文档库 最新最全的文档下载
当前位置:文档库 › 空压机余热回收系统原理

空压机余热回收系统原理

空压机余热回收系统原理
空压机余热回收系统原理

●空压机余热回收系统节能原理:

螺杆空压机的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。

螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。

●安装空压机余热回收系统的好处:

1、安全、卫生、方便

螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。

2、提高空压机的运行效率,实现空压机的经济运转

螺杆空压机的产气量会随着机组运行温度的升高而降低。在实际使用中,空压机的机械效率不会稳定在80℃标定的产气量上工作。温度每上升1℃,产气量就下降0.5%,温度升高10℃,产气量就下降5%。一般风冷散热的空压机都在88—96℃间运行,其降幅都在4—8%,夏天更甚。安装螺杆空压机余热回收系统的空压机组,可以使空压机油温控制在80—86℃之间,可提高产气量8%~10%,大大提高了空压机的运行效率。

●空压机余热回收系统特点:

1、空压机原有冷却系统与空压机余热回收系统是两套完全独立的系统,使用者无须担心由于空压机余热回收系统的原因而影响空压机的运行。两套系统的切换自动控制,在空压机余

热回收系统未启用时,空压机使用机身自带冷却系统;当余热回收系统启动时,系统可自动切换至余热回收系统。

2、全自动控制系统,无需人为操作,控制系统会根据温度、水位的情况做出判断,自行决定换热方式。

●螺杆空压机余热回收系统产热水量参数表:

(空压机运行压力大于7.6kg/cm2)

●螺杆空压机余热回收系统产热水量计算:

※100HP(75kw)空压机。

※运行时间24小时。

※温升20℃-55℃(产水量见表)。

※按桶提用水量20L/人·天。

产水量Q=24小时/天×1.92m3/小时=46m3/天=46吨/天。

用水人数N=46m3/天÷20L/人·天=46000L/天÷20L/人·天=2300人。

100HP空压机运行24小时可满足2300人用水。

●不同供热方式使用成本对比:

空压机余热回收装置现场安装规范及标准

空压机余热回收项目 现场安装验收标 准 河南蓝海节能技术服务有限公司

目录 一、空压机余热回收设备现场验收标准 ........ 错误!未定义书签。 1、主机验收 (3) 2、油路验收 (3) 3、水路验收 (3) 4. 控制系统验收 (3) 5. 不锈钢水箱验收 (4) 二、空压机余热回收系统验收标准 (4)

、空压机余热回收设备现场验收标准 1、主机验收 1.1每台余热回收设备的安装场地尺寸至少有4m K 2m距离,保证设备有足够的安装空间和检修空间。 1.2安装位置空间高度要比安装后设备高0.5m左右。 1.3地面平整、硬化。 1.4进水温度表、出水温度表、进水压力表、出水压力表等安装位置及安装方法显示正确无误。 1.5余热回收装置主机无渗漏现象。 2、油路验收 2.1油路管道组件与空压机余热回收主机连接完好,无漏油现象。 2.2安装完毕后保证空压机内部油位在正常刻度线。 3、水路验收 3.1进水球阀、过滤器、电磁阀、自力式温控阀按照顺序安装方法、位置正确。 3.2单台设备的进出水管道与循环管道干管以及水泵与水箱连接正确。 3.3管网必须进行水压试验,试验压力为工作压力的1.5 倍,但不得小于 0.6Mpa。 3.4给水管道在竣工后,必须对管道进行冲洗,饮用水管道还要在冲洗后进行消毒,满足饮用水卫生要求。

4、控制系统验收 4.1控制柜安装位置正确合理,方便柜门的开启。 4.2电线走向合理清楚明了。 4.3各项控制功能符合设计要求。 4.4箱体外部无掉漆,磕碰现象。 4.5控制箱面部显示控制元器件布局合理、美观、固定牢靠,标签整齐 4.6箱内布线排列整齐,避免交叉,接线编号清晰,工整,不易脱色。 4.7接线端子压接牢固,可靠,外围无导线毛刺及导线裸露部分,压线处导线 无损伤。 4.8随箱配有原理图,接线图各一份。 4.9控制箱门锁有效无松动。 5、不锈钢保温水箱验收标准 5.1 水箱满水实验,24 小时无渗漏现象。 5.2 管道连接处、阀门及相关附件有无渗漏水现象。 5.3水箱底座符合技术要求。 5.4水箱保温符合技术要求,外表美观。 5.5水箱爬梯焊接位置准确。 5.6水箱安装完成后清洗干净。 二、空压机余热回收系统验收标准 1、控制系统保证空压机余热回收系统与对应的空压机启停联动,保证空压机回油温度正常。

空压机余热回收热水工程方案.

