文档库 最新最全的文档下载
当前位置:文档库 › 平行四边形惯性矩的等效算法

平行四边形惯性矩的等效算法

平行四边形惯性矩的等效算法
平行四边形惯性矩的等效算法

平行四边形惯性矩的等效算法

应该是在算x方向上的惯性矩时等效为同底同高的矩形,在算y方向时,等效为两竖线的垂直线,乘以平行于y方向的边(三方除以12)

四边形结果(cad求)

矩形结果

同法可求y方向惯性矩

另外在机械设计手册上关于截面惯性矩的算法那一章节有上三角形的惯性矩算法,

可等效为两个三角形计算(未计算)B*H*H*H/36 B为底,H为高

惯性矩的计算方法

I等.I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中y、z 为截面图形形心的坐标值.若把式(4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形( 如矩形、圆形等) 组合 而成的.对于这样的组合截面图形,计算静矩(S) 与形心坐标(y、z ) 时,可用以下公式 (4-4) (4-5) 式中A,y ,z 分别表示第个简单图形的面积及其形心坐标值,n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例4-1 已知T 形截面尺寸如图4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形( 图4 — 3) ,其面积为A .选取直角坐标系yoz ,在坐标为(y 、z) 处取一微小面积dA ,定义此微面积dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩I.微面积dA 乘以到坐标轴y 的距离的平方,沿整个截面积分为截面图形对y 轴的惯性矩I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

极惯性矩(4-6) 对y 轴惯性矩(4 -7a ) 同理,对z 轴惯性矩(4-7b) 由图4-3 看到所以有 即(4-8) 式(4 — 8) 说明截面对任一对正交轴的惯性矩之和恒等于它对该两轴交点的极惯性矩。 在任一截面图形中( 图 4 — 3) ,取微面积dA 与它的坐标z 、y 值的乘积,沿整个截面积分,定义此积分为截面图形对y 、z 轴的惯性积,简称惯积.表达式为 (4-9) 惯性矩、极惯性矩与惯性积的量纲均为长度的四次方.I,I,I恒为正值.而惯性积I其值能为正,可能为负,也可能为零.若选取的坐标系中,有一轴是截面的对称轴,则截面图形对此轴的惯性积必等于零. 当截面图形对某一对正交坐标轴的惯性积等于零时,称此对坐标轴为截面图形的主惯性轴.对主惯性轴的惯性矩称为主惯性矩.而通过图形形心的主惯性轴称为形心主惯性轴( 或称主形心惯轴) .截面对形心主惯性轴的惯性矩称为形心主惯性矩( 或称主形心惯矩) .例如,图4-4 中若这对yz 轴通过截面形心,则它们就是形心主惯性轴.对这两个轴的惯性矩即为形心主惯性矩.

极惯性矩常用计算公式

极惯性矩常用计算公式:Ip=∫Aρ^2dA 矩形对于中线(垂直于h边的中轴线)的惯性矩:b*h^3/12 三角形:b*h^3/36 圆形对于圆心的惯性矩:π*d^4/64 环形对于圆心的惯性矩:π*D^4*(1-α^4)/64;α=d/D §16-1 静矩和形心 平面图形的几何性质一般与杆件横截面的几何形状和尺寸有关,下面介绍的几何性质表征量在杆件应力与变形的分析与计算中占有举足轻重的作用。 静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。 定义式: ,(Ⅰ-1) 量纲为长度的三次方。 由此可得薄板重心的坐标为 同理有 所以形心坐标 ,(Ⅰ-2) 或 ,

由式(Ⅰ-2)得知,若某坐标轴通过形心,则图形对该轴的静矩等于零,即, ;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。静矩与所选坐标轴有关,其值可能为正,负或零。 如一个平面图形是由几个简单平面图形组成,称为组合平面图形。设第i块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为 ,(Ⅰ-3) ,(Ⅰ-4) 【例I-1】求图Ⅰ-2所示半圆形的及形心位置。 【解】由对称性,,。现取平行于轴的狭长条作为微面积 所以 读者自己也可用极坐标求解。

【例I-2】确定形心位置,如图Ⅰ-3所示。 【解】将图形看作由两个矩形Ⅰ和Ⅱ组成,在图示坐标下每个矩形的面积及形心位置分别为 矩形Ⅰ:mm2 mm,mm 矩形Ⅱ:mm2 mm,mm 整个图形形心的坐标为 §16-2 惯性矩和惯性半径 惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。 ,(Ⅰ-5) 量纲为长度的四次方,恒为正。相应定义 ,(Ⅰ-6) 为图形对轴和对轴的惯性半径。

