方面? 软类似物;活化的软类似物;用控释内源物设计天然软药;活性代谢物;无活性代谢物等类型。区别:①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代谢物;②作用方式不一样,前药在体外无活性,只有到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代谢失活。 3、简述先导物发现的可能途径。 ①筛选途径:从众多的化合物中运用生物筛选模型挑选有生物活性的先导物。现代筛 选途径涉及组合化学、组合库和高通量高内含筛选。 ②合理药物设计:基于靶点和配体的作用机制、三维结构和识别过程以及与药物理化 性质相关的体内过程,进行有的放矢的药物设计。 4、药物作用的靶点的定义及理想的药物靶点特点是什么? 靶点:也称靶标,指具有重要生理或病理功能,能够与药物相结合并产生药理作用的生物大分子及其特定的结构位点,这些生物大分子主要是蛋白质,有一些是核酸或其他物质。特点:①药物作用于靶点对疾病治疗的有效性②药物作用于靶点后引起的毒副反应小③便于筛选药物靶点的成药性。 5、简述药效基团的虚拟筛选一般流程。 小分子准备→产生构象→由活性分子生成药效基团的假设→优化、修改药效基团的假设→生成药效团模型→数据库搜寻(虚拟筛选) 6、Lipinski的类药五倍律是什么?什么情况下该方法不适合预测药物的类药性?

肺癌分子靶向治疗

肺癌分子靶向治疗 一肿瘤靶向治疗的基本概念 随着生物技术在医学领域的快速发展和从细胞分子水平对发病机制的深入认识,肿瘤生物治疗已进入了一个全新的时代。肿瘤分子靶向治疗是利用具有一定特异性的载体,将药物或其他杀伤肿瘤细胞的活性物质选择性地运送到肿瘤部位,把治疗作用或药物效应尽量限定在特定的靶细胞、组织或器官内,而不影响正常细胞、组织或器官的功能,从而提高疗效、减少毒副作用的一种方法。 所谓“靶向治疗”,通俗地讲,就是有针对性的瞄准一个靶位,在肿瘤分子治疗方面指的就是针对某种癌细胞,或者是针对癌细胞的某一个蛋白、某一个分子进行治疗。它分为三个层次,第一种是针对某个器官,例如某种药物只对某个器官的肿瘤有效,这个叫器官靶向;第二种叫细胞靶向,故名思义,指的是只针对某种类别的肿瘤细胞,药物进入体内后可选择性地与这类细胞特异性地结合,从而引起细胞凋亡;第三种是分子靶向,它指的是针对肿瘤细胞里面的某一个蛋白家族的某部分分子,或者是指一个核苷酸的片段,或者一个基因产物进行治疗。分子靶向治疗是目前肿瘤治疗的一个“闪光点”,凭着它的特异性和有效性,已取得很大成功,是目前国内外治疗的“热点”。 传统化疗可以理解为“枪打出头鸟”,主要是针对生长快速的肿瘤细胞。可是除了肿瘤细胞外,正常人体内的某些正常细胞生长繁殖也较快,比如①血液细胞,由于自我更新活跃,也成为化疗药物打击的对象,所以化疗后会出现白细胞降低、血小板下降、贫血等。②毛囊细胞、粘膜的细胞更新也很快,所以化疗后

出现的脱发、恶心、呕吐等,就是毛囊细胞、粘膜细胞受化疗药物的攻击而引起的。③肝脏细胞,被称为体液化工场,要代谢很多药物。因此化疗后也会造成严重的肝功损害。④生殖细胞,像精子、卵子这些细胞也会受到化疗药物的攻击。因此,化疗药物在针对体内肿瘤细胞的同时,不可避免的会对体内生长旺盛的正常细胞造成不同程度的损害。这样,肿瘤细胞灭亡的同时会造成体内很多细胞的“陪葬”,长此以往只会造成“两败俱伤”。然而,随着机体免疫力被摧跨,肿瘤细胞势必“抬头”,所以,这化疗的盲目性不利于肿瘤的长期治疗,不是真正意义上的靶向治疗。同样,如所谓的靶向化疗、靶向放疗、靶向手术、氩氦靶向及射频靶向等治疗,不可避免也存在对正常组织有较大损伤或治疗不彻底性及问题。 细胞靶向这种治疗又称为“导弹治疗”,它主要利用肿瘤细胞与正常细胞在生物学特性上的不同,具有高选择性,能稳、准、狠地打击肿瘤细胞。rAAV-BA46/her2-DC/CTL治疗乳腺癌就是一例很好的细胞靶向治疗的例子。BA46 几乎在所有的乳腺癌体细胞上表达,而且表达在细胞膜上,而在乳腺以外的正常组织内不表达或少量表达,以BA46抗原肽免疫转基因鼠,可在转基因鼠身上诱导出特异的细胞免疫,它是乳腺癌DC治疗非常理想的肿瘤抗原。腺相关病毒(AAV)以其无致病性及能与特异位点整合等优点而成为目前人类基因治疗研究中最理想的病毒载体之一。构建重组的rAAV-BA46表达载体,制备高滴度的rAAV-BA46病毒,为以BA46为靶抗原,基因转导DC来治疗乳腺癌的有效的方法。其他类似的治疗还有:治疗前列腺癌的rAAV-PSMA-DC/CTL,治疗多种肿瘤的TIL、A-LAK等。这些细胞靶向治疗均能非常准确、高效地杀灭肿瘤。