空压机余热回收热水工程方案 客户: 联系人:供应商:联系人: 电话:电话: 传真:传真: 一:前言 贵司原有75HP空压机一台;贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造;用水方式为桶提式,用水人数700人,另热泵系统在冬季存在制热效率低、产水量不足且耗电大的缺陷,空压机余热回收目前在企业中属热门节能工程,改造后贵司原有供热系统可以作为备有,节假日空压机停开时可自动开启原有系统供应热水。此项工程投入运转后可为贵司节约大笔开支,支持节能环保事业是企业的一项光荣使命。 二:有利改造条件 1. 贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造,据核算单台75HP空压机的热量约为64.5千瓦/小时,如充分利用热能回收,1小时所产热水=(机台最大热负荷64.5千瓦/小时×3600千焦耳)÷(水的比热容4.2千焦耳×水的温升20-60℃)×热效率90%=1243升,壹台空压机每天运行16小时可以产生1243升×1台×16小时=19888升60℃热水,若1人1天用水25升,可供795人使用,空压机运行时间越长,可供使用人员越多。(以上按空压机满载运行条件下计算,空压机卸载时间越长则产热水量相应减少) 三:选用:“新热能”热水机给空压机系统带来的好处: 1.热水机无噪音、环保型、零能耗。 2.加装热水机后机组的运行排气温度非常稳定,不高温,油过滤器、油气分离器过滤,分离的效果能发挥更好,各个阀件的使用寿命更长,有效的降低了维修费用; 3.热水机不需要维护,零维护成本;

4.加装热水机后机组能够保持最佳运行温度82-96℃,使润滑油的性能发挥更好,降低损耗; 5.循环水的水温可保证45-60℃可供员工宿舍使用,食堂热水使用等其他工业热水预热。即实现热能回收达到节能的效果。 四、空压机余热回收热水节能工程安装示意图: 五、空压机余热回收工艺流程说明: 1、概述 压缩机在工作过程中所耗电能转变成热量后大部分被压缩后的油气混合物带走。这些油气混合物经过分离,分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。“新热能”热水机组实际上是一台热量回收装置,根据压缩机各机型油的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。 热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用,回收水温常规为55℃-75℃之间,最高可达90℃,广泛适用于需要高温 水或热水地方,如浴室、食堂、食品工业、锅炉软水或取暖设备等。热水机组是一个回收装置,要实现全自动供水功能还需添置其它设备,其中包括热水管道及保温工程、储热水箱、循环水泵、自动控制箱、各种阀件管件等。可根据用户的不同需求安装不同的控制系统,使余热回收工程在最经济、最安全可靠的状态下运行。 2.热水机组运行工作原理介绍:⑴压缩机启动状态 当压缩机冷态启动时,冷却油的温度较低,此时油冷器旁通阀、热交换器旁通阀关闭,冷却油不经过热交换器和冷却器而直接进入压缩机。⑵热水机组工作状态

空压机变频节能及余热回收方案

节能项目方案设计 1空压机变频节能改造 1.1企业空压机系统基本情况介绍 某某科技(深圳)有限公司共有五台空气压缩机,其中三台用于A栋厂房,两台螺杆式空压机37kW、型号:OGFD37;一台活塞式空压机15kW、型号:AW19008。供A栋厂房冲压车间、自动组装机以及研发部门用气。另外两台螺杆式空压机22kW、型号:OGFD22,供C栋厂房注塑车间、机加工车间、组装、包装车间用气。 1.2空压机变频节能改造分析 一:原空压机系统工况的问题分析 1.主电机虽然以星-角降压起动,但起动时的电流仍然很大,会影响 电网的稳定及其它用电设备的运行安全。 2.主电机时常空载运行,属非经济运行,电能浪费最为严重。 3.主电机工频运行致使空压机运行时噪音很大。 4.主电机工频起动设备的冲击大,电机轴承的磨损大,所以对设备 的维护量大。 空压机节能改造的必要性: 鉴于以上对空压机的原理说明以及目前的工况分析,我们认为对空压机的节能降噪改造是必要的,这样不仅能够节约大量的运行费用,降低生产成本,同时还可以降低空压机运行时产生的噪音,减少设备维护费用。 二:螺杆式空压机的工作原理介绍 单螺杆空压机空气压缩机工作原理,如图1所示为单螺杆空气

压缩机的结构原理图。螺杆式空气压缩机的工作过程分为吸气、密封及输送、压缩、排气四个过程。当螺杆在壳体内转动时,螺杆与壳体的齿沟相互啮合,空气由进气口吸入,同时也吸入机油,由于齿沟啮合面转动将吸入的油气密封并向排气口输送;在输送过程中齿沟啮合间隙逐渐变小,油气受到压缩;当齿沟啮合面旋转至壳体排气口时,较高压力的油气混合气体排出机体。 图1 单螺杆空气压缩机原理图 三:压缩气供气系统组成及空压机控制原理 ⑴、压缩气供气系统组成 工厂空气压缩气供气系统一般由空气压缩机、过滤器、储气罐、干燥机、管路、阀门和用气设备组成。如图2所示为压缩气供气系统组成示意图。