剪力墙等效抗弯刚度

《高层建筑结构与抗震》辅导文章五 剪力墙结构内力与位移计算 学习目标 1、了解剪力墙结构的分类,以及各种剪力墙的受力特点; 2、熟悉剪力墙的分类判别式。 3、掌握整体墙和小开口整体墙的内力及位移计算、掌握双肢墙的内力及位移计算。 学习重点 1、剪力墙的分类及分类判别式; 2、整体和小开口整体墙的内力及位移计算; 3、双肢墙的内力及位移计算。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本章着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、基本假定 剪力墙结构是一个比较复杂的空间结构,为了简化,剪力墙在水平荷载作用下计算时,作如下假定: (1)楼板在其自身平面内的刚度极大,可视其为刚度无限大的刚性楼盖; (2)剪力墙在其自身平面内的刚度很大,而在其平面外的刚度又极小,可忽略不计。因此可以把空间结构化作平面结构处理,即剪力墙只承受在其自身平面内的水平荷载。 基于以上两个假定,剪力墙结构在水平荷载作用下可按各片剪力墙的等效抗弯刚度分配水平力给各片剪力墙,然后分别进行内力和位移计算。例如图6-1(a)所示的剪力墙结构可分别按图6-1(b)和图6-1(c)的剪力墙考虑。同时,现行国家标准《高层建筑混凝土结构技术规程》(JGJ3-2002)为考虑纵、横墙的共同工作,将纵墙的一部分作为横墙的有效翼缘,横墙的一部分也可以作为纵墙的有效翼缘。 剪力墙的等效抗弯刚度是一个非常重要的概念,是指按剪力墙顶点侧移相等的原则,考虑弯曲变形和剪切变形后,折算成一个竖向悬臂受弯构件的抗弯刚度。

截面惯性矩计算

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是 ,用平行轴定理得截面对形心轴的惯性矩 再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是

上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的 惯性矩如下: 返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下:

返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所示,试求截面对其水平形心轴和竖直形心轴的惯性矩和。 解:先求形心主轴的位置 即 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是 ,;横截面积为;槽钢背到其形心轴的距离是。

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质 一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y ==整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1)2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为

∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 1 1 11S (I-3) 截面图形的形心坐标为 ∑∑=== n i i n i i i A x A x 1 1 , ∑∑=== n i i n i i i A y A y 1 1 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐

换算截面力学参数求法

8.3.4 JTJ023方法 1.换算截面 换算截面是指将物理性能与混凝土明显不同的钢筋按力学等效的原则通过弹 性模量比值的折换,将钢筋换算为同一混凝土材料而得到的截面。图8-12所示为在受拉区裂缝出现前后不同的换算截面。根据换算截面由材料力学方法可以求得其等效截面惯性矩I0和I cr。 图8-12 换算截面 2.短期截面刚度 将一根带裂缝的受弯构件视为一根不等刚度的构件(图8-13a),裂缝处刚度最小,两裂缝间刚度最大,图8-13b实线表示截面刚度变化规律。为便于分析,取一个长度为l m的裂缝区段,近似地分解为整体截面区段和开裂截面区段。根据试验分析,和与开裂弯矩M cr和截面上所受弯矩M s的比值有关,可按下列公式确定: (8-26) (8-27)

把图8-13c变刚度构件等效为图8-13d的等刚度构件,采用结构力学方法,按在端部弯矩作用下构件转角相等的原则,可求得等刚度受弯构件的等效刚度B。 图8-13 受弯构件截面刚度等效示意图 根据图8-13c所示变截面构件,求出裂缝区段两端截面的相对转角: (8-28)根据图8-13d所示等截面构件,求出裂缝区段两端截面的相对转角: (8-29)令=,可得:

(8-30)将式(8-26)、(8-27)代入式(8-30),整理后得: (8-31) 式中 B ——开裂构件等效截面的抗弯刚度; B0——全截面的抗弯刚度,B0=0.85E c I0; B cr——开裂截面的抗弯刚度,B cr=E c I cr; M cr——截面开裂弯矩; I0——全截面换算截面惯性矩; I cr——开裂截面换算截面惯性矩。 上式即为JTJ023中所给出的刚度计算公式。 8.3.5 长期荷载作用的影响 以上介绍的是钢筋混凝土受弯构件的短期刚度的计算方法,由此计算的挠度为短期荷载作用下的挠度变形。如前所述,当构件在持续荷载作用下,由于压区混凝土的徐变,钢筋和混凝土间的滑移徐变等因素,其挠度将随时间而不断缓慢增长。这也可以理解为构件的抗弯刚度随时间而不断降低。因此,为了保证构件的适用笥,在验算构件的挠度变形时,要求在荷载效应的标准组合(或称“短期组合”)作用下并考虑荷载长期作用影响后的构件挠度,不应超过规范规定的允 许限值。那么如何考虑长期荷载作用对挠度的影响呢?目前国内建筑工程与公路桥涵工程所采用的方法有所不同。前者(GB50010)引入长期刚度B l的概念,通过对刚度的折减来考虑挠度随时间的增长;而后者(JTJ023)则采用挠度长期增 长系数直接反映挠度随时间的增长。但是从本质上讲,两种方法是一致的。 假设在荷载长期作用下的挠度增大系数为,那么构件在荷载作用下的挠度用短期刚度计算,可以表示为:

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3) (2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形

形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。 (1)圆截面对其圆心的极惯性矩,如式(2—7) (2—2.7) (2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8) (2—2.8)

惯性矩的计算方法

I等. I等是从不同角度反映了截 S,其数学表达式 (4 -1a ) (4-1b) (4 -2a )

(4-2b) 式中 y、 z 为截面图形形心的坐标值.若把式 (4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形 ( 如矩形、圆形等 ) 组合而成的.对于这样的组合截面图形,计算静矩 (S) 与形心坐标 (y、 z ) 时,可用以下公式 (4-4) (4-5) 式中 A, y , z 分别表示第个简单图形的面积及其形心坐标值, n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例 4-1 已知 T 形截面尺寸如图 4-2 所示,试确定此截面的形心坐标值.

、两个矩形,则 设任一截面图形 ( 图 4 — 3) ,其面积为 A .选取直角坐标系 yoz ,在坐标为 (y 、 z) 处取一微小面积 dA ,定义此微面积 dA 乘以到坐标原点o的距离的平方,沿整个截面积分,为截面图形的极惯性矩 I.微面积 dA 乘以到坐标轴 y 的距离的平方,沿整个截面积分为截面图形对 y 轴的惯性矩 I.极惯性矩、惯性矩常简称极惯矩、惯矩. 数学表达式为

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩 公式 The Standardization Office was revised on the afternoon of December 13, 2020

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。惯性矩的国际单位为(m^4)。 工程构件典型截面几何性质的计算 2.1面积矩 1.面积矩的定义 图2-2.1任意截面的几何图形 如图2-31所示为一任意截面的几何图形(以下简称图形)。定义:积分和 分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1) (2—2.1)面积矩的数值可正、可负,也可为零。面积矩的量纲是长度的三次方,其常用单位为m3或mm3。 2.面积矩与形心 平面图形的形心坐标公式如式(2—2.2) (2—2.2) 或改写成,如式(2—2.3)

(2—2.3) 面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。 图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。 3.组合截面面积矩和形心的计算 组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。如式(2—2.4) (2—2.4) 式中,A和y i、z i分别代表各简单图形的面积和形心坐标。组合平面图形的形心位置由式(2—2.5)确定。 (2—2.5) 2.2极惯性矩、惯性矩和惯性积 1.极惯性矩 任意平面图形如图2-31所示,其面积为A。定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6) (2—2.6) 极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

惯性矩的定义和计算公式

惯性矩的定义 ●区域惯性矩-典型截面I ●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩 ●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和 应力的形状特性。 ●面积惯性矩-英制单位 ●inches4 ●面积惯性矩-公制单位 ●mm4 ●cm4 ●m4 ●单位转换 ● 1 cm4 = 10-8 m4 = 104 mm4 ● 1 in4 = 4.16x105 mm4 = 41.6 cm4 ●示例-惯性单位面积矩之间的转换 ●9240 cm4 can be converted to mm4 by multiplying with 104 ●(9240 cm4) 104 = 9.24 107 mm4 ●区域惯性矩(一个区域或第二个区域的惯性矩) ● ●绕x轴弯曲可表示为 ●I x = ∫ y2 dA (1) ●其中