多靶点药物分子设计

多靶点药物分子设计 郭彦伸, 郭宗儒* (中国医学科学院、北京协和医学院药物研究所, 北京100050) 摘要: 作用于单一分子靶标的药物治愈多基因相关疾病如癌症、或影响多个组织或细胞类型的疾病如糖尿病等存在的问题逐渐被人们所认识。与选择性药物的治疗作用相比,几个靶标间的平衡调节能够提供较好的疗效和较低的副作用,同时作用于多个靶标的多靶点药物能够较好地控制复杂的疾病。本文详细比较分析了单靶点药物的不足和多靶点药物的优势,介绍了多靶点配体药物分子设计的方法及需要优化的参数。对于多靶点药物设计,关键的挑战是如何保证获得平衡的活性同时又能够实现选择性以及适当的药代动力学性质。到目前为止, 多靶点药物分子设计的方法对于药物化学家、药理学家、毒理学家以及生物化学家仍然是一项新的挑战。 关键词: 多靶点配体; 药效团组合; 药物分子设计 中图分类号: R916.1 文献标识码:A 文章编号: 0513-4870 (2009) 03-0276-06 Design of multiple targeted drugs GUO Y an-shen, GUO Zong-ru* (Institute Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China) Abstract: Drugs designed to act on individual molecular targets usually can not combat multigenic diseases such as cancer, or diseases that affect multiple tissues or cell types such as diabetes. Increasingly, it is being recognised that a balanced modulation of several targets can provide a superior therapeutic effect and side effect profile compared to the action of a selective ligand. The multi-target drugs which impact multiple targets simultaneously are better at controlling complex disease systems and are less prone to drug resistance. Here, we compare the disadvantage of the selective ligands and the predominance of multi-targets drugs in detail and introduce the approaches of designing multiple ligands and the procedure of optimization particularly. A key challenge in the design of multiple ligands is attaining a balanced activity at each target of interest while simul-taneously achieving a wider selectivity and a suitable pharmacokinetic profile. On this point, the multi-target approach represents a new challenge for medicinal chemists, pharmacologists, toxicologists, and biochemists. Key words: multiple targeted ligands; pharmacophore combination; design of drug 药物靶标是指与疾病的发生有因果关系或者参与疾病的发展过程, 并通过药物对其进行调节而实现治疗目的的生物分子。自30多年前引入离体筛选(in vitro) 的概念以来, 基因组学和高通量筛选技术的进步,使药物发现从依赖动物筛选逐渐转变到“一病一靶”。现代药理学研究已深入到细胞和分子水平, 更加强调药物作用的靶标, 发现了许多单一靶点选 收稿日期: 2009-02-11. *通讯作者Tel: 86-10-83155752, E-mail: zrguo@https://www.wendangku.net/doc/7313387172.html, 择性的药物, 在临床上表现出显著的疗效, 如选择性的HMG辅酶A还原酶抑制剂[1]。随着进一步的深入研究, 发现单一靶点药物也存在着明显的不足。单一靶点抗肿瘤药物单独用药对于晚期患者的化疗效率不高, 人们逐渐认识到单一靶点药物之间的联合应用或作用于多个分子靶标的“多靶点”药物在治疗功能失调类疾病时将起到重要作用[2,3]。目前人们有意识地、理性地设计作用于特定的多个靶点的配体成为研究趋势, “多靶点”药物研发将成为研究的热点。

