文档库 最新最全的文档下载
当前位置:文档库 › 自动控制原理复习总结(精辟)

自动控制原理复习总结(精辟)

自动控制原理复习总结(精辟)
自动控制原理复习总结(精辟)

学习必备 欢迎下载

2009 年秋季 自动控制理论(一)复习指南和要求

第二章 控制系统的数学模型复习指南与要点解析

要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)

一、控制系统3种模型,即时域模型----微分方程;※复域模型——传递函数;频域模型——频率特性。其中重点为传递函数。

在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。

零初始条件下:如要求传递函数需拉氏变换,这句话必须的。

二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。 1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45)

2.结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中:

※引出点前移在移动支路中乘以()G s 。(注意:只须记住此,其他根据倒数关系导出即可)

引出点后移在移动支路中乘以1/()G s 。 相加点前移在移动支路中乘以1/()G s 。 相加点后移在移动支路中乘以()G s 。

[注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,()G s 就是谁。

例1:

)

解法 1:

1) 3()G s 前面的引出点后移到3()G s 的后面(注:这句话可不写,但是必须绘制出下面的结构图,

)

2) 消除反馈连接

)

3) 消除反馈连接

4) 得出传递函数

123121232123()()()()

()1()()()()()()()()()

G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数

()

()

C s R s =。。。。) 解法 2: 1()G s 后面的相加点前移到1()G s 前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。

[注]:条条大路通罗马,但是其最终传递函数

()

()

C s R s =一定相同) [注]:※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线) 三. ※※※应用信号流图与梅森公式求传递函数

梅森公式: ∑=??=n

k k k P P 1

1

式中,P —总增益;n —前向通道总数;P k —第k 条前向通道增益;

△—系统特征式,即 +-+-=?∑∑∑f e d c b a L L L L L L 1

Li —回路增益;

∑La —所有回路增益之和;

∑LbLc —所有两个不接触回路增益乘积之和; ∑LdLeLf —所有三个不接触回路增益乘积之和;

△k

—第k 条前向通道的余因子式,在△计算式中删除与第k 条前向通道接触的回路。 [注]:一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。

注意2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。

例2: 已知系统的方框图如图所示 。试求闭环传递函数C(s)/R(s) (提示:应用信号流图及梅森公式)

解1)

[注]

2) 应用梅森公式求闭环传递函数: 前向通道增益

3211G G G P =;342G G P =;

回路增益

221H G L -=;133212H H G G G L -=;53G L -=;43431L G G H H =- 特征式

2212313534312521G H G G G H H G G G H H G G H ?=+++++;

余因子式(对应各个前项通道的)

511G +=?;521G +=?;------经验:一般余因子式不会直接等于1,不然太简单了

闭环传递函数1243522123135252

()(1)()

()1G G G G G C s R s G H G G G H H G G G H ++=

++++ 四、知道开环传递函数的定义,并会求闭环系统的传递函数 1.开环传递函数,如图:

12()

()()()()

()()G s H s B s G s G s H s s ε=

=

,则()

()(

)()

()()B s G s s s G H s s H ε=

= )())((G s H s G s =------常见)

2.四个闭环系统的传递函数----特点分母相同,即特征方程相同

1212()()()

()()1()()()

G s G s C s s R s G s G s H s Φ==+(通常说的输出对输入的传递函数);

212()()

()()1()()()n G s C s s N s G s G s H s Φ==+

12()1

()()1()()()

s s R s G s G s H s εεΦ==+

212()()()

()()1()()()

n G s H s s s N s G s G s H s εεΦ-==+

[注]:后面求稳态误差需要

第三章 线性系统的时域分析

要求:1) 会分析系统的时域响应()c t ,包括动态性能指标;

2) 会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件; 3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。

一、时域分析方法和思路:已知系统输入()r t 和系统模型()s Φ,求时域响应()c t 。

例1:求一阶系统的单位阶跃响应。

1)输入)(1)(t t r =,则其拉氏变换为s

s R 1

)(=

,则 2)11111

()()()111/T C s s R s Ts s s Ts s s T

Φ==?=-=-

+++ 3)对上式取拉氏反变换,得其响应单位阶跃信号的响应为: /()1e ,0t T ss ts c t c c t -=+=-≥

[注1]:※※ss c 为稳态分量,它的变化由输入信号的形式(上例中)(1)(t t r =)决定;

※ ※ts c (上例中/e t T ts c -=-)为暂态分量,由闭环传递函数的极点(上例中1

s T

=-

)决定。 二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说()s Φ的极点都在在s 平面[左]半部分。---系统稳定性是系统本来的固有特性,与外输入信号无关。

1.只有当系统的特征根全部具有负实部时,系统达到稳定。

2.如果特征根中有一个或一个以上具有正实部,则这表明系统不稳定;

3. 如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或者趋于等幅正弦(余弦)振荡,称为临界稳定。

[注2]: 根据如果()s Φ极点都在s 平面左半部分,则暂态分量ts c 随时间增大而衰减为0;

如果()s Φ极点有一个都在s 平面右半部分,则暂态分量ts c 随时间增大而发散。 三、※※※二阶系统单位阶跃响应及其欠阻尼情况下指标计算

1.熟悉二阶系统单位阶跃响应的3个对应关系,即:

不同阻尼比ζ类型—不同单位阶跃的时间响应波形图()c t ---不同系统稳定性

2.二阶系统欠阻尼单位阶跃响应的指标计算:欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算(公式必须牢记)

p d t πω==

r d t πβω-==

()()%100%e

100%()

p p c t c c σσ-∞==

?=?∞,4

3

,0.02,,0.05s s n

n

t t ζωζω=

?==

?=或

其中,阻尼角arctan

β=,阻尼振荡频率

d ωω=

例2:20XX 年考题已知控制系统如图所示,

(1) 确定使闭环系统具有7.0=ζ及)/(6s rad n =ω的k 值和τ值;

)

6()(1+=

s s s G ;s s H τ=)(

(2) 计算系统响应阶跃输入时的超调量p σ和峰值时间p t 。

解:(1) 2

2222)6()(n

n n s s k s k s k

s ωζωωτ++=+++=Φ; 236

26n n k k ωζωτ?==??=+??

, 则360.067k τ=??

=? (2) 21/2

%exp([1]) 4.6%σζπζ-=--=;s t d p 733.0/==ωπ。

例3 20XX 年考题:已知控制系统如图所示,

)

6()(+=

s s k

s G ;s s H τ=)(

在0)(br =s G 时,闭环系统响应阶跃输入时的超调量%6.4=p σ、峰值时间733.0=p t 秒,确定系统的k 值和τ值;

解:(1) 2222

()(6)2n n n

k

s s k s k s s ωΦτζωω==+++++; % 4.6%0.70.7336p n t σζω=?=??=?=?;则2

62n n k k ωτζω?=??+=??则360.067k τ=??

=? 四、附加闭环负实零点对系统影响

具有闭环负实零点时的二阶系统分析对系统的作用表现为: 1. 仅在过渡过程开始阶段有较大影响;

2. ※附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大;

3. ※负实零点越接近虚轴,作用越强。

五、高阶系统的时域分析---利用闭环主导极点降阶

如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足

1|Re ||5|Re |i s s ≥

式中,1s ——为主导极点; i s ——为非主导极点。

则距离虚轴最近的闭环极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。 六、※※※利用劳斯判据判定系统稳定性并求使得系统稳定的参数条件。

1.※根据特征方程:1110()0n n n n D s a s a s a s a --=++++=,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在s 平面右半部的极点个数相同。 2.劳斯表特殊情况时,系统临界稳定或者不稳定。

3. 如果系统稳定,则特征方程1110()0n n n n D s a s a s a s a --=++++=系数同号且不缺项; 4.※利用劳斯判据判定系统稳定性

例4: 已知系统结构图,试用劳斯稳定判据确定使闭环系统稳定的k 的取值范围。

解:2()(1)(2)k

s s s s s k

Φ=

++++整理,

4

32

()332k

s s s s s k

Φ=++++从高到低排列特征方程系数 列劳斯表:

S 4 1 3 k S 3 3 2 0 S 2 7/3 k S 1 (14-9 k)/7

0 S 0

k

如果劳斯表中第一列的系数均为正值,因此,1490,14/97

k

k -><,

且0k >。所以014/9k <<。 七、※※※稳态误差以及减小或者消除稳态误差

1. 稳态误差定义:11lim ()lim [()]lim [()()]ss e t t t e e t L E s L s R s Φ--→∞

→∞

→∞

===

其中,误差传递函数()1

(),()1()()[1()()]e E s s H s R s H s G s H s Φ=

=≠+, ()1

(),()1()1()

e E s s H s R s G s Φ=

==+ 2.终值定理法求稳态误差

如果有理函数)(s sE 除了在原点有唯一的极点外,在s 右半平面及虚轴解析,即)(s sE 的极点均位于s 左半平面(包括坐标原点),则根据终值定理可求稳态误差。