空压机余热利用

空压机冷却水余热利用综述及实例 空气压缩机是气源装置中的主体,它将原动机的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。 余热回收相对电热设备几乎无需能耗,相对于燃油燃气设备零排放,是清洁环保的节能方式。 空压机余热回收可以达到双重目的,第一,可以将余热供给需要的地方;第二,可以节约能源,即节约用来生产等量与空气压缩机余热的热量所耗燃料或电力。 今日的能源状况越来越要求大力节约能源。在某些情况下,例如某些欧洲国家建筑法规都规定工业建筑物只要能够利用从排气中回收的余热,就必须安设足够数量的回收这种余热的装置。这些法规还规定,如果余热(通风空气或者冷却水携带的热量)超过50Mkh/year,同时又是以燃油和电作为热源,就必须有余热回收装置。 就空气压缩机来说,一台50KW设备一年满载运行1000小时,其余热就要超过上述数值。因此,回收余热的要求对于几乎所有装备了大型和中型的空压机站都是用。这样,重要的是弄清楚各种型号空压机的余热回收的可能性。 《怎样回收空气压缩机的余热以节约能源》来自Canadian Mining Journal 中论述了空气压缩机房间的热量等于空气压缩机本体产生的热(100%)加上空压机驱动电动机产生的热(型约为93%,小型约为85%),这就是说,产生的总热量介于轴输入功率的108%到118%之间。可以认为,压缩空气携带走的热量平均约为轴输入功率的4%,这相当于压缩空气和进入空气的平均温差15℃。这样,空压机房间产生的热量总共为轴输入功率的103~113%,这么多的热量,必须从空压机房排除,而在许多情况下可用于供热目的。话句话说,空压机房可作为集中供热的热源。 摘要:研究先进的余热利用技术对机组运行效率的提高有着重要的意义,本文介绍了,分析了各自的热点,并进行了总结和展望 关键词:空压机,冷却水,余热利用 王忠海的《空气压缩机的余热利用》一文中简单介绍了螺杆式空压机的原理和优点,并结合实际工程案例,通过对螺杆式空压机冷却水余热的利用,实现全天候的生活热水供应。 张明柱,张永波《大容量压缩空气干燥器有热再生节能技术》中利用压缩机出口的高温压缩空气对干燥器进行再生,在不增加设备结构复杂性的前提下,可以节能40%。 姚晶宏《空压机节能的新方式》也提出了将空压机散发的热量回收转换到水里,水温提高后可用于锅炉补充水,车间采暖以及金属涂装清洁处理等需要用热水的地方,一方面提高了空压机的运行效率,实现空压机的经济运转,另一方面实现了能源的综合利用,节约了成本。 赵亮,王龙,刘地清《空压机系统节能技术改造》对于空压机来说,其输入能源的80%左右将转化为热能,如果能根据压缩机的结构和原理,安装相应的换热器,水温可提高到65—80℃,实现余热的梯级利用,就可以变废为宝。 郭磊《利用水冷式空压机余热采暖的设计研究》、张庆营,张新明,孟令枫《空压机余热在中央空调节能设计中的应用》分别描述了冷却水(水温在32~42℃)在采暖末端设备以及空调机组设备中的应用,有效的节约了能源。

空压机余热回收热水工程方案

空压机余热回收热水工程方案 客户:联系人:供应商:联系人: 电话:电话: 传真:传真: 一:前言 贵司原有75HP空压机一台;贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造;用水方式为桶提式,用水人数700人,另热泵系统在冬季存在制热效率低、产水量不足且耗电大的缺陷,空压机余热回收目前在企业中属热门节能工程,改造后贵司原有供热系统可以作为备有,节假日空压机停开时可自动开启原有系统供应热水。此项工程投入运转后可为贵司节约大笔开支,支持节能环保事业是企业的一项光荣使命。 二:有利改造条件 1.贵司计划利用美国寿力LS16-75HAC型空压机壹台进行余热回收利用热水工程改造, 据核算单台75HP空压机的热量约为64.5千瓦/小时,如充分利用热能回收,1小时所产热水=(机台最大热负荷64.5千瓦/小时×3600千焦耳)÷(水的比热容4.2千焦耳×水的温升20-60℃)×热效率90%=1243升,壹台空压机每天运行16小时可以产生1243升×1台×16小时=19888升60℃热水,若1人1天用水25升,可供795人使用,空压机运行时间越长,可供使用人员越多。(以上按空压机满载运行条件下计算,空压机卸载时间越长则产热水量相应减少) 三:选用:“新热能”热水机给空压机系统带来的好处: 1.热水机无噪音、环保型、零能耗。 2.加装热水机后机组的运行排气温度非常稳定,不高温,油过滤器、油气分离器过滤,分离的效果能发挥更好,各个阀件的使用寿命更长,有效的降低了维修费用; 3.热水机不需要维护,零维护成本;