微生物药物靶标 课程论文

微生物药物靶标 摘要: 微生物作为抗生素的重要来源,在发掘抗耐药菌新型抗生素的研究中承担了重要角色,许多微生物来源的天然化合物展现了显著的抗耐药菌活性。在因组学、蛋白质组学与生物信息学等技术的推动下,一些新的微生物药物靶标寻找方法应运而生了。靶标可根据作用对象,作用原理等进行分类。许多新型的药物靶标被发现,如以群体感应为靶标,调控群体感应过程中的关键步骤可以达到治疗感染性疾病的目的。 关键词:微生物药物靶标群体感应 微生物耐药性问题日益严重,很多病原微生物,例如结核分枝杆菌和恶性疟原虫等对人类生命健康造成了极大的威胁,开发新的抗菌药物迫在眉睫。微生物作为抗生素的重要来源,在发掘抗耐药菌新型抗生素的研究中承担了重要角色,许多微生物来源的天然化合物展现了显著的抗耐药菌活性。这些天然化合物本身或其改造后的产物已经成为医疗领域中主要使用的药物;同时,在农业领域的病虫害防治上也有重要的应用。它们进入细胞与特定的生物分子即靶标相结合,通过靶标影响整个细胞及组织的功能,起到特定的治疗或预防作用。微生物药物靶标在整个过程中起关键作用。 1 微生物候选药物靶标的选择 候选药物靶点(标) 的条件之一是微生物生存或致病所必需。目前微生物的毒力因子和保守基因为主要的药物靶标。细菌毒力因子包括黏附素,侵袭素,内、外毒素以及细菌超抗原与革兰氏阴性(G - )菌的Ⅲ型分泌系统等。 1.1 微生物生存相关的药物靶标目前临床应用的抗生素主要包括β-内酰胺类、氨基糖苷类、四环素类、氯霉素类、大环内酯类、喹诺酮类、磺胺类等,其作用机制主要包括抑制细菌细胞壁合成和损伤细胞膜功能、影响蛋白质合成、抑制核酸合成等过程,这些抗生素的作用点都是细菌生存所必需。广谱抗生素的作用靶点为多种细菌中保守的蛋白。在多个物种中高度保守的基因很可能就是生存必需的基因,可通过比较不同物种尤其是进化距离比较远的物种之间寻找保守基因。 1.2 微生物致病和毒力相关的药物靶标微生物致病和毒力相关的一些基因产物为微生物非必需,针对这些药物靶点的药物可降低微生物的致病力但并不能杀灭它们,例如,结核分枝杆菌fbpA 和sapM 基因双敲除后,其毒力降低。将这两个基因克隆后发现它们属于结核分枝杆菌的非必需基因。另外,致病性G - 菌的Ⅲ型分泌系统(type Ⅲsecretion system,T3SS) 主要位于细菌致病岛中,编码其输送系统的基因高度保守,编码20 多种基因产物。不同的病原菌之所以能够产生不同的疾病和症状,可能是因为它们分泌不同的蛋白质,作用于不同的宿主细胞和分子。耶尔森菌可分泌10 多种效应分子,并将它们分别注入宿主细胞,其中YopE 和YopH 可修饰巨噬细胞蛋白,破坏细胞的功能,使巨噬细胞不能够吞噬和杀伤该菌;YopJ/ P 蛋白抑制MAPK 和NF-κ B 信号通路,抑制促炎细胞因子和趋化因子(TNF-α、IL-8、IL-12 和IL-18 等) 的产生,诱导细胞凋亡。 1.3 可作为药物靶标的其他分子其他一些分子也可成为潜在的药物靶点,例

(完整版)肺癌靶向治疗药物(按作用机制划分)