()lim ()lim ()()ss ss e s s e e sE s s s R s Φ→→∞===

[注]:一般当输入是为阶跃、速度、加速度信号及其组合信号时,且系统稳定时,可应用终值定理求稳态误差。

3.系统型别ν-定义为开环传递函数在s 平面的积分环节个数。

11(1)()(),(1)

ΠΠm

i i n ν

νj j K s G s H s n m s T s τ=-=+=

≥+

其中,K :系统的开环增益(放大倍数),ν为型别。

4.基于静态误差系数的稳态误差---当-输入为阶跃、速度、加速度信号及其组合信号时,

? 静态位置误差系数 00lim ()lim p νs s K

K G s s →→==,1ss p

R e K =+

? 静态速度误差系数 100lim ()lim

v νs s K

K sG s s -→→==, ss

v

R e K = ? 静态加速度误差系数 2

200lim ()lim a νs s K K s G s s -→→==,ss a

R e K =

要求:根据给出系统开环传递函数和输入,能用静态误差系数能够求出稳态误差。

例5: 如图

求系统当 k=10, 输入为 r(t)=1.5t.解: 开环传递函数

105

()(2)(0.51)

G s s s s s =

=++, 1ν=

因为 r(t)=1.5t,则100lim ()lim 5v νs s K

K sG s s -→→===, 因此 1.50.35

ss v R e K =

==。 5.减小或者消除稳态误差的方法:

a. 增大开环放大倍数(开环增益)(在保证系统稳定的前提下)

b. 提高系统的型别(在保证系统稳定的前提下)。

c. ※采用复合控制方法(要知道其原理):包括输入补偿和扰动补偿两种,都可以消除稳态误差而不影响系统稳定性。

[注]:0

lim ()lim ()()ss e s s e sE s s s R s Φ→→==若()e s Φ零点包含输入信号的全部极点,则系统无稳态误

差。同理,0

lim ()lim ()()ssn n en s s e sE s s s N s Φ→→==,若()en s Φ零点包含输入信号()N s 的全部极点,

则系统无稳态误差。

例6 2007一复合控制系统如图所示。

图中:2

211212(),(),()(1)1bc K as bs

G s K G s G s s T s T s

+==

=

++ K 1、K 2、T 1、T 2均为已知正值。当输入量r(t)= t 2/2时,要求系统的稳态误差为零,试确定参数 a 和b 。

解 系统闭环传递函数为

21212()()()1bc G G G G C s s R s G G +Φ==+,代入2211212(),(),()(1)1bc K as bs G s K G s G s s T s T s

+===

++ 则32

212122232

12121212212

1()(1)()()1()()1()(1)bc e G G TT s T T K a s K b s E s s s R s G G TT s T T s K K T s K K ΦΦ-++-+-==-==++++++(只适应于单位负反馈系统)

欲使系统闭环系统响应速度输入3/1)(s s R =的稳态误差为0,即

32

121222323000121212212()(1)1lim ()lim ()()lim ()(1)ss e s s s TT s T T K a s K b s e sE s s s R s s TT s T T s K K T s K K s

→→→++-+-==Φ=?+++++ ,()e s Φ应该包含3

/1)(s s R =的全部极点。

12221T T K a K b

+-??

-?,则2

22

11

K b K T T a =

+= [注]:要求会求误差传递函数,包括扰动下的误差传递函数(一般单位反馈)。

第四章 线性系统的根轨迹法

要求: 根据给出系统结构图---求开环传递函数---得出根轨迹方程---化成标准形式—判断根轨迹类型---绘制根轨迹----完成对稳定性、动态性能和稳态性能的分析。

一、※※根轨迹定义:开环系统某一参数从 0→∞时,闭环系统特征方程式的根(闭环极

点)在[s]平面变化的轨迹。 [注]:根轨迹是闭环系统特征方程式的根的轨迹。 二、根轨迹法中开环传递函数的标准形式——零极点形式

11

()

()(),()

m

j j n

i

i k s z G s H s n m s p ==-=

≥-∏∏,k 称为开环系统根轨迹增益

[注]:变化的参数以规范形式k 出现在分子上。

开环系统零极点形式表示,s 项的系数为1; 三、根轨迹方程从哪里来?----※根据闭环系统特征方程 四、※※※根轨迹绘制的基本规则(180度和0度)(前8条)

[注]:180度和0度的差别主要是相角条件有关的不同。注:相角逆时针为正。 [注]:注意绘制的主要步骤必须有——因有步骤分,而且要标注上前头方向。

例1:某负反馈系统的开环传递函数为2

(2)

()()23

k s G s H s s s +=

++,试绘制系统的概略根轨迹。 解:要判断是180°根轨迹还是0°根轨迹,根据根轨迹方程 2(2)

()()123

k s G s H s s s +=

=-++。标准型——180°根轨迹

1:根轨迹的起点和终点。

起点11p =-+

21p =--(有复极点有起始角),2n = 终点:12z =-1m =。

2:根轨迹的分支数。根轨迹的分支数=开环极点数。2n =---可以省略此步 3:根轨迹的对称性和连续性:根轨迹连续且对称于实轴。---可以省略此步 4:根轨迹的渐近线(与实轴的交点和夹角)。 1n m -=,与实轴的夹角0180a ?=——负实轴。

如图:

5:根轨迹在实轴上的分布:

(,2]-∞-是根轨迹。

6:根轨迹的起始角和终止角(只有开环复极点,因此只有出射角)

0011112180()()180(12)(11p p z p p θ=+∠--∠-=+∠-+-∠-++0000118054.790144.7p θ=+-=,

利用对称性,则02144.7p θ=-

7:根轨迹与实轴的交点(根轨迹在实轴上的分离点与分离角)

2(23)2s s k s ++=-+,则

2(23)[]02dk d s s ds ds s ++=-=+ 因此,2

410s s ++=,所以

求出123.72,0.268x x s s =-=-(舍) 8:根轨迹与虚轴的交点。

若将s j ω=代入特征方程2(2)

1023

k s s s ++=++

223(2)0s s k s ++++= 所以令实部,虚部分别等于0得:

220

320

k k ωωω+=??-++=?与虚轴没有交点

分析系统的稳定性:——都稳定。

五、根据根轨迹分析系统性能---根据根轨迹判断稳定性※※※,求k 值范围※※※,超调量,系统型别(看根轨迹原点处开环极点的个数)等。

例2:2008考题 已知系统结构图如下,要求

1、绘制参数:0a →∞的根轨迹(要有主要步骤) (10分);

2、确定使系统稳定的参数a 的范围(2分);

3、确定使系统阶跃响应无超调的参数a 的范围(2分);

4、确定使系统出现阶跃响应出现等幅振荡时的频率(1分)。

5、确定使系统出现阶跃响应出现衰减振荡时的参数a 的范围(1分)。 解:

1、由题意得,系统特征方程为:

32()0.250.250D s s s s a =+++=

则 20.25(0.25)a

s s s =-++

则根轨迹方程为:

2

0.25

1(0.25)

a s s s =-++(2分)。 绘制参数:0a →∞的绘制0180根轨迹如下: (1)根轨迹的起点10p =,230.5p p ==-(1分),无开环有限零点; (2)根轨迹的分支数 3n =; (3)根轨迹的渐近线(1分):0m =,3n m -=。 与实轴的交点1

1

00.50.51

33

n m

i j

i j a p z

n m σ==---=

=

=--∑∑

与实轴的夹角,03(21),0,1,11

,3

a l l l l n m l π

π

?ππ??=?+==±==?-?=-?-?

