文档库 最新最全的文档下载
当前位置:文档库 › 专题6.4 数列求和(练)-2019年高考数学一轮复习讲练测(浙江版)(原卷版)

专题6.4 数列求和(练)-2019年高考数学一轮复习讲练测(浙江版)(原卷版)

专题6.4 数列求和(练)-2019年高考数学一轮复习讲练测(浙江版)(原卷版)
专题6.4 数列求和(练)-2019年高考数学一轮复习讲练测(浙江版)(原卷版)

2019年高考数学讲练测【浙江版】【练】

第六章 数列

第04节 数列求和

A 基础巩固训练

1.【2018届海南省海南中学第五次月考】已知各项均为正数的等比数列中,

,则数列

的前

项和为( )

A .

B .

C .

D .

2.【山东、湖北部分重点中学2018年高考冲刺(五)】设等差数列

的前项和S n ,

,若数

列的前项和为,则( )

A . 8

B . 9

C . 10

D . 11

3.【2018届南宁二中、柳州高中高三9月联考】已知数列2008,2009,1,-2008,…若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2018项之和2018S =__________. 4.【2018年理数全国卷II 】记为等差数列的前项和,已知

(1)求

的通项公式;

(2)求,并求的最小值.

5.【2018届安徽省蚌埠市第二中学高三7月月考】已知数列满足

.

(1)求数列

的通项公式;

(2)证明:.

B 能力提升训练

1.在等差数列{}n a 中,9a =

121

62

a +,则数列{}n a 的前11项和11S =( )

. A .24 B .48 C .66 D .132

2.【2018年天津市南开中学模拟】已知等比数列的前项和为,且,,则( )

A .

B .

C .

D .

3.已知数列的前项和为,且

,,则( )

A.

B.

C.

D.

4.已知n S 为数列{}n a 前n 项和, 若()2sin

2cos 2

n n a n n ππ?

?+=+ ??

?

,且2

4n S an bn =+,则a b -= .

5.【2018届高考第二次调研】已知数列的前n 项和为,且对任意正整数n 都有

.

(1)求证:

为等比数列.

(2)若,求数列的前n 项和.

C 思维拓展训练

1.【2018届湖北省襄阳四中高三8月月考】用()g n 表示自然数n 的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则()99,10g =的因数有1,2,5,10, ()105g =,那么

()()()

1221n g g g ++

+-=__________.

2.【2018届四川省成都七中高三上入学考试】设等差数列{}n a 的前n 项和为n S ,且1

2

n n n c S na a -=+(c 是常数, *n N ∈),26a =,又1

2

2

n n n a b +-=

,数列{}n b 的前n 项和为n T ,若22n T m >-对*n N ∈恒成立,则正整数m 的最大值是__________.

3. 已知数列{}n a 的前n 项和为n S ,点(),n n S 在抛物线231

22

y x x =+上,

各项都为正数的等比数列{}n b 满足2411

,416

b b =

=. (Ⅰ)求数列{}n a , {}n b 的通项公式;

(Ⅱ)记n n n a a C a b =+,求数列{}n C 的前n 项和n T . 4.【2018届海南省海南中学第五次月考】已知等差数列的公差不为零,

,且

成等比数

列。

(Ⅰ)求的通项公式;

(Ⅱ)设,求数列前2019项的和.

5.已知数列是等比数列,,是和的等差中项. (1)求数列的通项公式;

(2)设,求数列的前项和.

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

数列求和的教学反思

数列求和的教学反思 数列求和的教学反思 由于数列的求和在求解的方法中比较多,学生难以一次性熟练掌握全部的方法并灵活运用,所以在《数列求和》的专题课的教学重点放在了数列求和的前三种重要方法: 1、公式法求和(即直接利用等差数列和等比数列的求和公式进行求和); 2、利用叠加法、叠乘法将已知数列转化为等差数列或等比数列再行求和; 3、对于数列的通项是由等差乘以等比数列构成的,用乘公比错位相减求和法。 从实际教学效果看教学内容安排得符合学生实际,由浅入深,比较合理,基本达到了这节课预期的教学目标及要求。结合自我感觉、工作室评课、学生反馈,这节课比较突出的有以下几个优点。 1、注重“三基”的训练与落实 数列部分中两种最基本最重要的数列就是等差数列和等比数列,很多数列问题包括数列求和都是围绕这两种特殊数列展开的,即使不能直接利用等差数列和等比数列公式求和,也可根据所给数列的