肺癌靶向药物(靶点机制划分) EGFR 突变 EGFR又叫 HER1 或者 ErbB1,是 ErbB 受体家族四大成员之一。EGFR 过分频繁表达能激活下游重要的信号通路(如 ALK),从而导致细胞增殖,存活,转移及血管生成等。因此,在 NSCLC 的研究中,EGFR 一直是一个热点。像吉非替尼和厄洛替尼这样早期的小分子 EGFR 酪氨酸激酶抑制剂(TKI)在刚问世时是面向所有既往接受过化疗的 NSCLC 患者的。而像阿法替尼(afatinib)和达克替尼(dacomitinib)这样新推出的 EGFR TKI 则在此基础上有了长足的发展。回顾性研究显示,亚裔、女性、腺癌、既往少量 / 无吸烟史等临床特点可以增加 EGFR TKI 治疗的敏感率。这个结论的分子基础是,18-21 号外显子突变(最常见的是 19 号外显子的缺失和 21 号外显子上的 L858R 位点突变)能编码出大量 EGFR 酪氨酸激酶,上述突变分别占总突变情况的 45% 和 40%。另外还有18 号外显子的突变及 20 号外显子的插入突变,占总突变情况的 5%-10%。18 号外显子的突变能增加 EGFR TKI 的敏感性,而 20 号外显子的突变却会导致EGFR TKI 原发耐药。EGFR 突变在拥有前述临床特征的患者中更加常见。肺腺癌患者中,大约有 15% 的白种人和 30-50% 的东亚人拥有 EGFR 基因突变。而对于那些无吸烟史的东亚人,这项比例高达 50-60%。多项研究表明,对于初发的敏感性 EGFR 突变的 NSCLC 患者,应用 TKI 治疗在反应率(ORR)、无进展生存期(PFS)和生活质量上均优于化疗。易瑞沙泛亚洲研究(IPASS)结果表明,对于经选择的 NSCLC 患者,吉非替尼效果优于紫杉醇 + 卡铂的化疗。但对于EGFR 野生型患者,TKI 治疗效果并不理想,1.5 个月的 PFS 完败于化疗组的6.5 个月。在其他随机研究中,吉非替尼、厄洛替尼及阿法替尼均能改善有 EGFR 基因突变患者的 ORR 和 PFS。这些研究为晚期 NSCLC 的合理治疗提供了依据。因此,晚期 NSCLC 患者应常规进行 EGFR 基因检测,并根据突变情况选择是否行 EGFR TKI 一线治疗。一般情况下患者对 EGFR TKI 耐受性良好。EGFR TKI 常见的副作用包括痤疮形式皮疹,皮肤瘙痒和腹泻。相比化疗,很少出现 3 级 -4 级不良反应,故较少出现调整剂量和停药。坏消息是,所有接受 TKI 治疗的患者最终会出现耐药,并最终导致肿瘤进展和死亡。好消息是,人们经过反复活检已经发现了 TKI 治疗耐药的部分分子机制。比如,大约有 50% 的获得性耐药患者身上出现了前文提及的 20 号外显子(T790M)变异。此外,MET 扩增(5%)、HER-2 扩增(8%)、PI3K 突变(5%)及 NSCLC 转变为小细胞肺癌(18%)等也是常见的耐药机制。基于此,新一代的分子靶向治疗药物开始针对上述获得性耐药的途径,如 T790M、HER2、MET 及 PI3KCA 等。比如第二代的不可逆 EGFR TKI 阿法替尼和达克替尼是泛 ErbB 抑制剂。这意味着他们能在抑制 EGFR 突变表达的同时还能抑制 T790M 耐药变异。虽然临床前研究显示成果喜人,不过阿法替尼和达克替尼治疗一代 EGFR TKI 耐药的临床研究却并不尽如人意。一项随机研究表明阿法替尼对经一代 EGFR TKI 治疗过的晚期非小细胞肺癌患者 OS 与安慰剂相当。另一项研究证明达克替尼也一样。但在最新的指南中,阿法替尼已被推荐作为 EGFR 突变的非小细胞肺癌一线治疗方案。第三代 EGFR TKI(CO-1686 和 AZD9291)对 T790M 的选择性更高,临床效果更佳且毒性更小。早期的研究表明,CO-1686 和 AZD9291 对经一代 EGFR TKI 治疗过,且 T790M 变异的晚期非小细胞肺癌患者,ORR 分别达到 58% 和 64%。这些结果进一步证明了在疾病进展阶段及时的进行分子分析以选择最佳治疗方案的重要性。

2020 ESMO ASIA 肺癌免疫治疗和靶向治疗重磅研究盘点(完整版)

2020 ESMO ASIA | 肺癌免疫治疗和靶向治疗重磅研究盘点(完整版) 2020年欧洲肿瘤内科学会亚洲峰会(ESMO ASIA)年会将采用线上虚拟会议的形式,于11月20-22日隆重召开。医脉通特梳理了肺癌免疫治疗和靶向治疗领域口头报告专场和迷你口头报告专场的重磅研究,与您分享! 免疫治疗 中国之声| CS1001+化疗有望成中国肺癌患者一线治疗新选择 背景和方法 CS1001是一种全长全人源化PD-L1靶向免疫球蛋白G4(IgG4)的单克隆抗体,耐受性良好。Ia/Ib期临床研究中,在包括非小细胞肺癌(NSCLC)在内的多个瘤种中显示出有希望的抗肿瘤活性。GEMSTONE-302是一项随机、双盲III期临床研究,旨在评估化疗CS1001±化疗一线治疗晚期NSCLC患者的疗效和安全性。本次ESMO AISA大会上,同济大学附属上海市肺科医院周彩存教授公布了研究结果。 研究纳入符合条件初治晚期NSCLC患者。分层因素包括组织学类型(鳞状或非鳞状)、PD-L1表达状态(≥1% vs <1%)、ECOG体力状况评分(0或1)。入组患者按2:1比例随机分配接受CS1001(1200 mg,Q3W,IV)或安慰剂+化疗,至多4个周期,序贯CS1001或安慰剂维持治疗,