(4)实轴上的根轨迹:(,0]-∞(1分) (5)根轨迹与实轴的分离点(1分)

2[4(0.25)]0da d

s s s ds ds

=-++= 212810s s ++=,求出与实轴交点:10.5s =-,2

s =(6)根轨迹与虚轴的交点(1分)

※应用劳斯稳定判据的特殊形式,列劳斯表:

321

010.2510.250.25(1)00.25s s a

s a s a

- 当1a =,1

s 为全零行,此时构筑辅助方程2

0.25s +=则根轨迹如下(3分):

2、01a <<系统稳定(2分);

3、当根轨迹在分离点21/6s =-处,对应的

216

24(0.25)|

27

s a s s s =-

=-++= 则当2

027

a <≤

阶跃响应无超调(2分)。 4、s j ω=,则系统出现等幅振荡时的振荡频率0.5ω=(1分) 5、

2

0.527

a <<(1分) [注]:如果是参数根轨迹,根据闭环系统特征方程得出根轨迹方程,并将其化成标准形式。

j

第五章 线性系统的频域分析法——第六章的基础

要求:1) 绘制出频率响应曲线开环幅相曲线或开环对数渐近幅频特性曲线(Bode 图)---补线-应用奈奎斯特稳定判据判断系统稳定性及系统稳定的参数范围。

2)※※※利用开环对数幅频渐近特性确定最小相位系统的传递函数 一、频域分析法中开环传递函数的标准形式为

11(1)

()(),(1)

m

j j n i i K s G s H s n m s T s ν

ντ=-=+=

>+∏∏——时间常数形式

二、最小相位系统开环幅相曲线的绘制

11(1)

()(),,0,0,0(1)

m

j j i j n i i K s G s H s n m K T s T s ν

νττ=-=+=

>>>>+∏∏

1)极坐标图的起点: 0

lim ()()()2

K K G j j υυωπωνωω+

→==∠- ,0

(0)90?ν+

=- 2)极坐标图的终点::当ω→∞时,1

01(1)lim ()0()90()(1)

m

j j n i i K j G j n m j jT νωντωωωω=-→∞

=+=

=∠--+∏∏。

3)与实轴交点 Im[()()]0G j H j ωω=----ω----Re[()()]G j H j ωω

4)从起点到终点的相角及与实轴交点位置共同决定曲线所在象限。K 值变化仅改变幅相曲线的幅值及与实轴交点的位置,不改变其形状。 [注]:用箭头表示频率ω增大的方向。

例1 (P198)I 型单位反馈控制系统开环传递函数为

12()(1)(1)

K

G s s T s T s =

++,12,,0K T T >;

绘制开环幅相曲线。

解:频率响应 2

121222221212[()(1)]()()(1)(1)(1)(1)

K T T j TT K G j H j j jT jT T T ωωωωωωωωωω-+--==

++++ 1)起点:0ω=+ ()A ω=∞,()2

π

?ω=-

2)终点:∞=ω ()0A ω=,3()2

π

?ω=-

(因为:()3n m -=),说明整个幅相曲线在II ,III 象限。

3)与负实轴的交点:令2

121Im 0TT ω=?=

,则1212

2222

1212

()Re (1)(1)K T T KTT T T T T ωωωω-+-==+++。则

可见,K 值变化仅改变幅相曲线的幅值及与负实轴交点的位置,不改变幅相曲线的形状。 三、最小相位系统开环对数渐近幅频特性曲线(Bode 图)的绘制

(1) 将开环传递函数分解成典型环节乘积的形式(尾“1”型);

11

(1)

()(),,0,0,0()

(1)

m

j j i j n i i K j G j H j n m K T j jT ν

ν

τωωωτωω=-=+=

>>>>+∏∏

(2)

将各典型环节的转折频率由低到高从左向右依次标注在横轴上(不妨设为:1234,,,,

ωωωω),

将1ωω<(最小转折频率)的频率范围设为低频段。 (3)在低频段,开环对数渐近幅频特性

()20l g

20l g 20l g

a v

K

L K v ωωω

==- 可见,其直线斜率为-20v 。但是要画出这低频段渐近特性直线,还必须确定该直线或其延长线上一点

(P202):

法1:在小于第一个转折频率内任选一点01ωω<,计算 00()20lg 20lg a L K v ωω=-。--常用 法2:取特定频率01ω=,计算0()20lg a L K ω=。 法3:取0()a L ω为特殊值0,则

1K

ν

ω=,则计算出1

0K ν

ω=。

(4)从低频以后,沿频率增大的方向,每遇到一个转折频率就改变直线斜率,变化规律取决于该转折频率对应的典型环节种类。

如果典型环节为惯性环节或振荡环节,在交接频率之后,斜率要减小20dB/dec 或40 db/dec ;如果典型环节为一阶微分环节或二阶微分环节,在交接频率之后,斜率要增加20db/dec 或40 db/dec 。即一阶20dB/dec 的整数倍,二阶40dB/dec 的整数倍。

(5)绘出用渐近线表示的对数幅频特性以后,如果需要,可以进行修正。通常只需修正转折频率处幅值就可以了。对于一阶项,在转折频率处的修正值为±3dB ;对于二阶项,在转折频率处的修正值可由公式求出。 --一般不用修正。 例2 已知(501)

()(5001)(51)(1)

K s G s s s s s +=

+++,绘制Bode 图。

解:

ω

dec

四、※※※利用开环对数幅频渐近特性确定最小相位系统的传递函数

1)确定系统积分或微分环节的个数(利用低频段低频渐近线斜率为20/dB dec ν-)。

()20lg

20lg 20lg a v

K

L K v ωωω==-

2)确定系统其他环节(根据转折频率前后斜率变化判断对应的环节类型,利用转折频率倒数确定时间常数)

图中每次遇到一个交接频率改变一次分段直线的斜率。且斜率的变化对应这环节的类型。在交接频率之后,斜率要减小20db/dec 或40 db/de 为惯性环节或振荡环节;斜率要增加20db/dec 或40 db/dec 对应一阶微分环节或二阶微分环节。

3) ※※※参数K 的确定:已知低频段或其延长线上一点确定()20lg 20lg 20lg a v

K

L K v ωωω

==-)

。 例3

解:1) 1

(1)

100()1

(1)5

K s G s s s +=

+ 2) 20l g 20l g 20l g 0K

K ωω

=

-

= 10K =

3) 1

10(1)

100()1

(1)5

s G s s s +=+

特别指出,半对数坐标系中求斜率:

()()

2121

lg lg L L k =ωωωω--

例4 (见幻灯片) 已知最小相角系统开环对数渐近幅频曲线,求开环传递函数)。

解:1)确定结构: 最左端直线的斜率为-40 db/dec ,2040v -=-,故而有2个积分环节。因为从ω1起,近似对数幅频曲线斜率变化20 db/dec 和40 db/dec,故为1阶微分环节和2阶微分环节。于是系统的传递函数为:

223(/1)

()(/1)

K s G s s s ωω+=

+

2)确定K:

法一)最左端直线的延长线和零分贝线的交点频率为0ω,

0020lg 20lg 20lg 40lg 0K v K ωω-=-=,则2

0K ω=。

斜率:02040lg lg H -=ωω--,2020lg lg c H -=ωω--,则2022

()c =ωωωω,则2

02c K ωωω==。

ω

法二):

(已知c ω),在c ω处,直线1和2的纵坐标之和为0,即12()()()0c c c L L L ωωω=+=。

12()020lg lg c c L =

ωωω-- 20()0

40(lg lg )

c c L =ωωω---

因此0240(lg lg )20(lg lg )0c c ωωωω--+-=。则2

02

c ωωω=,则0ω=五. ※ ※※频率域稳定判据

1.奈奎斯特稳定判据:闭环系统稳定的充分必要条件是闭合曲线GH Γ不穿越(-1,j0)点,且逆时针围绕)0,1(j -点 P 次。记为:

(2)R P N ==

其中:N 为半闭合曲线ΓGH 穿越)0,1(j -点左侧的的次数和。相角增大为正穿越 ΓGH :当0ν=:通常,只需绘制0ω≤<∞的半条ΓGH 曲线,即开环幅相曲线。

当0ν≠:当G(s)H(s)有虚轴上的极点时,绘制0ω<<∞的半条ΓGH 曲线外,半闭合曲线还要从

0ω+=出发,以无穷大为半径,逆时针转过νπ/2 后的虚线圆弧, 箭头指向 0ω+=。箭头指向ω增大的

方向 。

例5 设某单位反馈系统的开环传递函数为 2

(41)()()(1)(21)

s G s H s s s s +=

++ 应用Nyquist 判据判别闭环系统的稳定性

解: ()2222222

110(18)

[(41

()(1)(21)

12)9]j j G j j j j ωωωωωωωωωωω+---+++==++ 1)绘制Nyquist 曲线

起点:

00,

()()180(2)A ωω?ων+==∞=-=

终点:0,

()0()270(3)A n m ωω?ω=∞==--=

幅相曲线与负实轴有交点,可令ImG(jω)H(jω)=0,得ω2=1/8,ω=0.354。此时, ReG(jω)H(jω)= -10.67,即幅相曲线与负实轴的交点为(-10.67, j0)。

2)补线:位由于有一个交点,因此ω=0+在实轴下面。开环系统有两个极点在s 平面的坐标原点,因此幅相曲线应从ω=0+开始,以无穷大半径逆时针补画180度,箭头指向ω=0+。如图。

ω3) 由图可见,N =-1,即R=-2。系统无开环极点位于s 平面的右半部,故P=0,所以Z=2,即系统不稳定,并有两个闭环极点在s 平面的右侧。

例5-2:设系统的开环传递函数为12()()(1)(1)

K

G s H s s T s T s =

++ ,试求使系统稳定的K 值范围。

解:1)首先作Nyquist 曲线图,只求图过)0,1(j -点的K 值范围。

2)代入s j ω=,2

1212

2222

1212[()(1)]()(1)(1)(1)(1)