4.加装热水机后机组能够保持最佳运行温度82-96℃,使润滑油的性能发挥更好,降低损耗; 5.循环水的水温可保证45-60℃可供员工宿舍使用,食堂热水使用等其他工业热水预热。即实现热能回收达到节能的效果。 四、空压机余热回收热水节能工程安装示意图: 五、空压机余热回收工艺流程说明: 1、概述 压缩机在工作过程中所耗电能转变成热量后大部分被压缩后的油气混合物带走。这些油气混合物经过分离,分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。“新热能”热水机组实际上是一台热量回收装置,根据压缩机各机型油的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。 热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用,回收水温常规为55℃-75℃之间,最高可达90℃,广泛适用于需要高温

空压机余热利用工程

空压机余热利用工程 1、简述 空压机余热是空压机在生产高压空气过程中随之产生的多余热量。在空压机将机械能转换为内能的过程中,空气受到强烈的高压压缩,温度骤升,同时压缩机的高速旋转也会摩擦发热,这些高温热量由空压机润滑油混合成的油气携带排出机体。这部分高温油气流的热量相当于空压机输入电功率的3/4,它的温度通常在80℃~100℃。高温油气流通过空压机的散热系统快速的冷却,以满足空压机正常工作的温度要求。这些热量通过空压机自身的散热系统散发到空气和冷却水中,造成了能源的浪费。 为了充分利用空压机所产生的余热,采用余热回收技术将空压机输入功率大约75%的能源消耗回收回来加热水,加热的水温可达75℃。该热水可用于车间采暖及员工洗澡。 2、热量回收计算 (1)我公司现有5台250KW空压机,二期还需要5台,总共10台250KW 空压机。全部进行余热回收改造,现计算可回收的热量,每台空压机功率的3/4转换为热能;10台空压机加载比例均按80%计算;油气回收效率按93%计算。现计算10台空压机运行1小时回收热量: Q=250×10×0.75×0.8×0.93=1395KW (2)按10%的热量用于洗澡;整个循环系统热量损失按20%计算;则每小时用于采暖的热量为1395×0.9×0.8=1004.4KW。 (3)压延车间冬季每小时需采暖热量为1160KW;胎胚存放区冬季每小时需采暖热量为330KW;两个工段总采暖热量需1490KW, 1490KW>1004.4KW,空压机提供的热量最多能供压延车间采暖和员工洗澡,目前压延车间有采暖设备,胎胚存放区无,所以先满足胎胚存放区采暖,剩余热量再供压延车间采暖,减少蒸汽消耗量。成型车间仍按现有方式采暖。 (4)按现在空压机运行情况看,若产量达到140万套,空压机同时运行数量估计是8台(加载率≥80%),即采暖热量得不到保证。 3、采暖计算 (1)胎胚存放区采暖

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

空压机的节能方法及螺杆空压机余热回收利用讲解

空压机的节能方法及螺杆空压机余热回收利用讲解 一、空压机解决泄漏和用气方式,达到节能目的 首先,空压机解决泄漏和用气方式就可以达到节能目的。据权威机构的检测,空压机所消耗的电能仅有10%转换为压缩空气,而90%转化为热能,可见压缩空气比电贵十倍。但是,在人们心目中,并没有认识到这一点,这主要表现为: 1.1 不重视管理路上的泄漏在气管首先发生的是隐漏,然后才是显漏。当送气管上出现1 mm的孔,压缩空气的压力为 0.714Mpa时,泄漏量为1.5 L/s,相当于压缩机损耗的功率为0.4kW。但在大多数工厂中,到处可以听到漏气的声音,有谁去理会呢?因为没有认识到压缩空气比电贵十倍,所以都习以为常了。因此,空压机节能首先要做的事是治理好泄漏。 1.2 使用不当造成的浪费这里仅举一个例子,在线路板生产厂家,大多数电镀线上都要用振动来增加对小孔的电镀能力,有些厂家偏好采用气振来达到此目的,殊不知,这样做比采用电振的方式要多消耗十倍以上的电力。我们通过表1来对气振和电振的优劣作一比较。从表1中我们可以看到气振的获取要多一个媒体,而压缩空气的获得耗电又如此之大,因而气振的耗能要比电振大的多就不奇怪了。因此空压机的节能同时还要避免不当的用气方式。其次,采取节能技术可以达到节能目的。 二、对空压机进行节能改造的方式 目前,对空压机进行节能改造共有三种方式,试阐述如下: 2.1 集中控制方式 对多台空压机采取集中控制方式。根据用气情况自动控制空压机的运行台数,改造之前,空压机开启的台数是固定的。 (1)当用气减少到一定量时,空压机是通过减少加载时间来减少产气量。 (2)若用气量进一步减少,性能好的空压机则会自动停机。在(1)的情况下,空压机即使是在卸载情况下也是要消耗电能的。改造后,便可停掉相应台数的空压机,运行台数减少了,无疑就节约了用电。 2.2 变频调速方式 采取变频调速方式来降低空压机电动机的轴功率输出。改造之前,空压机的压力达到设定压力时,即会自动卸荷;改造之后,空压机并不卸荷,而是通过降低转速来降低压缩机时的产气量,维持气网需要的最低压力。这里有两个地方可以节能: (1)减少压缩机从卸荷状态到加载状态这一突变过程带来的电能消耗。 (2)电机的运转频率降低至工频以下,使电机轴的输出功率减少。以上两种方式都不同程度的降低了空压机在运行过程中的能源消耗,但是空压机在工作过程中产生如此大的热能而让它白白地散发到空气中去,却在很长的时间内未得到用户的普遍重视,这不能说不是一个极大的遗憾。 2.3 空压机热能回收是一项非常环保的节能方式 2.3.1热能回收装置工作原理