至多2年。主要终点为研究者评估的无进展生存期(PFS)。 主要结果 共479例患者纳入研究,CS1001组和安慰剂组分别有320例和129例患者,两组基线特征均衡。截止2020年6月8日(预设PFS中期分析时),CS1001组和安慰剂组的中位随访时间分别为8.67个月和8.34个月。CS1001对比安慰剂可明显改善患者PFS,两组中位PFS分别为7.8个月和4.9个月(HR=0.50,P<0.0001),两组的客观缓解率(ORR)分别为61.4%和39.2%。总生存期(OS)尚未成熟,但有改善趋势(HR=0.66),两组的中位OS分别为未达到和14.75个月。不论PD-L1表达和组织学类型如何,亚组分析也显示出一致的生存获益。 CS1001组和安慰剂组分别有61.9%和61.6%的患者发生了≥3级治疗相关不良事件。除CS1001组发生1~2级免疫治疗相关不良事件之外,两治疗组具有相似的安全性,未发现新的不良事件。 这是首个在中国开展的关于PD-L1+化疗用于初治晚期非鳞状和鳞状NSCLC一线治疗的III期研究,不论组织学类型和PD-L1表达水平如何,CS1001+化疗显示出有临床意义的PFS改善,且安全可耐受。该联合治疗有望成为晚期NSCLC患者新的一线治疗选择。 中国之声| 首个CIK细胞免疫治疗临床研究,疗效显著! 背景和方法 目前,细胞因子诱导的杀伤细胞(CIK)治疗肺癌尚无多中心临床研究。天津医科大学肿瘤医院刘亮教授团队开展了一项多中心、随机对照研究,

药物设计学复习资料

名词解释 1、合理药物设计:根据药物发现过程中基础研究所揭示的药物作用靶点,即受体,再参考 其内源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、到达和选择性作用与靶点的又具有药理活性的先导物;或根据靶点3D结构直接设计活性配体。 2、高通量筛选:HTS,以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具 载体,以自动化操作系统执行实验过程,以灵敏快速的检验仪器采集实验数据,以计算机分析处理实验数据,在同一时间检测数以万计的样品并以得到的相应数据库支持运转的技术体系。 3、药物的体内过程即A、D、M、E的中文名称及各自定义:分别为 吸收:药物从用药部位进入体循环的过程。 分布:药物在血液、组织及器官间的可逆转运过程。 代谢:药物在吸收过程或进入体循环后,在体内酶系统、体液的PH或肠道菌从的作用下,发生结构转变的过程,此过程也称为生物转化。 排泄:药物或其代谢物排除体外的过程。 4、基于靶点的药物设计:TBBD,以生命科学为基础,根据疾病特异的功能、症状和机制, 发现和研究药物作用靶点以及与预防相关的调控过程。 5、基于性质的药物设计:PBBD,运用计算机辅助设计软件,根据配体的理化性质对设计的 先导物结构预测它们的吸收、分布、代谢、排泄和毒性(ADME/T),估计药物在体内的释放度和生物利用度,判断类药性 6、基于结构的药物设计:SBDD,以计算机辅助药物设计为手段,其方法分为基于靶点的直 接药物设计和基于配体的简介药物设计两类,运用受体学说和分子识别原理,设计对受体进行调控的先导物,或根据已有药物作用力大小和构效关系判断来推测新化合物的药效,达到发现活性分子的目地。 7、定量构效关系:QSAR,研究的是一组化合物的生物与其结构特征之间的相互关系,结构特 征以理化参数、分子拓扑参数、量子化学指数和结构碎片指数表示,用数理统计的方法进行数据回归分析,并以数学模型表达和概括量变规律。 8、三维定量构效关系:3D-QSAR,以配体和靶点的三维结构特征为基础,根据分子的内能变 化和分子间相互作用的能量变化,将已知一系列药物的理化参数和三维结构参数与药效拟合出定量关系,再以此化合物预测新化合物的活性,进行结构的优化和改造。 1、简述基于靶点结构的药物设计的基本流程。 定义活性位点→产生配体分子→配体分子打分→合成及活性测定→先导物 2、根据设计来源不同软药可以分为几种类型?软药和前药的区别有几个方面? 软类似物;活化的软类似物;用控释内源物设计天然软药;活性代谢物;无活性代谢物等类型。区别:①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代谢物;②作用方式不一样,前药在体外无活性,只有到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代谢失活。 3、简述先导物发现的可能途径。 ①筛选途径:从众多的化合物中运用生物筛选模型挑选有生物活性的先导物。现代筛 选途径涉及组合化学、组合库和高通量高内含筛选。 ②合理药物设计:基于靶点和配体的作用机制、三维结构和识别过程以及与药物理化

基于生物信息学方法发现潜在药物靶标

基于生物信息学方法发现潜在药物靶标 刘伟;谢红卫 【期刊名称】《生物化学与生物物理进展》 【年(卷),期】2011(038)001 【摘要】药物靶点通常是在代谢或信号通路中与特定疾病或病理状态有关的关键分子.通过绑定到特定活动区域抑制这个关键分子进行药物设计.确定特定疾病有关的靶标分子是现代新药开发的基础.在药物靶标发现的过程中,生物信息学方法发挥了不可替代的重要的作用,尤其适用于大规模多组学数据的分析.目前,已涌现了许多与疾病相关的数据库资源,基于生物网络特征、多基因芯片、蛋白质组、代谢组数据等建立了多种生物信息学方法发现潜在的药物靶标,并预测靶标可药性和药物副作用.%Typically a drug target is a key molecule involved in a particular metabolic or signaling pathway, that is specific to a disease condition or pathology. Drugs may be designed that bind to the active region and inhibit this key molecule. Determining specific disease-related target molecules is the basis of modern drug development. In the process of drug target discovery, bioinformatics methods play irreplaceable roles, especially suited for the analyses of large-scale and multi-omics data. On current, many disease-related database resources have emerged.Various bioinformatics methods have been established based on biological network characteristics, multiple gene chips, proteomics and metabolomics data to discover potential drug targets, and predict the target druggability and side effects of