K T T j TT K G j j jT jT T T ωωωωωωωωω-+-+==++++ 利用相频条件与幅频条件,则|()()|1G j H j ωω=,0()()180G j H j ωω∠=-。

因此,一定与与负实轴有交点,其交点坐标为: 令:2

121Im 0TT ω=?=

,因为()1A ω=,所以,12

12Re ()1KTT G j T T ω-=

=-+,因此,1212

T T K TT += 即此时满足正好穿过)0,1(j -点。

3)分析:因为P=0,要使系统稳定,则0N =,因此,GH Γ不包围)0,1(j -点,则幅相曲线与实轴的交点在)0,1(j -的右边。

当1212T T K TT +=,正好穿过)0,1(j -,当1212

T T

K TT +<,正好在)0,1(j -的右边,此时0R N ==,

系统稳定。因此系统稳定的K 值范围为:1212

0T T

K T T +<<。

2007例:已知某系统当开环增益20K =时的开环频率特性Nyquist 图如下图所示。该系统

在右半平面的极点数0P =,试分析当开环增益K 变化时其取值对闭环稳定性的影响。(5分)

解:

分析:求与负实轴的交点:令:Im 0ω=?,代入Re =。

因为K 值变化仅改变幅相曲线的幅值及与负实轴交点的位置,不改变幅相曲线的形状。 所以:设A 点对应的频率为1ω,B 点对应的频率为2ω,则 A 点:20K =,1ωω=,||2OA =

求?K =,1ωω=,||1OA =,由此,10K =(1分)幅相曲线与负实轴交于A 点

B 点:20K =,2ωω=,||0.5OB =

求?K =,2ωω=,||1OB =,由此,40K =(1分)幅相曲线与负实轴交于B 点

注意:K ↑,表明与与负实轴的交点越负,即越往左边。 分析:因为0,P =所以

当010K <<,Nyquist 曲线不包围(-1,j0)点,系统稳定(1分);

当1040K <<,Nyquist 曲线顺时针包围(-1,j0)点,系统不稳定(1分); 当40K >,Nyquist 曲线不包围(-1,j0)点,上下穿越抵销,系统稳定(1分); 注意:求稳定的范围总是与临界稳定时的参数有关,所有域中的分析方法皆是如此。

,判断使得系统稳定的参数范围。

2.对数频率稳定判据:

极坐标图

伯德图

(-1,j0)点

0dB 线和-180相角线

(-1, -∞)段 0dB 线以上区域

结论:Nyquist 曲线自上而下(自下而上)穿越(-1,j0)点左侧负实轴相当于 Bode 图中当L(ω)>0dB 时相频特性曲线自下而上(自上而下)穿越-180°线。

π

-()

L ω()

?ω0

ω

例6: 一反馈控制系统,其开环传递函数为2()()(1)

K

G s H s s Ts =+,试用对数频率稳定判据

判断系统的稳定性(见幻灯片)。

解:系统的开环对数频率特性曲线如图所示。由于G(s)H(s)有两个积分环节,故在对数相频曲线ω很小处,由下而上补画了-180°到0°的虚线,作为对数相频曲线的一部分。显见N= -1,R=-2 P=0,所以,说明闭环系统是不稳定的,有2个闭环极点位于s 平面右半部。

φ(ω -90

五、稳定裕度---后面校正设计用

1. ※※※相角裕度: ()|()()|1c

A G j H j ωωω==

相角裕度γ

2. 幅值裕度:()()()-180x x x G j H j ?ωω=∠=

1

()20lg

20lg ()()()()

x x x x h dB G j H j G j H j ωωωω==-

工程上一般相角裕度30~70γ=??,幅值裕度()20lg 6dB h dB h =≥ 例7 一单位反馈系统的开环传递函数为

()

,0(0.21)(0.051)

K

G s K s s s =

>++

解:试求K=1时系统的相位裕度和增益裕度。

? 频率特性()(0.21)(0.051)

K

G j j j j ωωωω=

++

1)c c c c 1()1(0.21)(0.051)G j j j j ωωωω=

==++

c 1ω≈

11180()180(90tan 0.2tan 0.05)18010476c c c γ?ωωω--=?+=?+-?--=?-?=?

2)11

()90tan 0.2tan 0.05180x x x ?ωωω--=-?--=-?

11tan 0.2tan 0.0590x x ωω--+=?

12

12120.20.05tan

tan tan()1

tan tan 10.20.05x x x x

ωωθθθθθθωω+++=

==∞-- 10.20.050x x ωω-?= 10x ω=

1

()20lg

10(12)(10.5)

20lg1020lg 207128h dB j j j dB

=-++=+=++=

六、※※开环对数幅频特性的※三频段理论---后面校正设计用 1.低频段决定了系统稳态精度。

低频段通常是指20lg |()()|G j H j ωω的开环对数渐近曲线在第一个转折频率以前的区段,这一段的特性完全由积分环节v 和开环增益K 决定。

()20lg 20lg 20lg a v K

L K v ωωω

==-

020lg 20lg 0K v ω-=

2.中频段是指()L ω穿过0dB 线(即c ω附近)的频段,其斜率及宽度(中频段长度)集中反映了动态响应中的平稳性和快速性(见幻灯片)。一般的,中频段在c ω附近以斜率为20/dB dec -下降的直线。

3. 高频段指()L ω曲线在中频段以后的区段,反映出系统的低通滤波特性,形成了系统对高频干扰信号的抑制能力(见幻灯片)。

第六章 线性系统的校正方法

要求: 1) ※※※※在三频段理论基础上,能够熟练应用基于频率法的串联超前、滞后和滞后—超前校正设计需要的系统。

2)至于根轨迹校正,要求掌握其基本原理(与基于频率法的串联超前、滞后和滞后—超前校正可以相对应),但是由于计算起来太繁杂,一般不采用。

一、基本控制规律 P 、 PI (滞后,改善稳态性能)、PD (超前,改善动态性能)、 PID 的特点 二、掌握基于频率法的串联超前、滞后和滞后—超前校正原理和特点 1.原理:0()()()C G j G j G j ωωω=

串联滞后校正:

保证动态性能不变情况下,提高系统稳态性能; 利用滞后校正装置高频幅值衰减特性--低频区;

串联超前校正:

提高相角裕度,改善系统动态性能; 利用超前校正装置相角超前特性--中频区;

两者可以放在同一个系统中使用,组成滞后—超前校正

2.典型的频率域指标是c ω,γ,K 等指标,一般选择c ω, K ,主要验证γ。

3.※※校正方法的选取:判断方法要会。如果题目已经明确要求采用何种校正装置,就不需要选择方法,即跳过这部分。

如果0c c ωω>-超前校正。

如果0c c ωω<,且0()c j γωγ>---滞后校正。 如果0c c ωω<,且0()c j γωγ<--滞后—超前校正。

[注]:要求串联超前、滞后和滞后—超前校正的原理

4.※※※※校正步骤:只需要记住一种就是滞后—超前校正步骤,所有的都包括了。但是注意,一定要验证※※※※。[注]:一般无需指标间的转换,一定要有步骤(因有步骤分)。 例:2007设单位反馈系统的开环传递函数为0()(1)(0.0071)

k

G s s s s =++,试采用滞后-超前校

正装置进行串联校正,要求:

1、当输入信号为()r t t =时,稳态误差0.001ss e ≤

2、截止频率10/s c rad ω≥

3、相角裕度035≥γ

解:因为0.001ss e ≤,所以1000v K =,取k=v K ,作0()G j ω图。

[注意: 本题已经给出具体装置类型,不用判断校正装置,如果没有明确,则: 由图可知,027c ω≈rad/s ,(或者用0()1c A ω=求) 000()90270.00727188.6c G j arctg arctg ω∠=-?--?=- 00180()8.645c G j γω=?+∠=-?

所以采用滞后-超前校正装置进行校正。(2分) 1、超前参数确定(5分)

0()90100.00710178.3c G j arctg arctg ω∠=-?--?=-

0[180()]35 1.7(510)

40

m c G j γωΦ=-?+∠=?-?+?=? 则11sin 1.643

4.6021sin 0.357

m m ?α?+=

==-, 取10m c ωω==

,则10.047T ===

则超前校正为111110.21451

()10.0471

c T s s G s T s s α++==++

2、确定滞后校正参数:(5分)

此时,滞后校正的原系统为:'011000(0.21451)

()()()(1)(0.0071)(0.0471)

c s G s G s G s s s s s +==

+++

10c ω=

时,'

|()|21.366c G j ω=

=

2'11

0.047|()|21.366c G j αω=

=≈2(1)α<

2211

110

c T ωα≈=,则221T α=,所以221.366T ≈ 所以滞后校正为222211

()121.3661

c T s s G s T s s α++==++

01000(0.21451)

()()()()(0.0071)(0.0471)(21.3661)

cc cz s G s G s G s G s s s s s +==

+++

3、验证:(3分)

1)11000v K s -=,当输入信号为()r t t =时,稳态误差0.001ss e = 2)当10c ω=时, |()|1c G j ω≈

3

()900.245100.007100.0471021.36610141.11c G j arctg arctg arctg arctg ω∠=-?+?-?-?-?=-180()38.8935c G j γω=?+∠=?>?