不同特点,合理恰当地选择不同方法转化为等差数列或等比数列再行求和。因此上课伊始做为本节课的知识必备,就要求学生强化等差数列和等比数列求和公式的记忆。其次本节课充分渗透了转化的数学思想方法,并且通过典型例题使学生体会并掌握根据所给求和数列的不同特点,分别采用叠加法或叠乘法将所给数列转化为等差数列或等比数列再行求和的基本技能。 2、例、习题的选配典型,有层次 一方面精选近年典型的高考试题、模拟题做为例、习题,使学生通过体会和掌握,达到举一反三的目的;另一方面结合学生实际,自行编纂或改编了一些题目,或在原题基础上降低了难度,设计出了层次,或在学生易错的地方设置了陷阱,提醒学生留意。同时所配的课堂练习也充分注意了题目的难易梯度,把握了层次性,由具体数字运算到字母运算,由直接给出数列各项到用分段函数形式抽象表述数列,由单一方法适用到能够一题多解等等。 3、对学生可能出现的问题有预见性,并能有针对性地对症下药进行设计 对于直接利用公式求和的等差数列或等比数列求和问题,预见到学生的关键问题应该出在搞不清

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

四年级奥数思维训练专题-巧妙求和

四年级奥数思维训练专题-巧妙求和(一) 专题简析:若干个数排成一列称为数列.数列中的每一个数称为一项.其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数. 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差. 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算. 项数=(52-4)÷6+1=9 答:这个数列共有9项. 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100.要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算. 第100项=3+4×(100-1)=399

试一试2:求1,4,7,10……这个等差数列的第30项. 例3:有这样一个数列:1,2,3,4,…,99,100.请求出这个数列所有项的和. 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和. 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 巧妙求和(二) 专题简析:

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

文科数学2010-2018高考真题分类专题六 数列 第十七讲 递推数列与数列求和答案

专题六数列 第十七讲 递推数列与数列求和 答案部分 1.C 【解析】∵113 n n a a +=-,∴{}n a 是等比数列 又243a =-,∴14a =,∴()1010101413313113 S -????-- ? ? ?????==-+ ,故选C . 2.D 【解析】【法1】有题设知 21a a -=1,① 32a a +=3 ② 43a a -=5 ③ 54a a +=7,65a a -=9, 76a a +=11,87a a -=13,98a a +=15,109a a -=17,1110a a +=19,121121a a -=, …… ∴②-①得13a a +=2,③+②得42a a +=8,同理可得57a a +=2,68a a +=24,911a a +=2,1012a a +=40,…, ∴13a a +,57a a +,911a a +,…,是各项均为2的常数列,24a a +,68a a +,1012a a +,… 是首项为8,公差为16的等差数列, ∴{n a }的前60项和为1 1521581615142 ?+?+???=1830. 【法2】可证明: 14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 11234151514 1010151618302 b a a a a S ?=+++=?=?+ ?= 【法3】不妨设11a =,得23572,1a a a a ====???=,466,10a a ==,所以当n 为奇数时,1n a =,当n 为偶数时,构成以2a 为首项,以4为公差的等差数列,所以得 601830S = 3.A 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+=???=+=,故1210a a a ++???+=3515?=.故选A. 4.6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

数列求和专项训练题(学生)

数列求和的常用方法 第一类:公式法求和 利用下列常用求和公式求和是数列求和的最基本最重要的. 1、等差数列前n 和公式:()() 11122 n n n a a n n S na d +-= =+ 2、等比数列前n 和公式:1 11(1)(1)(1) 11n n n na q S a a q a q q q q =?? =--?=≠?--? 自然数方幂和公式: 3、11(1)2n n k S k n n ===+∑ 4、211 (1)(21) 6n n k S k n n n ===++∑ 5、32 1 1[(1)]2 n n k S k n n ===+∑ 【例】已知数列{}n a 满足*111,4,n n a a a n N +==+∈,求数列{}n a 的前n 项和 n S . 【练习】已知321 log log 3 x -= ,求23n x x x x +++???++???的前n 项和.