●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2) ●绕y轴弯曲的惯性矩可以表示为 ●I y = ∫ x2 dA (2) ●其中 ●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩 ●典型截面II的面积惯性矩 ●实心方形截面 ● ●实心方形截面的面积惯性矩可计算为 ●I x = a4 / 12 (2) ●其中 ● a = 边长(mm, m, in..) ●I y = a4 / 12 (2b) ●实心矩形截面

附录F:板柱节点计算用等效集中反力设计值

附录F 板柱节点计算用等效集中反力设计值 F.0.1 在竖向荷载、水平荷载作用下的板柱节点,其受冲切承载力计算中所用的等效集中反力设计值F l,eq 可按下列情况确定: 1,传递单向不平衡弯矩的板柱节点 当不平衡弯矩作用平面与柱矩形截面两个轴线之一相重合时,可按下列两种情况进行计算: 1)由节点受剪传递的单向不平衡弯矩α0M unb ,当其作用的方向指向图F.0.1的AB 边时,等效集中反力设计值可按下列公式计算: 00,h u I a M F F m c AB unb l eq l α+ = (F.0.1-1) g l cu unb unb e F M M -=, (F.0.1-2) 图F.0.1 矩形柱及受冲切承载力计算的几何参数 (a)中柱截面;(b)边柱截面(弯矩作用平面垂直于自由边) (c)边柱截面(弯矩作用平面平行于自由边);(d)角柱截面 1柱截面重心G 的轴线;2-临界截面周长重心g 的轴线;3-不平衡弯矩作用平面;4--自由边

2)由节点受剪传递的单向不平衡弯矩α0M unb ,当其作用的方向指向图F.0.1的CD 边时,等效集中反力设计值可按下列公式计算: 00,h u I a M F F m c CD unb l eq l α+ = (F.0.1-3) g l cu unb unb e F M M -=, (F.0.1-4) 式中:F l ——在竖向荷载、水平荷载作用下,柱所承受的轴向压力设计值的层间差值减 去柱顶冲切破坏锥体范围内板所承受的荷载设计值; α0——计算系数,按本规范第F.0.2条计算; M unb ——竖向荷载、水平荷载引起对临界截面周长重心轴(图F.0.1中的轴线2) 处的不平衡弯矩设计值; M unb,c ——竖向荷载、水平荷载引起对柱截面重心轴(图F.0.1中的轴线1)处的 不平衡弯矩设计值; a AB 、a CD ——临界截面周长重心轴至AB 、CD 边缘的距离; I c ——按临界截面计算的类似极惯性矩,按本规范第F.0.2条计算; e g ——在弯矩作用平面内柱截面重心轴至临界截面周长重心轴的距离,按本规范 第F.0.2条计算;对中柱截面和弯矩作用平面平行于自由边的边柱截面,e g =0。 2,传递双向不平衡弯矩的板柱节点 当节点受剪传递到临界截面周长两个方向的不平衡弯矩为α0x M unb,x 、α0y M unb,y 时,等效集中反力设计值可按下列公式计算: max ,,h u F F m unb l eq l τ += (F.0.1-5) cy y y unb y cx x x unb x unb I a M I a M ,0,0max ,αατ + = (F.0.1-6) 式中:τunb,max ——由受剪传递的双向不平衡弯矩在临界截面上产生的最大剪应力设计值; M unb,x 、M unb,y ——竖向荷载、水平荷载引起对临界截面周长重心处x 轴、y 轴方向的 不平衡弯矩设计值,可按公式(F.0.1-2)或公式(F.0.1-4)同样的方法确定; α0x 、α0y ——x 轴、y 轴的计算系数,按本规范第F.0.2条和第F.0.3条确定; I cx 、I cy ——对x 轴、y 轴按临界截面计算的类似极惯性矩,按本规范第F.0.2条 和第F.0.3条确定; a x 、a y ——最大剪应力τmax 的作用点至x 轴、y 轴的距离。 3,当考虑不同的荷载组合时,应取其中的较大值作为板柱节点受冲切承载力计算用的等效集中反力设计值。 F.0.2 板柱节点考虑受剪传递单向不平衡弯矩的受冲切承载力计算中,与等效集中反力设计值F l,eq 有关的参数和本附录图F.0.1中所示的几何尺寸,可按下列公式计算: 1,中柱处临界截面的类似极惯性矩、几何尺寸及计算系数可按下列公式计算(图F.0.1a ): 2 030226?? ? ??+=t m t c a a h a h I (F.0.2-1)