所以,以(0.21451)(1)

()(0.0471)(21.3661)

c s s G s s s ++=++为串联校正装置,符合系统设计指标要求。

自动控制原理课程教学大纲

物理电子工程学院《自动控制原理》课程教学大纲课程编号:04210164 课程性质:专业必修课 先修课程:高等数学、函数变换、模拟电路、电路分析 总学时数:76 学分:4 适合专业:电子信息工程、机械与电子工程、机械自动化、电器自动化、通信、包装工程等专业 (一) 课程教学目标 自动控制理论是电子信息科学与技术专业的一门重要的专业基础课程。它侧重于理论角度,系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。 (二) 课程的目的与任务 本课程是电子通信工程、机电一体化、包装工程等专业、工科及相关理科的必修基础课程。通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,为专业课学习和参加控制工程实践打下必要的基础。学生将掌握自动控制系统分析与设计等方面的基

本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方法等。为各类计算机控制系统设计打好基础。 (三) 理论教学的基本要求 1、熟练掌握自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。 2、熟练掌握典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法。 3、熟练掌握暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步掌握高阶系统分析方法、主导极点的概念。 4、熟练掌握根轨迹的概念和绘制法则,并能利用根轨迹对系统性能进行分析,初步掌握偶极子的概念以及添加零极点对系统性能的影响。 5、熟练掌握频率特性的概念、开环系统频率特性Nyquist图和Bode图的画法和奈氏判据,掌握绝对稳定系统、条件稳定系统、最小相位系统、非最小相位系统、稳定裕量、频域性能指标的概念,以及频率特性与系统性能的关系。 6、熟练掌握校正的基本概念、基本校正方式和反馈校正的作用,初步掌握复合校正的概念和以串联校正为主的频率响应综合法,了解以串联校正为主的根轨迹综合法,掌握常用校正装置及其作用。 (四) 教学学时分配数

自动控制原理总经典总结

《自动控制原理》总复习

第一章自动控制的基本概念 一、学习要点 1.自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对 象、控制器、反馈、负反馈控制原理等。 2.控制系统的基本方式: ①开环控制系统;②闭环控制系统;③复合控制系统。 3.自动控制系统的组成:由受控对象和控制器组成。 4.自动控制系统的类型:从不同的角度可以有不同的分法,常有: 恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等。 5.对自动控制系统的基本要求:稳、快、准。 6.典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。 二、基本要求 1.对反馈控制系统的基本控制和方法有一个全面的、整体的了解。 2.掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制 系统稳、准、快三方面的基本要求。 3.了解控制系统的典型输入信号。 4.掌握由系统工作原理图画方框图的方法。 三、容结构图

四、知识结构图 第二章 控制系统的数学模型 一、学习要点 1.数学模型的数学表达式形式

(1)物理系统的微分方程描述;(2)数学工具—拉氏变换及反变换; (3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。 2.数学模型的图形表示 (1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。 二、基本要求 1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变 量、输出变量、中间变量等概念,要准确掌握。 2、了解动态微分方程建立的一般方法及小偏差线性化的方法。 3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入 响应、零状态响应等概念有清楚的理解。 4、正确理解传递函数的定义、性质和意义。熟练掌握由传递函数派生出来的系统开环传递 函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。(#) 5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构 图及结构图的简化,并能用梅逊公式求系统传递函数。(##) 6、传递函数的求取方法: 1)直接法:由微分方程直接得到。 2)复阻抗法:只适用于电网络。 3)结构图及其等效变换,用梅逊公式。 4)信号流图用梅逊公式。

自动控制原理概念最全整理

1.在零初始条件下,线性定常系统输出量的拉普拉斯变换与输入量的拉普拉斯 变换值比,定义为线性定常系统的传递函数。传递函数表达了系统在特性,只与系统的结构、参数有关,而与输入量或输入函数的形式无关。 2.一个一般控制系统由若干个典型环节构成,常用的典型环节有比例环节、惯 性环节、积分环节、微分环节、振荡环节和延迟环节等。 3.构成方框图的基本符号有四种,即信号线、比较点、方框和引出点。 4.环节串联后总的传递函数等于各个环节传递函数的乘积。环节并联后总的传 递函数是所有并联环节传递函数的代数和。 5.在使用梅森增益公式时,注意增益公式只能用在输入节点和输出节点之间。 6.上升时间tr、峰值时间tp和调整时间ts反应系统的快速性;而最大超调量 Mp和振荡次数则反应系统的平稳性。 7.稳定性是控制系统的重要性能,使系统正常工作的首要条件。控制理论用于 判别一个线性定常系统是否稳定提供了多种稳定判据有:代数判据(Routh 与Hurwitz判据)和Nyquist稳定判据。 8.系统稳定的充分必要条件是系统特征根的实部均小于零,或系统的特征根均 在跟平面的左半平面。 9.稳态误差与系统输入信号r(t)的形式有关,与系统的结构及参数有关。 10.系统只有在稳定的条件下计算稳态误差才有意义,所以应先判别系统的稳定 性。 11.Kp的大小反映了系统在阶跃输入下消除误差的能力,Kp越大,稳态误差越 小; Kv的大小反映了系统跟踪斜坡输入信号的能力,Kv越大,系统稳态误差

越小; Ka的大小反映了系统跟踪加速度输入信号的能力,Ka越大,系统跟踪精度越高 12.扰动信号作用下产生的稳态误差essn除了与扰动信号的形式有关外,还与扰 动作用点之前(扰动点与误差点之间)的传递函数的结构及参数有关,但与扰动作用点之后的传递函数无关。 13.超调量仅与阻尼比ξ有关,ξ越大,Mp则越小,相应的平稳性越好。反之, 阻尼比ξ越小,振荡越强,平稳性越差。当ξ=0,系统为具有频率为Wn的等幅震荡。 14.过阻尼ξ状态下,系统相应迟缓,过渡过程时间长,系统快速性差;ξ过小, 相应的起始速度较快,但因震荡强烈,衰减缓慢,所以调整时间ts亦长,快速性差。 15.当ξ=0.707时,系统的超调量Mp<5%,,调整时间ts也最短,即平稳性和快 速性均最佳,故称ξ=0.707位最佳阻尼比。 16.当阻尼比ξ为常数时,Wn越大,调节时间ts就越短,快速性越好。系统的超 调量Mp和振荡次数N仅仅有阻尼比ξ决定,他们反映了系统的平稳性。17.系统引入速度反馈控制后,其无阻尼自然振荡频率Wn不变,而阻尼比ξ加大, 系统阶跃响应的超调量减小。 18.系统中增加一个闭环左实极点,系统的过渡过程将变慢,超调量将减小,系 统的反应变得较为滞呆。 19.根轨迹的规律是相角条件和幅值条件。 20.K的变动只影响幅值条件不影响相角条件,也就是说,跟轨迹上的所有点满