空压机余热回收方案

空压机余热回收 系统工程方案书

目 录 一:空压机余热回收原理、用途说明 (3) 二:空压机热能回收的优点 (5) 三:空压机专用热水机和热泵、锅炉等各种制热设备的比较 (6) 四:贵公司的热能回收方案设计基础 (7) 五:空压机热能回收应用安装示意图 (8) 六:方案目标及验收标准 (10) 七:“新热能”空压机专用热水机的独特原理、设备数据、产品特点 (10) 八:工程施工依据与管道选材 (14) 九:安装施工方案 (15) 十:售后服务 (17) 十一:报价清单、回报周期、商务条款 (17) 十二:回报周期、商务条款: (19) 十三:工程实例图: (20) 附件:热水机产品介绍………………………………………………………………

一、空压机余热回收原理、用途说明: 1、概述:空压机热能的基本概况: 空压机的工作过程中,输入电能的80%左右变成热量,余不足20%左右变成最终的压缩空气能。 压缩机在工作过程中所耗电能转变成热量后,大部分被压缩后的油气混合物带走。分别在各自的冷却器(油冷却器和气冷却器)中被冷却介质(水或空气)带走,热量白白地浪费了。从理论上讲,除了2%的辐射热量不能回收外,几乎98%的热量均可以被回收利用。 2、热水机的基础原理及热能回收的用途: “新热能”热水机组实际上是一台热量回收装置,不同于机器上的冷却器。根据压缩机各机型的不同热量,设计制造出不同型号的机组与各种型号的压缩机匹配使用,避免因换热面积不精确,压降过大等原因给压缩机带来故障。热水机组接管通常设置在压缩机主机和冷却器之间,无论是水冷式压缩机还是风冷式压缩机都可适用。要实现全自动供水功能还需添置其它设备,其中包括热水管道、保温工程、储热水箱、循环水泵、自动控制箱、各种阀件管件等。可根据用户的不同需求安装不同的控制系统,使余热回收工程在最经济、最安全可靠的状态下运行。 回收水温常规为55℃-75℃之间,广泛适用于需要高温水或热水地方,如: 员工浴室用水、食堂用水、造纸及食品工业等生产设备用热水、锅炉预热、取暖设备、木材及电子产品烘干等。

空压机余热回收方案设计

空压机余热利用中央热水系统设计方案 致: 根据贵方员工宿舍中央热水系统工程项目的邀请,设计施工方市森茂节能环保工程,按贵方要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计方案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计方案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单 1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计方案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。 1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造方式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水方式为不定时不定量,热水温度在55℃以上。 1.2 工程总方案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个周转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水

空压机余热回收

空压机余热回收 空压机余热回收又叫空压机热能回收,该方式实现废热循环利用,有利于节能减排,保护环境,大幅降低企业消耗成本,为企业带来可观的经济效益! 空压机余热回收简介 空压机热能回收系统是通过空压机内部改造,增加热能回收器,将空压机运行的过程中产生的大量热量,通过CHR高效热能回收器进行回收利用,从而用于生活、生产。如,顺高余热回收系统将回收的热量用于液体介质的加热、锅炉补水的预加热、中央空调系统使用、生活用水及地暖用水、工业清洗和卫生设施清洁等方面。 余热回收特点 1、全优设计,高效节能 独特、新颖、高效的设计,延长空压机冷干机的“使用寿命” 2、零运行费用经济效益显著 不需要任何费用,可提高空压机的运行效率,节省空压机冷却风扇用电。