等效转动惯量

由上看出,转化法的关键是确定等效转动惯量Jv和等效力矩Mv,也即是机械中各构件质量的转化和外力的转化。 比较式(10.2.1-2)和式(10.2.1-5)可知,为保证是“等效”的转化,必须遵守以下两个原则:动能相等原则转化件的等效转动惯量所具有的动能应与原机械的总动能相等。 功率相等原则转化件的等效力矩所作的元功(或瞬时功率)应与原机械上作用的全部外力所作的元功(或瞬时功率)相等。 由此可写出等效转动惯量Jv和等效力矩Mv的普遍公式。 按动能相等的原则,列出转化件与一般机械的动能等式 由此得 (10.2.2-1) (10.2.2-2) 式中ω───—转化件的角速度; n ───机械中的活动构件数; i ───构件号; m i───第i构件的质量; v si───第i构件质心的速度。 ───第i构件的移动动能;J si───第i构件绕质心的转动惯量;ωi───第i构件的角速度; ───第i构件的转动动能; 由式(10.2.2-2)看出,Jv总是为正。 按功率相等的原则,列出转化件与一般机械上作用外力的功率等式 (10.2.2-3) 由此得 (10.2.2-4) 式中Pi ───作用在第i构件上的力; vi ───第i构件上力Pi作用点的速度; ai ───力Pi方向与速度vi方向的夹角; Mi ───作用在第i构件上的力矩; wi ───第i构件的角速度。 思考题 在式(10.2.2-4)中如何反应出作用在第i构件上力Pi或力矩Mi为驱动力还是工作阻力? 夹角ai<90°,(Pivicosai)为正,说明Pi为驱动力。反之,ai>90°,(Pivicosai)为负,则Pi为工作阻力。 若Mi方向与wi同向,则Mi为驱动力矩,Mi、wi乘积前取“+”号;反之,取“-”

剪力墙等效抗弯刚度

剪力墙等效抗弯刚度

————————————————————————————————作者: ————————————————————————————————日期:

《高层建筑结构与抗震》辅导文章五 剪力墙结构内力与位移计算 学习目标 1、了解剪力墙结构的分类,以及各种剪力墙的受力特点; 2、熟悉剪力墙的分类判别式。 3、掌握整体墙和小开口整体墙的内力及位移计算、掌握双肢墙的内力及位移计算。 学习重点 1、剪力墙的分类及分类判别式; 2、整体和小开口整体墙的内力及位移计算; 3、双肢墙的内力及位移计算。 剪力墙主要承受两类荷载:一类是楼板传来的竖向荷载,在地震区还应包括竖向地震作用的影响;另一类是水平荷载,包括水平风荷载和水平地震作用。剪力墙的内力分析包括竖向荷载作用下的内力分析和水平荷载作用下的内力分析。在竖向荷载作用下,各片剪力墙所受的内力比较简单,可按照材料力学原理进行。在水平荷载作用下剪力墙的内力和位移计算都比较复杂,因此本章着重讨论剪力墙在水平荷载作用下的内力及位移计算。 一、基本假定 剪力墙结构是一个比较复杂的空间结构,为了简化,剪力墙在水平荷载作用下计算时,作如下假定: (1)楼板在其自身平面内的刚度极大,可视其为刚度无限大的刚性楼盖; (2)剪力墙在其自身平面内的刚度很大,而在其平面外的刚度又极小,可忽略不计。因此可以把空间结构化作平面结构处理,即剪力墙只承受在其自身平面内的水平荷载。 基于以上两个假定,剪力墙结构在水平荷载作用下可按各片剪力墙的等效抗弯刚度分配水平力给各片剪力墙,然后分别进行内力和位移计算。例如图6-1(a)所示的剪力墙结构可分别按图6-1(b)和图6-1(c)的剪力墙考虑。同时,现行国家标准《高层建筑混凝土结构技术规程》(JGJ3-2002)为考虑纵、横墙的共同工作,将纵墙的一部分作为横墙的有效翼缘,横墙的一部分也可以作为纵墙的有效翼缘。 剪力墙的等效抗弯刚度是一个非常重要的概念,是指按剪力墙顶点侧移相等的原则,考虑弯曲变形和剪切变形后,折算成一个竖向悬臂受弯构件的抗弯刚度。