自动控制原理总复习资料解答题

∑??=i i i s s Q s H ) ()(1 )(第一章:1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用 。2 典型闭环系统的功能框图。 自动控制 在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。 自动控制系统 由控制器和被控对象组成,能够实现自动控制任务的系统。 被控制量 在控制系统中.按规定的任务需要加以控制的物理量。 控制量 作为被控制量的控制指令而加给系统的输入星.也称控制输入。 扰动量 干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。 反馈 通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。反送到输入端的信号称为反馈信号。 负反馈 反馈信号与输人信号相减,其差为偏差信号。 负反馈控制原理 检测偏差用以消除偏差。将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。 开环控制系统 系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。开环控制又分为无扰动补偿和有扰动补偿两种。 闭环控制系统 凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。 自动控制原理课程中所讨论的主要是闭环负反馈控制系统。 复合控制系统 复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。 自动控制系统组成 闭环负反馈控制系统的典型结构如图1.2所示。组成一个自动控制系统通常包括以下基本元件 1.给定元件 给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。给定元件通常不在闭环回路中。2.测量元件 测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号。被控制量成比例或与其导数成 比例的信号。测量元件的精度直接影响控制系统的精度应使测量元件的精度高于系统的精度,还要有足够宽的频带。3.比较无件 用于比较控制量和反馈量并产生偏差信号。电桥、运算放大器可作为电信号的比较元件。有些比较元件与测量元件是结合在一起的,如测角位移的旋转变压器和自整角机等。4.放大元件 对信号进行幅值或功率的放大,以及信号形式的变换.如交流变直流的相敏整流或直流变交流的相敏调制。5.执行元件 用于操纵被控对象,如机械位移系统中的电动机、液压伺服马达、温度控制系统中的加热装置。执行元件的选择应具有足够大的功率和足够宽的频带。6.校正元件 用于改善系统的动态和稳态性能。根据被控对象特点和性能指标的要求而设计。校正元件串联在由偏差信号到被控制信号间的前向通道中的称为串联校正;校正元件在反馈回路中的称为反馈校正。7.被控对象 控制系统所要控制的对象,例如水箱水位控制系统中的水箱、房间温度控制系统中的房间、火炮随动系统中的火炮、电动机转速控制系统中电机所带的负载等。设计控制系统时,认为被控对象是不可改变的,它的输出即为控制系统的被控制量。8.能源元件 为控制系统提供能源的元件,在方框图中通常不画出。 对控制系统的基本要求1.稳定性 稳定性是系统正常工作的必要条件。2.准确性 要求过渡过程结束后,系统的稳态精度比较高,稳态误差比较小.或者对某种典型输入信号的稳态误差为零。3.快速性 系统的响应速度快、过渡过程时间短、超调量小。系统的稳定性足够好、频带足够宽,才可能实现快速性的要求。 第二章:1、建立系统的微分方程。2、绘制动态框图并求传递函数。3、传递函数 在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比称为传递函数。传递函数的概念适用于线性定常单输入、单输出系统。求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。4、结构图的变换与化简 化简方框图是求传递函数的常用方法。对方框图进行变换和化简时要遵循等效原则:对任一环节进行变换时, 变换前后该环节的输人量、输出量及其相互关系应保持不变。化简方框图的主要方法就是将串联环节、并联环节和基本反馈环节用一个等效环节代替。化简方框图的关键是解除交叉结构,即移动分支点或相加点,使被简化的环节中不存在与外部直

自动控制原理复习资料——卢京潮版第二章

第二章:控制系统的数学模型 §2.1 引言 ·系统数学模型-描述系统输入、输出及系统内部变量之间关系的数学表达式。 ·建模方法? ??实验法(辩识法)机理分析法 ·本章所讲的模型形式?? ?复域:传递函数 时域:微分方程 §2.2控制系统时域数学模型 1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络 C r u R i dt di L u +?+?= ↓c i C u =?& c c c u u C R u C L +'??+''??= 11c c c r R u u u u L LC LC '''∴++= ── 2阶线性定常微分方程 (2)弹簧—阻尼器机械位移系统 分析A 、B 点受力情况 02B 0A A A i 1x k )x x f()x x (k =-=-∴&& 由 A 1A i 1x k )x x (k =- 解出01 2 i A x k k x x - =

代入B 等式:02001 2 i x k )x x k k x f(=-- &&& 0201 2 i x k x )k k 1f(x f ++ =?&& 得:()i 1021021x fk x k k x k k f &&=++ ── 一阶线性定常微分方程 (3)电枢控制式直流电动机 电枢回路:b a E i R u +?=┈克希霍夫 电枢及电势:m e b C E ω?=┈楞次 电磁力矩:i C M m m ?=┈安培 力矩方程:m m m m m M f J =+?ωω& ┈牛 顿 变量关系:m m b a M E i u ω- --- 消去中间变量有: a m m m m u k T =+ωω& [][]?? ?? ?+?=+?=传递函数时间函数 C C f R C k C C f R R J T m e m m m m e m m m (4)X-Y 记录仪(不加内电路)

自动控制原理知识点总结

~ 自动控制原理知识点总结 第一章 1、什么就是自动控制?(填空) 自动控制:就是指在无人直接参与得情况下,利用控制装置操纵受控对象,就是被控量等于给定值或按给定信号得变化规律去变化得过程。 2、自动控制系统得两种常用控制方式就是什么?(填空) 开环控制与闭环控制 3、开环控制与闭环控制得概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高. 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程得影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否得问题。 掌握典型闭环控制系统得结构。开环控制与闭环控制各自得优缺点? (分析题:对一个实际得控制系统,能够参照下图画出其闭环控制方框图。) 4、控制系统得性能指标主要表现在哪三个方面?各自得定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程得振荡倾向与系统恢复平衡得能力 (2)、快速性:通过动态过程时间长短来表征得 (3)、准确性:有输入给定值与输入响应得终值之间得差值来表征得 第二章 1、控制系统得数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2、了解微分方程得建立? (1)、确定系统得输入变量与输入变量 (2)、建立初始微分方程组.即根据各环节所遵循得基本物理规律,分别列写出相应得微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关得项写在方程式等号得右边,与输出量有关得项写在等号得左边 3、传递函数定义与性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量得拉普拉斯变换域系统输入量得拉普拉斯变

自动控制原理整理

自动控制原理整理 第一章 绪论 自动控制:自动控制,就是在没有人直接参与的情况下,利用外加的设备或装置(控制 装置),使机器、设备或生产过程(控制对象)的某个工作状态或参数(被控量)自动地按照预定的规律运行。 自动控制系统:是指能够对被控对象的工作状态进行自动控制的系统。它是控制对象以 及参与实现其被控制量自动控制的装置或元部件的组合,一般由控制装置和被控对象组成。一般包括三种机构:测量机构、比较机构、执行机构。 反馈:把输出量送回到系统的输入端并与输入信号比较的过程。 反馈控制系统的基本组成:测量元件、给定元件、比较元件、放大元件、执行元件、校 正元件 控制方式 (1) 反馈控制方式(2)开环控制方式(3)复合控制方式 控制系统的分类 (1) 恒值系统和随动系统(按参考输入形式分类) (2) 线性系统和非线性系统(按照组成系统的元件特性分类) (3) 连续系统和离散系统(按照系统内信号的传递形式分类) 控制系统的性能指标:稳定性、快速性、准确性,即稳准快。 第二章 控制系统的数学模型 定义:数学模型是描述系统内部物理量(或变量)之间关系的数学表达式。 建立方法:解析法、实验法 线性系统:能够用线性数学模型(线性的代数方程、微分方程、差分方程等)描述的系统, 称为线性系统。重要性质:叠加原理,即具有可叠加性和均匀性。 单位阶跃函数1(t) 单位阶跃函数的拉氏变换为 { 001)(1<≥=t t t 0 11 ()0st st F s e dt e s s ∞ --∞==-=?

单位脉冲函数 单位脉冲函数的拉氏变换为 传递函数的定义与性质 定义:线性定常系统的传递函数为零初始条件下,系统输出量的拉氏变换与系统输入量的拉氏变换之比。 所谓零初始条件是指 1)输入量在t>0时才作用在系统上,即在t=0- 时系统输入及各项导数均为零; 2)输入量在加于系统之前,系统为稳态,即在 t=0-时系统输出及其所有导数项为零。 性质: ? 传递函数是复变量s 的有理真分式函数,分子多项式的次数m 低于或等于分母多项的次数n ,所有系数均为实数; ? 传递函数与微分方程有相通性,可经简单置换而转换; ? 传递函数表征了系统本身的动态特性。 ? 只能描述线性定常系统与单输入单输出系统,不能表征内部所有状态的特征。 ? 只能反映零初始条件下输入信号引起的输出,不能反映非零初始条件引起的输出。 ? 服从不同动力学规律的系统可有同样的传递函数 ? 传递函数有一定的零、极点分布图与之对应,因此传递函数的零、极点分布图也表征了系统的动态性能。 零极点形式 系统零点、极点的分布决定了系统的特性,因此,可以画出传递函数的零极点图,直接分 析系统特性。在零极点图上,用“ ”表示极点位置,用“ 圆圈”表示零点 结构图的基本组成: 定义: 由具有一定函数关系的环节组成的,并标明信号流向的系统的方框图,称为系统的结构图。 组成:信号线、引出点、比较点、方框。 结构图的基本组成形式 串联连接、并联连接、反馈连接 { 1000()t t t t εε ε δ ≤≤<>=或()0()1st F s t e dt δ∞ -==? ?),,2,1(m i z i =),,2,1(n i p i =

自动控制原理总复习资料完美

第一章的概念 1、典型的反馈控制系统基本组成框图: 2、自动控制系统基本控制方式:(1)、反馈控制方式;(2)、开环控制方式;(3)、复合控制方式。 3、基本要求的提法:可以归结为稳定性、准确性和快速性。 第二章要求: 1、掌握运用拉氏变换解微分方程的方法; 2、牢固掌握传递函数的概念、定义和性质; 3、明确传递函数与微分方程之间的关系; 4、能熟练地进行结构图等效变换; 5、明确结构图与信号流图之间的关系; 6、熟练运用梅逊公式求系统的传递函数; 例1 某一个控制系统动态结构图如下,试分别求系统的传递函数: ) ( ) ( , ) ( ) ( 1 2 1 1 s R s C s R s C , ) ( ) ( , ) ( ) ( 2 1 2 2 S R S C s R s C 。 4 3 2 1 3 2 1 1 2 4 3 2 1 1 1 1 1 ) ( ) ( , 1 ) ( ) ( ) ( G G G G G G G s R s C G G G G s G s R s C - - = - = 串连补偿 元件 放大 元件 执行元 件 被控对 象 反馈补偿元件 测量元件 输出量 主反馈 局部反馈 输入量 --