3、冷水直热、智能控制 采用独特、专利设计的直热方式可保持出水温度恒定,水位高低自动控制。 4简单、可靠、安全、维护少 延长空压机的“消耗品”的更换周期。 余热回收系统配置高端 1、专业的换热器设计 高效热能回收换热器,采用低阻力、高效率、高导热性技术设计,具有体积小、重量轻、阻力小、导热性强等特点。例,顺高余热回收时候的高效换热器采用不锈钢板材质,具有耐腐蚀、耐高温、耐高压等性能,极大地保障热能回收器效率同时保证了空压机系统的正常稳定的运行。 CHR高效热能回收换热器图示 2、高效热能回收器采用先进的智能化电气控制系统: 1.可与空压机实际运行情况进行联动工作. 2.可实现全天候无人值守. 3.可全面监控热回收系统各个物理参数 4.可在线统计热回收量,直观反映回收热量的经济效益 5.可控制冷却风扇运行以达到控制油温的目的

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

空压机余热回收技术方案

XXXX有限公司 XXX系统技术方案 一、概述 节能减排,降耗增效是当今每个企业所必须面对的话题,是关系到企业生存和发展的重中之重。能源的危机对于高能耗的企业,面临着严峻的考验和巨大的生存压力,现如今激烈的市场竞争,导致企业的利润空间已经大幅度下浮。只有在企业内部挖潜,在节能降耗上下功夫,不然企业无法生存。作为节能设备的制造企业,我们针对市场开发了适合于各种行业的空压机热能回收系列产品。本系统设计主要是提取空压机运行过程中浪费的热能,在回收热能的同时对空压机进行保护作用。从而达到节约能源与环保的作用。系统采用智能数字自动化控制,自动化程度高,可以完全不需要专人操作。 二、工程实施的意义 1、利用原本浪费的空压机热能进行回收,避免空压机房温度过高,空压机排气温度保持在750C到850C最好温度运行。 2.使空压机更省电,风扇不用开启,以贵公司76千瓦螺杆机为例风机为2.2千瓦,每小时可省约2.2度电,二十四小时可省52.8度电。 3、无需任何费用回收460C~480C热水,用于办公室或者车间供暖热源。 4、完全清洁无污染,安装方便,无需改变原有压缩机结构。 5、提高员工待遇(硬件设施),减少电费支出。

三、系统特点 系统采用全自动智能化控制, 无需专人看管。 回收热水温度可调 循环水箱自动补水 扬程水泵自动送水(达到设定的温度) 循环水箱水位控制 保温水箱水位控制 电脑检测循环水箱水位显示 电脑检测保温水箱水位显示 循环水自动循环加热 电脑系统自动检测故障源并显示在显示屏上

四、系统设计方案 (一)、根据贵公司提供的有关数据可以计算出供暖的面积:针对贵公司x台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收): 第一部分:空压机加载吸收的热量可转化中央空调供暖的功率为: 76×8×80%×80%=389千瓦 第二部分:空压机卸载吸收的热量可转化中央空调供暖的功率为: 76×8×20%×40%×80%=38.9千瓦 总共可以转化成中央空调供暖的功率为: 389+38.9=427.9千瓦 经过保温处理并考虑热量损失10%计算,可供中央空调供暖的总功率为:385千瓦 按照生活供暖加热到23摄氏度为例,每平方米面积所需供暖的功率为180W~200W左右,所以: 压缩机总体可以供暖的面积大致在2000个平方左右。(二)设计方案如下: 针对贵公司8台76千瓦空压机热量进行回收(假定空压机负载率为80%,24小时工作),我公司热能回收机热量吸收率为80%(对油气热量同时回收);

空压机余热回收系统原理

●空压机余热回收系统节能原理: 螺杆空压机的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。 螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。 ●安装空压机余热回收系统的好处: 1、安全、卫生、方便 螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。 2、提高空压机的运行效率,实现空压机的经济运转 螺杆空压机的产气量会随着机组运行温度的升高而降低。在实际使用中,空压机的机械效率不会稳定在80℃标定的产气量上工作。温度每上升1℃,产气量就下降0.5%,温度升高10℃,产气量就下降5%。一般风冷散热的空压机都在88—96℃间运行,其降幅都在4—8%,夏天更甚。安装螺杆空压机余热回收系统的空压机组,可以使空压机油温控制在80—86℃之间,可提高产气量8%~10%,大大提高了空压机的运行效率。 ●空压机余热回收系统特点: 1、空压机原有冷却系统与空压机余热回收系统是两套完全独立的系统,使用者无须担心由于空压机余热回收系统的原因而影响空压机的运行。两套系统的切换自动控制,在空压机余1 / 3 热回收系统未启用时,空压机使用机身自带冷却系统;当余热回收系统启动时,系统可自动切换至余热回收系统。 2、全自动控制系统,无需人为操作,控制系统会根据温度、水位的情况做出判断,自行决定换热方式。 ●螺杆空压机余热回收系统产热水量参数表: (空压机运行压力大于7.6kg/cm2) 可回收热时m3/h时m3/h时m3/h时m3/h机型功kca2050205520602065 13500.450.30.315kw0. 0440.519800.660.522kw 0.60.9270000.680.7630kw 03330741.110.937kw0.8