材料力学--计算机计算惯性矩和抗弯截面系数方法(精)

材料力学—计算机计算惯性矩和抗弯截面系数方法 1 在AutoCAD中绘制需要计算的截面图形或导入图形,如图1所示。 图1 2 创建面域 面域创建的方式主要有两种: (1)reg命令。输入reg并回车或在菜单栏点选“绘图”→“面域”,按提示选择需要计算的截面图形线条;右键或Enter键确定。会建立两个面域(外围边框和内部边框); (2)bo命令。在命令行输入bo并回车或在菜单栏点选“绘图”→“边界”,弹出如图2所示“边界创建”对话框。选择创建“对象类型”为“面域”,勾选“孤岛检测”,点击“拾取点”返回绘图界面,用十字光标拾取截面图形内部任意一点,右键或Enter键确定。也会建立两个面域(外围边框和内部边框)。 图2 3 面域差集计算 将建立的两个面域进行差集计算。在命令行输入subtract并回车或在菜单栏点选“修改”→“实体编辑”→“差集”,按提示选择要从中减去的实体或面域(外围边框)并回车,再选择要减去的实体或面域(内部边框)并回车,会将两个面域合成一个整体面域。 4 查询计算 (1)在命令行输入massprop 并回车或在菜单中选择“工具”→“查询”→“面积/质量特性”; (2)选择刚创建的面域并回车,弹出如图3所示的文本对话框; 图

3 (3)得到截面面积=37.7mm2,截面形心坐标为(88.11,211.48)。截面惯性矩、惯性积、主力矩。 5 对截面形心坐标轴的惯性矩、惯性半径、抗弯截面系数查询计算 (1)从主力矩与质心的X-Y方向可以得出: Ix=188.5mm4, Iy=188.5mm4 (2)利用刚得到的截面形心坐标为(88.11,211.48),命令行输入ucs→(88.11,211.48),将用户ucs坐标原点移动到截面形心,如图4; 图4 (3)命令行输入massprop并回车,弹出如图5所示的文本对话框; 图5 (4)可得:截面对形心轴的惯性矩Ix=188.5mm4、Iy=188.5mm4,惯性积Ixy=0(由图5可知,形心轴y轴为截面图形的对称轴,所以截面图形对形心轴x、y轴的惯性积恒等于零)。 由图5可知,截面图形边界框值为x:-4—4、y:-4—4, 抗弯截面系数计算如下: Wx1=Ix/ymax=188.5/4=47.13mm3 Wx2= Ix/ymin=188.5/4=47.13mm3 Wy1= Iy/xmax=188.5/4=47.13mm3 Wy2= Iy/ymin=188.5/4=47.13mm3 6 相同的计算方法就可以计算各种复杂截面的零件的惯性矩和抗弯截面系数,只是在计算中要注意截面面域的选择要正确,截面差集要准确。

CFD 中的惯性矩

CFD中的惯性矩 1.分类和定义: 惯性矩分为面积惯性矩和质量惯性矩,CFD计算中涉及的惯性矩通常为质量惯性矩。 I=m*r2kg*m*m 式中: I—惯性矩,m;m—质量,kg;r—惯性半径,m。 Ixx= m*r x2kg*m*m (r x—绕X轴惯性半径,m) Iyy= m*r y2kg*m*m (r y—绕Y轴惯性半径,m) Izz= m*r z2kg*m*m (r z—绕Z轴惯性半径,m) *惯性矩计算原点是重心,如果参考点是其他位置那需要另外转换。 2. 惯性矩对船舶运动的影响: 船舶惯性矩越大,其相对摇晃周期就越长,Ixx影响的是横摇,Iyy影响的是纵摇, Izz影响的是艏摇。实际上惯性矩只是影响摇晃的中间过程,决定最终船舶稳定状态的是重心位置。所以计算实际工程时重心位置往往很重要,但如果你算的是耐波性或者其他关注中间过程的分析,那请一定按船舶实际的惯性矩计算。 * 一般重心都高于水线,货船在0.85型深处,客船型深以上,具体还是看总图和结构。 3. 船舶惯性矩的计算方法: ①经验公式: r XX=(0.35-0.40)B r yy= 0.25L r ZZ= 0.25L * 参考船级社或者是CFD各类指南,通常可以自己调整惯性矩的值让收敛更快。 ②直接计算法: 简化计算:将船舶分为固定的几段,分别求惯性矩,其中每段重量和重心必须按实际重量重心来。比如稳性计算书,空船重量重心计算书中会有详细的数据。正常 情况一般会把船舶分为20段(按站号来),把站内左右两端重量根据重量和 力矩等效原则集中换算到站的位置。 详细计算:软件直接结构建模,舱室模拟舾装件模拟最终模拟出整个船的惯性矩。 Conan Zheng 2017.09