例2 某一个控制系统动态结构图如下,试分别求系统的传递函数: ) () (,)()(,)()(,)()(s N S E s R s E s N s C s R s C 。 例3: 将上图汇总得到: U i (s ) U o (s ) U o (s U (s 2I C (s ) -1 -1 -1 1/R 1 1/C 1s 1/C 2s 1/R 2 1()i t 2()i t 1()u t ()c t () r t 1R 2R 1C 2C +_ +_ + _Ka 11C s 21C s 21 R 1R ()R s () C s 1() U s 1()U s 1() U s 1() I s 1()I s 2() I s 2() I s 2()I s () C s (b) (t) i R (t) u r(t)111 =-?-=(t)]dt i (t)[i C 1 (t)u 2111(t) i R c(t) (t)u 22 1 =-?=(t)dt i C 1c(t)22 + _ + _ + -11C s 2 1R 21C s 1 1R ()R s () C s (s)H(s)(s)G G 1(s)(s)G G R(s)C(s)2121+=(s)H(s)(s)G G 1(s)G -N(s)C(s) 212+=∑?=n K K P P 1

自动控制原理课程总结1

HEFEI UNIVERSITY 自动控制原理课程总结 系别电子信息与电气工程系 专业自动化 班级 09自动化(1)班 姓名 完成时间 2011.12.29

自动控制原理课程总结 前言 自动控制技术已广泛应用于制造、农业、交通、航空及航天等众多产业部门,极大地提高了社会劳动生产率,改善了人们的劳动环境,丰富了人民的生活水平。在今天的社会中,自动化装置无所不在,为人类文明进步做出了重要贡献。本学期我们开了自动控制原理这门专业课,下面主要介绍下我对这门课前五章的认识和总结。 一、控制系统的数学模型 1.传递函数的定义: 在线性定常系统中,当初是条件为零时,系统输出的拉氏变换与输入的拉氏变换之比。 (1)零极点表达式: (2)时间常数表达式: 2.信号流图

(1)信号流图的组成 节点:用来表示变量或信号的点,用符号“○”表示。 支路:连接两节点的定向线段,用符号“→”表示。(2)信号流图与结构图的关系 3.梅逊公式

其中:Δ=1-La+LbLc-LdLeLf+...成为特征试。 Pi:从输入端到输出端第k条前向通路的总传递函数 Δi:在Δ中,将与第i条前向通路相接触的回路所在项除去后所余下的部分,称为余子式。 La:所有单回路的“回路传递函数”之和 LbLc:两两不接触回路,其“回路传递函数”乘积之和 LdLeL:所有三个互不接触回路,其“回路传递函数”乘积之和“回路传递函数”指反馈回路的前向通路和反馈通路的传递函数只积并且包含表示反馈极性的正负号。 二、线性系统的时域分 1.ζ、ωn坐标轴上表示如下: (1)闭环主导 极点:

当一个极点距离虚轴较近,且周围没有其他闭环极点和零点,并且该极点的实部的绝对值应比其他极点的实部绝对值小5倍以上。(2)对于任何线性定常连续控制系统由如下的关系: ①系统的输入信号导数的响应等于系统对该输入信号响应的导数; ②系统对输入信号积分的响应等于系统对该输入信号响应的积分,积分常数由初始条件确定。 2.劳斯判据: 设系统特征方程为 : 劳斯判据指出:系统稳定的充要条件是劳斯表中第一列系数都大于零,否则系统不稳定,而且第一列系数符号改变的次数就是系统特征方程中正实部根的个数。 劳斯判据特殊情况的处理 ⑴某行第一列元素为零而该行元素不全为零时——用一个很小的正数ε代替第一列的零元素参与计算,表格计算完成后再令ε→0。 ⑵某行元素全部为零时—利用上一行元素构成辅助方程,对辅助方程求导得到新的方程,用新方程的系数代替该行的零元素继续计算。 3.稳态误差 (1)定义: (2)各种误差系数的定义公式

(完整版)自动控制原理知识点总结

@~@ 自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择)

自动控制原理复习提纲

第一章绪论 1、基本概念 (1)自动控制:在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量(被控量)自动地按预先给定的规律去运行。 (2)自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成。 (3)被控对象:指被控设备或过程。 (4)输出量,也称被控量:指被控制的量。它表征被控对象或过程的状态和性能,它又常常被称为系统对输入的响应。 (5)输入量:是人为给定的系统预期输出的希望值。 (6)偏差信号:参考输入与实际输出的差称为偏差信号,偏差信号一般作为控制器的输入信号。 (7)负反馈控制:把被控量反送到系统的输入端与给定量进行比较,利用偏差引起控制器产生控制量,以减小或消除偏差。 2、自动控制方式 (1)开环控制 开环控制系统指系统的输出量对系统的控制作用没有影响的系统。它分为按给定控制和按扰动控制两种形式。 按给定控制:信号由给定输入到输出单向传递。 按扰动控制(顺馈控制):根据测得的扰动信号来补偿扰动对输出的影响。(2)闭环控制(反馈控制) 闭环控制系统指系统的输出量与输入端存在反馈回路,即输出量对控制作用有直接影响的系统。系统根据实际输出来修正控制作用,实现对被控对象进行控制的任务,这种控制原理称为反馈控制原理。 3、自动控制系统的分类 (1)按给定信号的特征分类 ①恒值控制系统:希望系统的输出维持在给定值上不变或变化很小。 ②随动控制系统:给定信号的变化规律是事先不确定的随机信号。 ③程序控制系统:系统的给定输入不是随机的,而是确定的、按预先的规律变化。

(2)按系统的数学模型分类 ?????? ??????→? ?? ???????? ????????→?????? ?????→???????????→??? ??? ??? 分析法分析法分析法分析法 时域法根轨迹法线性定常系统频域法线性系统状态空间法时域法线性时变系统状态空间法非本质非线性线性化法 描述函数法非线性系统本质非线性相平面法状态空间法 (3)按信号传递的连续性划分 ①连续系统:系统中的所有元件的输入输出信号均为时间的连续函数,所以又常称为模拟系统。这类系统常用微分方程来表示。 ②离散系统:系统中只要有一处的信号是脉冲序列或数字信号时,该系统就是离散系统。这类系统常用差分方程来表示。 (4)按系统的输入/输出信号的数量分类 ①单变量系统(SISO ):指系统只有一个输入和一个输出。 经典控制理论研究的对象主要是单输入单输出的线性定常系统。 ②多变量系统(MIMO ):指系统有多个输入或单个输出或多个输出。 多变量系统是现代控制理论研究的主要对象,在数学上以状态空间变量法和矩阵理论为主要研究工具。 4、绘制系统方框图 一般遵循以下步骤: ①搞清系统工作原理,判别系统控制方式; ②找出系统的被控对象及控制装置包含的各功能元件; ③确定系统输入量、输出量以及扰动量,然后按典型系统方框图的连接模式将各部分连接起来。 5、对控制系统的基本要求 三大性能指标: (1)稳定性:要求系统稳定,是系统正常工作的基本条件;

《自动控制原理》专科课程标准

《自动控制原理》课程标准 一、课程概述 (一)课程性质地位 自动控制原理是空间工程类、机械控制类、信息系统类等相关专业学历教育合训学员的大类技术基础课程。由于自动控制原理在信息化武器装备中得到了广泛的应用,因此,将本课程设置为大类技术基础课,对培养懂技术的指挥人才有着十分重要的作用。本课程所覆盖的知识面较宽,既有较深入的理论基础知识,也有较广泛的专业背景知识,因而,它在学员知识结构方面将起到加强理论深度和拓展知识广度的积极作用。 (二)课程基本理念 为了贯彻素质教育和创新教育的思想,本课程将在注重自动控制原理的基本概念和基本分析与设计方法的基础上,适当引入自动控制发展中的、学员能够理解的新概念和新方法;贯彻理论联系实际的原则,科学取舍各种主要理论、方法的比例,正确处理好理论与案例的关系,以适应为部队培养应用复合型人才的需要;适当引入和利用Matlab工具来辅助自动控制原理中的复杂计算与作图、验证分析与设计的结果;本课程应该既使学员掌握必要的基础理论知识,并了解它们对实际问题的指导作用,又要促进学员养成积极思考、长于分析、善于推导的能力和习惯。 (三)课程设计思路 本课程主要介绍自动控制原理的基本概念和基本的分析与设计方法。课程采用“一纵三横”的设计思路,具体来说,“一纵”就是在课程讲授中要求贯彻自动控制系统的建模、分析及设计方法这条主线;“三横”就是在方法讲授中要求强调自动控制系统的稳定性、快速性和准确性,稳准快三个字是分析的核心,也是设计的归宿。在课程讲授中,贯彻少而精的原则,即对重点、难点讲深讲透;注意理论联系专业实际,例子贴近生活,注重揭示抽象概念的物理意义;注意传统教法与现代教法的有机结合,充分运用各种教学手段,特别注重发挥课程教学网站的作用。在课程学习中,注重阅读教材、完成作业、课程实验及讨论问题等四个环节,深刻理解课程内容中的重点和难点,重点掌握自动控制原理的基本概念和基本分析与设计方法。