余热回收技术方案

保定太行和益水泥 活性石灰线余热回收技术方案 河北朗瑞环境工程 2012年08月

1. 工程概况 一条日产800吨活性石灰生产线。计划采用窑尾余热用于办公室采暖。 河北朗瑞环境工程是一家专业从事余热回收工程的高技术公司,与华北电力大学、航空航天大学、中科院热物理研究所联合研制了高性能的热管换热器、翅片管换热器,通过ISO9001-2000质量体系论证。河北朗瑞环境工程坚持“能源节约与开发利用并举,污染源头控制与末端治理相结合”的设计原则,致力于现代科技与实际应用的完美结合,树立了众多的高效节能、综合治理、清洁生产的典工程。特别是余热回收工程在冶金、钢铁、电力、石油、化工、建材等行业的实施,受到业界人士广泛认可。 河北朗瑞环境工程针对保定太行和益公司提供的相关参数资料,根据业主相关要求和该项目的具体情况,提出采用高性能热管换热器回收石灰窑高温烟气热能的技术方案,回收的热能用来取暖,实现节能减排的效果。 2. 工艺设计条件及要求 2.1. 设计原始参数 2.2. 主要执行标准与规 《蒸汽锅炉安全技术监察规程》 《压力容器安全技术监察规程》 /T1620-1993《锅炉钢结构技术条件》 /T1613-1993《锅炉受压元件焊接技术条件》 /T3375-2002《锅炉原材料入厂检验》

/T1615-1993《锅炉油漆包装技术条件》 /T4420 《锅炉焊接工艺评定》 JB1152 《锅炉和钢制压力容器对接焊缝超声波探伤》 /T4308-1999《锅炉产品钢印及标记移植规定》 /T1611 《锅炉管子制造技术条件》 《碳钢-水重力热管技术条件》 ZBG93010《高频电阻焊螺旋翅片管》 2.3. 主要编制原则 本方案按照技术先进、工艺可靠、经济合理的原则确定技术方案,结合本工程的具体情况,编制报告重点遵循下述原则: (1)遵守国家提倡节约能源的有关标准、规和政策,如《节约能源法》,《节能减排综合性工作方案》等。 (2)采用高效、运行稳定、管理成熟的换热工艺和技术。 (3)根据行业的具体情况,综合运用导热、对流、辐射等传热原理,采用适宜的强化传热手段,通过优化设计达到最佳的传热效果 (4)在符合上述条件情况下采取投资最少、运行费用最低的方案。 (5)系统管理和维护方便,工程设计优雅美观,与周围环境和谐统一。 2.4. 设计要求 (1)换热器换热量满足取暖热负荷并且留有一定的裕量。 3. 技术简介 3.1热管及热管换热器原理及特点介绍 3.1.1热管 热管起源于二十世纪六十年代的美国,1967年一根不锈钢-水热管首次被送入地球卫星轨道并运行成功。热管理论一经提出就得到了各国科学家的高度重视,并展开了大量的研究工作,使得热管技术得以很快发展。热管技术开始主要用于航天航空领域,我国自二十世纪70年代开始对热管进行研究,自80年代以来相继开发了热管气