晚期非小细胞肺癌的靶向治疗(综

晚期非小细胞肺癌的靶向治疗(综述)题库

晚期非小细胞肺癌的靶向治疗(综述) 2015-03-10 来源:丁香园作者:张波 曾几何时,晚期非小细胞肺癌(NSCLC)患者只能接受化疗。但是,其疗效已经到了一个瓶颈期,无法再进一步。可喜的是,随着人们对分子遗传学认识的不断增强,NSCLC 被细分为各种不同的分子亚型,并由此诞生了各类分子靶向治疗药物。靶向药的应用,明显改善 了 NSCLC 患者的预后。 带有表皮生长因子受体(EGFR)突变和间变性淋巴瘤激酶(ALK)重排的肿瘤患者的一线治疗中,化疗并没有一席之地,除非该患者的“可药化驱动基因(druggable driver oncogene)”缺失。2015 年 2 月17 日Kumarakulasinghe 等在respirology 上发布综述,全面讨论临床相关的驱动基因突变的情

况、肺腺癌和鳞癌的最新分子分型、分子靶向药物在治疗中的地位及其耐药机制。 肺癌是肿瘤世界的头号杀手。在 2014 年,预计将有 224210 名新确诊的肺癌患者,而且其中大部分为晚期NSCLC。在很长一段时间里,人类面对晚期 NSCLC 只能使用“含铂类药物 的化疗”这一招。这招与最佳支持治疗相比,虽然一定程度上增加了患者总生存期(OS),但它的上限也仅限于 20% 的反应率和 8-10 个月的中位生存期。 随着分子遗传学研究的不断进展,人们慢慢尝试识别导致 NSCLC 的关键基因突变。这些存在于癌基因上的遗传变异能编码调控细胞增殖 和存活的信号蛋白。癌基因依赖这个概念应运而生,而它存在的基础,是“肿瘤的生存非常依赖

肿瘤分子靶向药物简介-历史及上市药物

肿瘤的靶向药物选择一一国内外已经上市的分子靶向(MTT)药物… 一、靶向药物(targeted medicine )简介 靶向药物是目前最先进的用于治疗癌症的药物,是随着当代分子生物学、细胞生物学的发展产生的高科技药物。靶向药物与常规化疗药物最大的不同在于其作用机理:常规化疗药物通过对细胞的毒害发挥作用,由于不能准确识别肿瘤细胞,因此在杀灭肿瘤细胞的同时也会殃及正常细胞,所以产生了较大的毒副作用。而靶向药物是针对肿瘤基因开发的,它能够识别肿瘤细胞上由肿瘤细胞特有的基因所决定的特征性位点,通过与之结合(或类似的其他机制),阻断肿瘤细胞内控制细胞生长、增殖的信号传导通路,从而杀灭肿瘤细胞、阻止其增殖。由于这样的特点,靶向药物不仅效果好,而且副作用要比常规的化疗方法小得多。靶向药物可以分为以下几类: (一)小分子药物 小分子药物通常是信号传导抑制剂,它能够特异性地阻断肿瘤生长、增殖过程中所必需的信号传导通路,从而达到治疗的目的。例如诺华制药生产的格列卫(Gleevec ,通用名Imitinib )、阿斯利康生产的易瑞沙(Iressa ,通用名Gefitinib )均属此类; (二)细胞凋亡诱导药物 通过特异性地诱导肿瘤细胞凋亡,达到治疗的目的。如美国千年制药公司生产的Velcade (通 用名bortezomib )、Genta 公司生产的Genasense(oblimersen ); (三)单克隆抗体 例如赫塞汀(Herceptin,通用名Trastuzumab),用于治疗HER2基因阳性(过量表达)的乳腺癌。这类药物是通过抗原抗体的特异性结合来识别肿瘤细胞的。 除上述列举的已经进入临床使用的靶向药物外,另外还有多种靶向药物正在开发中。 二、肿瘤的靶向药物上市历史回顾: ■白血病费城染色体开启靶向治疗之门 早在I960年,美国费城的研究者发现慢性髓性白血病(CML患者中存在一个染色体异常。数年后,研究者发现这是9 号和22 号染色体长臂易位的结果。由于这个染色体异常首先在费城(Philadelphia )发现,故命名为费城(Ph)染色体。该染色体也成为了40年后 上市的CML靶向治疗的靶点。2001年,首个被证实可对抗费城染色体分子缺陷的药物一一伊马替尼以FDA史上最快的速度(仅经过3个月评审)获批上市,自此成为CML勺标准治疗,使CML成为一种可控制的慢性病。 第2个治疗CML的靶向药物是达沙替尼,2006年被FDA批准用于伊马替尼不耐受或耐药的CML2010年其适应证扩展至早期CML的初始治疗。同年,尼洛替尼获批用于CML2012 年,伯舒替尼(bosutinib )和普纳替尼(ponatinib )陆续获批治疗CML。 ■肺癌从EGFF到VEGF ALK 1987年,研究者首次证实肿瘤细胞上的受体一一表皮生长因子受体(EGFR在非小细 胞肺癌的生长和扩散中发挥重要作用。短短6年之后,首个靶向EGFR勺非小细胞肺癌治疗 药物EGFR酪氨酸激酶抑制剂(TKI)吉非替尼获FDA批准,次年同类药物厄洛替尼获批。在 我国,自主研发的埃克替尼于2011 年用于临床。 以血管内皮生长因子(VEGF为靶点的贝伐珠单抗于2006年获FDA批准与标准化疗联 合,作为不可手术的非鳞癌、已发生肺内或肺外播散,或已复发非小细胞肺癌的初始治疗。 2011年,靶向间变性淋巴瘤激酶(ALK)通路药物克唑替尼(crizotinib )获准用于ALK