湖南大学自动控制原理复习总结(精辟)

自动控制理论(一)复习指南和要求【】

第二章 控制系统的数学模型复习指南与要点解析 要求: 根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同) 一、控制系统3种模型,即时域模型----微分方程;※ 复域模型 ——传递函数;频域模型——频率特性。其中重点为传递函数。 系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。 零初始条件下:如要求传递函数需拉氏变换,这句话必须的。 二、※※※结构图的等效变换和简化--- 实际上,也就是消去中间变量求取系统总传递函数的过程。 1.等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45) 2.结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中: ※引出点前移在移动支路中乘以()G s 。(注意:只须记住此,其他根据倒数关系导出即可) 引出点后移在移动支路中乘以1/()G s 。 相加点前移在移动支路中乘以1/()G s 。 相加点后移在移动支路中乘以()G s 。 [注]:乘以或者除以()G s ,()G s 到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,()G s 就是谁。 例1: ) 解法 1: 1) 3()G s 前面的引出点后移到3()G s 的后面(注:这句话可不写,但是必须绘制出下面的结构图,) 2) 消除反馈连接

) 3) 消除反馈连接 4) 得出传递函数 123121232123()()()() ()1()()()()()()()()() G s G s G s C s R s G s G s H s G s G s H s G s G s G s =+++ [注]:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出2-3个简化的结构图步骤即可,最后给出传递函数 () () C s R s =。。。。) 解法 2: 1()G s 后面的相加点前移到1()G s 前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。 [注]:条条大路通罗马,但是其最终传递函数 () () C s R s =一定相同) [注]:※※※比较点和引出点相邻,一般不交换位置※※※,切忌,否则要引线) 三. ※※※应用信号流图与梅森公式求传递函数 梅森公式: ∑=??=n k k k P P 1 1 式中,P —总增益;n —前向通道总数;P k —第k 条前向通道增益; △—系统特征式,即Λ+-+-=?∑∑∑f e d c b a L L L L L L 1 Li —回路增益; ∑La —所有回路增益之和; ∑LbLc —所有两个不接触回路增益乘积之和; ∑LdLeLf —所有三个不接触回路增益乘积之和; △k —第k 条前向通道的余因子式,在△计算式中删除与第k 条前向通道接触的回路。 [注] :一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。 注意2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。 例2: 已知系统的方框图如图所示 。试求闭环传递函数C (s )/R (s ) (提示:应用信号流图及梅森公式) 解1) [注]

自动控制原理知识点复习资料整理

自动控制原理知识点总结 第一章 1、自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2、被控制量:在控制系统中.按规定的任务需要加以控制的物理量。 3、控制量:作为被控制量的控制指令而加给系统的输入星.也称控制输入。 4、扰动量:干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。 5、反馈:通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。反送到输入端的信号称为反馈信号。 6、负反馈:反馈信号与输人信号相减,其差为偏差信号。 7、负反馈控制原理:检测偏差用以消除偏差。将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。 8、自动控制系统的两种常用控制方式是开环控制和闭环控制。 9、开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 10、闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。主要特点:抗扰动能

力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 11、控制系统的性能指标主要表现在: (1)、稳定性:系统的工作基础。 (2)、快速性:动态过程时间要短,振荡要轻。 (3)、准确性:稳态精度要高,误差要小。 12、实现自动控制的主要原则有:主反馈原则、补偿原则、复合控制原则。 第二章 1、控制系统的数学模型有:微分方程、传递函数、动态结构图、频率特性。 2、传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比 3、求传递函数通常有两种方法:对系统的微分方程取拉氏变换,或化简系统的动态方框图。对于由电阻、电感、电容元件组成的电气网络,一般采用运算阻抗的方法求传递函数。 4、结构图的变换与化简化简方框图是求传递函数的常用方法。对方框图进行变换和化简时要遵循等效原则:对任一环节进行变换时,

-自动控制原理知识点汇总

-自动控制原理知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

自动控制原理知识点总结 第一章 1.什么是自动控制?(填空) 自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。 2.自动控制系统的两种常用控制方式是什么?(填空) 开环控制和闭环控制 3.开环控制和闭环控制的概念? 开环控制:控制装置与受控对象之间只有顺向作用而无反向联系 特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。 闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。 主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。 掌握典型闭环控制系统的结构。开环控制和闭环控制各自的优缺点? (分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。) 4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断) (1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力 (2)、快速性:通过动态过程时间长短来表征的 e来表征的 (3)、准确性:有输入给定值与输入响应的终值之间的差值 ss 第二章 1.控制系统的数学模型有什么?(填空) 微分方程、传递函数、动态结构图、频率特性 2.了解微分方程的建立? (1)、确定系统的输入变量和输入变量 (2)、建立初始微分方程组。即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组 (3)、消除中间变量,将式子标准化。将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边 3.传递函数定义和性质?认真理解。(填空或选择) 传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变

重庆大学(自动控制原理)课后复习资料,考研的必备

第一章绪论 重点: 1.自动控制系统的工作原理; 2.如何抽象实际控制系统的各个组成环节; 3.反馈控制的基本概念; 4.线性系统(线性定常系统、线性时变系统)非线性系统的定义和区别; 5.自动控制理论的三个基本要求:稳定性、准确性和快速性。 第二章控制系统的数学模型 重点: 1.时域数学模型--微分方程; 2.拉氏变换; 3.复域数学模型--传递函数; 4.建立环节传递函数的基本方法; 5.控制系统的动态结构图与传递函数; 6.动态结构图的运算规则及其等效变换; 7.信号流图与梅逊公式。 难点与成因分析: 1.建立物理对象的微分方程 由于自动化专业的本科学生普遍缺乏对机械、热力、化工、冶金等过程的深入了解,面对这类对象建立微分方程是个难题,讲述时 2.动态结构图的等效变换 由于动态结构图的等效变换与简化普遍只总结了一般原则,而没有具体可操作的步骤,面对变化多端的结构图,初学者难于下手。应引导学生明确等效简化的目的是解除反馈回路的交叉,理清结构图的层次。如图1中右图所示系统存在复杂的交叉回路,若将a点移至b点,同时将c点移至d点,同理,另一条交叉支路也作类似的移动,得到右图的简化结构图。 图1 解除回路的交叉是简化结构图的目的

3. 梅逊公式的理解 梅逊公式中前向通道的增益K P 、系统特征式?及第K 条前向通路的余子式K ?之间的关系仅靠文字讲述,难于理解清楚。需要辅以变化的图形帮助理解。如下图所示。 图中红线表示第一条前向通道,它与所有的回路皆接触,不存在不接 触回路,故11=?。 第二条前向通道与一个回路不接触,回路增益44H G L -=,故 4421H G +=?。 第三条前向通道与所有回路皆接触,故13=?。 第三章 时域分析法 重点: 1. 一、二阶系统的模型典型化及其阶跃响应的特点;

自动控制原理作业答案1-7(考试重点)

红色为重点(2016 年考题) 第一章 1-2 仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如下图所示。 1-4 题1-4 图为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么? 解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。 其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。 系统方块图如下图所示。这是一个按干扰补偿的复合控制系统。 1-5 图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。

解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc 的平方成正比,Uc 增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压Uf。Uf 作为系统的反馈电压与给定电压Ur 进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T° C,热电偶的输出电压Uf 正好等于给定电压Ur。此时,Ue=Ur-Uf=0, 故U1=Ua=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使Uc 保持一定的数值。这时,炉子 散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T° C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T°C 的实际值等于期望值为止。 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压ru (表征炉温的希望值)。系 统方框图见下图。 注意:方框图中被控对象和被控量放在最右边,检测的是被控量,非被控对象 第二章 2-2 设机械系统如图2—57 所示,其中x i 为输入位移,x o为输出位移。试分别列写各系统的微分方程式及传递函数。

相关文档
相关文档 最新文档