第二类:分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 若数列{}n c 的通项公式为n n n c a b =+,其中数列{}n a ,{}n b 分别是等差数列和等比数列,求和时一般用分组结合法。 【例】数列111111,2,3,4 ,,,24816 2n n 求数列的前n 项和. 【练习】数列{}n a 的通项公式221n n a n =+- 第三类:裂项法求和 这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 常用的通项分解(裂项)如:

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

(完整word版)数列求和方法(带例题和练习题)

数列的求和 数列求和主要思路: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 11123(1) 2 n n k S k n n n == =+++++=+∑L … 4、 222221 1 123(1)(21)6n n k S k n n n n ===++++=++∑L 5、 2 3 3 3 3 3 1 (1)1232n n k n n S k n =+?? ===++++=????∑L 公式法求和注意事项 (1)弄准求和项数n 的值; (2)等比数列公比q 未知时,运用前n 项和公式要分类。 例1.求和2 2 1-++++n x x x Λ(0,2≠≥x n ) 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:1 32)12(7531--+???++++=n n x n x x x S 例3.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 三、倒序相加法 如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的 例4.求ο ο ο ο ο 89sin 88sin 3sin 2sin 1sin 2 2 2 2 2++???+++的值 例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002. 例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +???++=求的值.

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

高三数学高考数列求和(裂项及错位)

考点十二 数列求和(裂项及错位) [真题1] (2009山东卷)等比数列{n a }的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值; (11)当b=2时,记1()4n n n b n N a + += ∈,求数列{}n b 的前n 项和n T . [命题探究] 创新是高考命题的要求,《考试大纲》提出命题要“创设比较新颖的问题情境”,同时,“在知识的交汇点处设计命题”是近年来高考命题的一种趋势。本题将数列的递推关系式以点在函数图像上的方式给出,体现了这种命题理念,也渗透了数列是定义在正整数集上的函数观念。第(2)问中对b 的赋值,旨在使问题变得简捷,也使设置的数列求和问题降低难度,达成“不求在细节上人为地设置障碍,而是在大方向上考查考生的数学能力”的命题指导思想。 [命题探源] 本题在设置等比数列的递推关系时,以点(,)n n S 在函数(0x y b r b =+>的图像上的方式给出,这种命题方式与2008年福建一道文科有相似之处:“已知{a n }是正数组成的数列,a 1=1 1n a +)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a ,求证:b n ·b n +2<b 2 n +1.”本题中增加了对参数r 的求解,因此,如何正确求出r 的值,成为本题的解题思考点,这恰好需要对递推 关系式{ 11,(1) ,(2) n n n S n a S S n -==-≥的正确理解(理角题目的条件:数列{n a }是等比数列,则11S a =满足数列递推式)。第(2)问求数列{}n b 的前n 项和n T , 所用的方法是错位相减法,也是课本中推导等比数列前n 项和公式时所用的方法。高考复习历来提倡回归课本,理解教材,例题的求解方法、公式的推导方法,都需要我们在回归课本中积累知识,提炼方法,形成能力。 [知识链接] 数列求和的几种常见题型与求解方法 (1)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ① 111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③ )(1 )0(1 n k n k k k n n -+= >++ **④ 2 1 1 1 1 1 1 1 1(1)(1)1k k k k k k k k k - = < < = - ++--. (2)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). 设{a n }是等差数列,且公差为d,{b n }是等比数列,且公比为q,记S n =a 1b 1+a 2b 2+…+a n b n n n n n n n n b a b a b a b a b a b a S ++++++=----1122332211... ① =n qS 1112233221...+-----++++++n n n n n n n n b a b a b a b a b a b a ② =-n S q )1(+11b a 11232)...(+---+++++n n n n n b a b b b b b d (3)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. (4)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 《规范解答》 广东省汕头市高三数学复习系列 等差数列、等比数列的性质及应用 新人教A 版 一.课题:等差数列、等比数列的性质及应用 二.教学目标:熟练掌握等差(比)数列的基本公式和一些重要性质,并能灵活运用性质解决有关的问题,培养对知识的转化和应用能力. 三.教学重点:等差(比)数列的性质的应用. 四.教学过程: (一)主要知识:

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

相关文档
相关文档 最新文档