肿瘤分子靶向药物简介,历史及上市药物

肿瘤的靶向药物选择——国内外已经上市的分子靶向(MTT)药物... 一、靶向药物(targeted medicine)简介 靶向药物是目前最先进的用于治疗癌症的药物,是随着当代分子生物学、细胞生物学的发展产生的高科技药物。靶向药物与常规化疗药物最大的不同在于其作用机理:常规化疗药物通过对细胞的毒害发挥作用,由于不能准确识别肿瘤细胞,因此在杀灭肿瘤细胞的同时也会殃及正常细胞,所以产生了较大的毒副作用。而靶向药物是针对肿瘤基因开发的,它能够识别肿瘤细胞上由肿瘤细胞特有的基因所决定的特征性位点,通过与之结合(或类似的其他机制),阻断肿瘤细胞内控制细胞生长、增殖的信号传导通路,从而杀灭肿瘤细胞、阻止其增殖。由于这样的特点,靶向药物不仅效果好,而且副作用要比常规的化疗方法小得多。靶向药物可以分为以下几类: (一)小分子药物 小分子药物通常是信号传导抑制剂,它能够特异性地阻断肿瘤生长、增殖过程中所必需的信号传导通路,从而达到治疗的目的。例如诺华制药生产的格列卫(Gleevec,通用名Imitinib)、阿斯利康生产的易瑞沙(Iressa,通用名Gefitinib)均属此类; (二)细胞凋亡诱导药物 通过特异性地诱导肿瘤细胞凋亡,达到治疗的目的。如美国千年制药公司生产的Velcade(通用名bortezomib)、Genta公司生产的Genasense(oblimersen); (三)单克隆抗体 例如赫塞汀(Herceptin,通用名Trastuzumab),用于治疗HER2基因阳性(过量表达)的乳腺癌。这类药物是通过抗原抗体的特异性结合来识别肿瘤细胞的。 除上述列举的已经进入临床使用的靶向药物外,另外还有多种靶向药物正在开发中。 二、肿瘤的靶向药物上市历史回顾: ■白血病费城染色体开启靶向治疗之门 早在1960年,美国费城的研究者发现慢性髓性白血病(CML)患者中存在一个染色体异常。数年后,研究者发现这是9号和22号染色体长臂易位的结果。由于这个染色体异常首先在费城(Philadelphia)发现,故命名为费城(Ph)染色体。该染色体也成为了40年后上市的CML靶向治疗的靶点。2001年,首个被证实可对抗费城染色体分子缺陷的药物——伊马替尼以FDA史上最快的速度(仅经过3个月评审)获批上市,自此成为CML的标准治疗,使CML成为一种可控制的慢性病。 第2个治疗CML的靶向药物是达沙替尼,2006年被FDA批准用于伊马替尼不耐受或耐药的CML,2010年其适应证扩展至早期CML的初始治疗。同年,尼洛替尼获批用于CML。2012年,伯舒替尼(bosutinib)和普纳替尼(ponatinib)陆续获批治疗CML。 ■肺癌从EGFR到VEGF、ALK 1987年,研究者首次证实肿瘤细胞上的受体——表皮生长因子受体(EGFR)在非小细胞肺癌的生长和扩散中发挥重要作用。短短6年之后,首个靶向EGFR的非小细胞肺癌治疗药物EGFR酪氨酸激酶抑制剂(TKI)吉非替尼获FDA批准,次年同类药物厄洛替尼获批。在我国,自主研发的埃克替尼于2011年用于临床。 以血管内皮生长因子(VEGF)为靶点的贝伐珠单抗于2006年获FDA批准与标准化疗联合,作为不可手术的非鳞癌、已发生肺内或肺外播散,或已复发非小细胞肺癌的初始治疗。