空压机余热回收装置的工作原理

空压机余热回收装置的工作原理 洛阳中懋环保设备有限公司,通过深入研究解决了工业余热浪费的问题,空压机余热回收装置可以为工厂节约大量的成本,变废为宝,充分利用资源。备受社会工业人士的欢迎。下面为大家剖析空压机的内部工作及空压机余热回收装置的工作原理。 现行螺杆式空气压缩机里的空气通过进气过滤器将大气中的灰尘或杂质滤除后,由进气控制阀进入压缩机主机,在压缩过程中与喷入的冷却润滑油混合,经压缩后的混合气体从压缩腔排入油气分离罐,从而分别得到高温高压的油、气。由于机器工作温度的要求,这些高温高压的油、气必须送入各自的冷却系统,其中压缩空气经冷却器冷却后,最后送入使用系统;而高温高压的润滑油经冷却器冷却后,返回油路进入下一轮循环。 在以上过程中,高温高压的油、气所携带的热量大致相当于空气压缩机功率的1/4,其温度通常在80℃—100℃之间。螺杆式空气压缩机通过其自身的散热系统来给高温高压的油、气降温的过程中,大量的热能就被无端的浪费了。 为了充分利用螺杆式空压机所产生的余热,空压机热泵热水器提供了一种余热利用技术,利用该技术对螺杆式空气压缩机所产生的高温高压的气体进行冷却,不仅可以提高空气压缩机的产气效率,而且可使企业获得生产和生活所需的热水,严冬可加热到≥50℃,夏秋季节≥65℃,从而解决了企业主为福利生活热水长期经济支付的沉重负担。 现行企业的生活热水大多都采用燃油锅炉供应热水,而且必须是限量定时供给。从调查三十几家企业的供水资料显示:就是采用节能型的燃油锅炉烧水,人均每天的热水费用是:冬天0.8元/人,夏天0.5元/人,平均为:0.65元/人,月支付19.5元/人,一名职员的年供热费用是:234.00元/人,一个1000人的企业光热水一项经济支付就达234000元。使用我们的余热利用装置,就可以得到方便可观的经济实用价值。 空压机热回收是一种新型高效的余热回收设备,设备靠吸收空压机产生的废热来把冷水加热的,没有能源消耗。作为一种新型高效的余热利用设备,主要用于解决员工的生活、工业用热水等问题,因为企业本身就现在用螺杆式空压机,只是增加了螺杆空压机的功用,为企业节省能源的消耗,从而节省大量的成本。 空压机产生的热能被热能热水机充分吸收并对冷水进行加热,同时空压机得以降温。充份利用这些浪费的热能有利于节能减排,降低工厂的运营成本,同时改善空压机的运行状态,提高产气量,节约空压机的耗电费用。因此,利用这一浪费的能源,已经成为越来越多企业的共识。 热能热水机组,是利用压缩中的高温油气热能,通过热交换将热能传递给常温热水,实现热能利用。电动机带动螺杆机旋转,空气经过滤器,被吸入螺杆压缩机中压缩成高压空气,并与循环油混合形成高压高温油气混合气体,进入油气分离器。油气混合气被分离成油气和空气后,其中的压缩空气经后冷却器散热后供给用户;而循环油气在油气分离器中被分离,凝结成液态后,再经前冷却器散热及过滤器过滤,回到压缩机,完成一个循环过程。压缩机热能热水机组是将高温循环油(和高温压缩气体)引入热能热水机组内,空压机运行过程中所产生的热能被热能热水机充分吸收,同时压缩机得以降温。 喷油螺杆压缩机热能热水机组,是一种利用压缩机高温油气热能,通过热交换将热能充分利用的节能设备。它通过能量交换和节电控制,收集空压机运行过程中产生的热能,同时改善空压机的运行工况,是一种高效废热利用、零成本运行的节能设备。 洛阳中懋环保设备有限公司专业致力于节能产品和技术应用及推广。公司结合近年来广大企业能耗设备的现实需求和保护我们地球的共同社会责 任,公司引进国外先进节能技术和产品,自主研发了高效热能利用节能设备。公司采用世界先进的合同能源管 理(EMC)模式,为企业节能降耗找到一种新的融资途径。

空压机余热回收案例

空压机余热回收案例: 某公司空压机余热回收节能改造 项目背景 1.改造前用能系统状况 某造船公司在生产中使用多台离心式空压机来制造压缩空气(空压机共3台,其额定功率2台974kW,1台662kW),合计容量为2610kW。 2.改造前用能系统存在的问题 空压机在运行时会产生大量的压缩热,通过油冷方式进行冷却并将热量排放到环境中。而与此同时,在生产生活中又需要用60℃热水,采用一台燃煤锅炉生产蒸汽以满足需要,造成了一定程度的能源浪费。 技术方案 1.技术原理 (1)叙述采用的技术的原理; (2)叙述采用节能技术及原因; (3)叙述电能替代技术的关键能效指标(设备效率、能效比或产品单耗); (4)叙述该技术使用条件和技术优势。 技术的原理:空压机压缩空气的过程中,由于空气分子间的摩擦,将产生大的热能,其热能总量接近于空压机的100%轴功率,其中70-90%的热能是可以被回收利用。在空压机系统中串

接换热设备,将被排放的热量交换于水、油等储热介质中加以综合利用。 采用节能技术及原因: 节能:改造原有系统,不仅利用了主产品,而且将副产品进行回收利用,节能效果明显。 易控制:回收空压机余热后生产热水后存入蓄热水箱供生产生活需要,补水、供水全部采用自动控制。 适用条件和技术优势: 目前空压机余热回收广泛应用于造船、钢铁、水泥等大量使用空压机且有生产生活用热需求的行业。技术优势:作为空压机来讲,它的主产品为压缩空气,热量为副产品,通常情况下,我们仅利用主产品,浪费副产品,不仅仅是浪费,利用该技术将空压机的热能进行回收利用,投入小产出高,优越性明显。 2.技术方案 (1)节能改造方案:本项目采用在空压机房中安装一台热交换器对其进行节能改造。

相关文档