如何发现药物新靶标

如何发现药物新靶标

如何发现药物新靶标 文献综述 摘要:药物靶标的发现是创造新药物的前提,也是药物筛选的基础,本文从有效单体化合物、基因表达差异、蛋白质表达差异、蛋白质相互作用和RNA干扰方面着手总结了一些药物新靶标的发现技术进行了综述。 关键词:药物靶标;基因表达差异;差异蛋白质组学;蛋白质相互作用;RNA 干扰 引言:药物靶标是药物作用而实现疗效的目标分子,靶标的发现是药物创新的前提,也是药物筛选的基础。新靶标的发现对于更优良的创新型药物的开发具有重大的促进作用。例如,利用HMG CoA还原酶作为药物靶标开发了一系列他汀类降脂药物,仅2000年,该类药物的销售额达120亿美元,并以每年15%~20%的速度增长。Novartis公司利用慢性粒细胞性白血病(CML)相关蛋白Bcr-Abl为靶标,在短时间内开发出有效治疗CML的新药—高活性Bcr-Abl激酶抑制剂STI571(Gleevac)。【1】从这些例子可以发现,生物医药公司花费大量的物力和财力寻找药物的新靶标。随着生命科学的发展,各种科技的创新,也出现了很多药物靶标的发现技术。 一、从有效单体化合物着手发现药物靶标 以疗效确定的单体化合物(天然产物或现有药物)为探针,然后利用计算机模拟单体分子与相关蛋白质三维结构及其相互作用,找到所有的能与其特定结合的蛋白质,这些蛋白质可能与活性药物单体发挥作用的机制相关,因此是潜在的药物靶标分子。蒋华良等便是用此方法发现了2个抗幽门螺旋杆菌活性的

药物的作用靶标蛋白def和TyX,并测定了def蛋白复合物的晶体结构。张永清【2】等利用基因芯片研究苦参碱诱导白血病K562细胞基因表达谱改变,发现CCNB1,cyclinD1,PCNA等基因表达发生明显改变,这些基因可能是苦参碱作用靶点之一。Chen【3】等也利用这个方法研究阿霉素处理MCF-7细胞后蛋白质表达的改变,发现阿霉素造成MCF-7细胞中热休克蛋白27(Hsp27)的3个异形体表达显著下降,由此推测Hsp27可能是控制乳腺癌生长的一个潜在药物靶标。 二、以正常组织与病理组织基因表达差异发现靶标 基因在不同组织和疾病发生发展的不同时空存在着明显的基因表达差异,表达明显发生变化的基因常与发病过程及药物作用途径密切相关,这些表达异常的基因很有可能是药物作用的靶点,可作为潜在的筛选药物的靶标【4】。基因芯片技术、mRNA差异显示技术、抑制性消减杂交技术和基因表达系列性分析技术等在现代生命科学研究中使用也日益广泛,这些技术在新的药物靶标的发现中同样扮演了重要的角色。 Heller【5】等利用基因芯片技术分析了正常及诱发病变的巨噬细胞、软骨细胞系、原代软骨细胞和滑膜细胞的mRNA,发现了数种变化明显的基因,其中包括基质金属弹性蛋白酶基因,为治疗类风湿关节炎提供了新的药物靶标。Kapp【6】等利用该技术分析了霍奇金病细胞系中950个基因的表达情况,并与EB病毒永生化的B淋巴细胞系LCL-GK的基因表达谱相比较,发现白细胞介素-13及其信号转导通路可能成为治疗HD新的药物靶标。 Yamamoto【7】等通过基因表达系列性分析技术分析Hela细胞中基因的表达模式,发现了许多高表达的基因,同时也发现了许多新的肿瘤特异性基因,这为肿瘤的治疗提供了新的靶标。Ryo【8】等利用该技术研究HIV-1病毒感染人T细胞株MOLT-4后基因表达模式变化,发现了53个发生显著表达变化的基因,这为艾滋病的研究提供了重要的线索。 Fisher【9】等将mRNA差异显示技术用于乳腺癌细胞与正常乳腺上皮细胞的对比研究中,发现周期蛋白D2在癌细胞中表达下降,并且进一步实验,结果暗示了周期蛋白D2基因可能是5-氮杂胞苷治疗乳腺癌的一个靶基因。Violette【10】等用该技术比较药物敏感的结肠癌细胞系HT-29与其耐药的3个子细胞系的基因

相关文档
相关文档 最新文档