惯性矩计算方法

抗弯惯距和抗扭惯距的计算 2009-10-20 09:54 计算过上部的人都知道,在计算横向力分布系数和冲击系数的时候都需要计算截面的抗弯惯距和抗扭惯距,下面就介绍几种方法来计算抗弯惯距和抗扭惯距(本教程拿30米简支转连续箱梁截面做样例): 一、在AUTOCAD中有一个命令massprop可以计算截面的面积、周长、质心、惯性矩 操作简介:1、首先在CAD中画出如下图的图形;2、用region命令将图形转化成内外两个区域;3、用subtract命令求内外区域的差集;4、用move命令将图形移动至(0,0,0),用scale命令将图形单位调整为米;5、用massprop命令计算截面性质(可惜这个命令不能计算抗扭惯距) Command: mas MASSPROP Select objects: 1 found Select objects: ---------------- REGIONS ---------------- Area(面积): 1.2739 Perimeter(周长): 13.7034 Bounding box(边缘): X: -1.7000 -- 1.7000 Y: 0.0000 -- 1.6000 Centroid(质心): X: 0.0000 Y: 1.0458 Moments of inertia: X: 1.7883 Y: 0.7922 Product of inertia: XY: 0.0000 Radii of gyration: X: 1.1848 Y: 0.7886 Principal moments and X-Y directions about centroid: I: 0.3950 along [1.0000 0.0000]这就是惯距 J: 0.7922 along [0.0000 1.0000] 第二种方法:采用桥博计算截面惯距 操作简介:本人使用的是桥博3.03,大家可以新建一个项目组,在新建项目上右键选择截面设计,选择C:\Program Files\TongHao\DoctorBridge30\EXAMPLES\Tool\DbDebug2.sds,当前任务类型选择截面几何特征,在截面描述中清除当前截面(包括附加截面还有主截面里面的钢筋),选择“斜腹板单箱单室”(大家在可根据自己计算的截面选择相应的截面,如果桥博内置的截面没有的话,可以选用从CAD中导入,CAD导入将在后面的教程中介绍)输入截面相应的数据(附图) 输出结果附后 <<桥梁博士>>---截面设计系统输出 文档文件: C:\Program

截面惯性矩计算(借鉴资料)

截面的几何性质 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。 解:知半圆形截 面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩

再用平行轴定理,得截面对轴的惯性矩 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: 返回

15-4(I-11) 试求图示各组 合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是28.4 mm,求得组合截面对轴的惯性矩如下: 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图所示。惯性矩计算如下: 返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所 示,试求截面对其水平形心轴和竖直形心轴的惯性矩和。

解:先求形心主轴的位置 即 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴 的惯性矩和相等,则两槽钢的间距应为多少? 解:20a号槽钢截面对其自身的形心轴、的惯性矩是, ;横截面积为;槽钢背到其形心轴的距离 是。 根据惯性矩定义和平行轴定理,组合截面对,轴的惯性矩分别是 ; 若 即 等式两边同除以2,然后代入数据,得

惯性矩计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式 截面图 形的几何性质 一.重点及难点: (一).截面静矩和形心 1?静矩的定义式 如图1所示任意有限平面图形,取其单元如面积 dA ,定义它对任意轴的 一次矩为它对该轴的静矩,即 dS y =xdA dSx 二 ydA 整个图形对y 、z 轴的静矩分别为 S y = A XdA (I ) Sx ydA 、A 2. 形心与静矩关系 设平面图形形心C 的坐标为y C , z C S x S y y - , x ( I-2) A A 推论1如果y 轴通过形心(即x = 0),则静矩S y =0 ;同理,如果x 轴 通过形心(即y = 0),则静矩Sx=o ;反之也成立。 推论2如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果 y 轴为图形对称轴,贝昭形形心必在此轴上。 3. 组合图形的静矩和形心 设截面图形由几个面积分别为 A,A 2,A3……A n 的简单图形组成,且一直 各族图形的形心坐标分别为 丘局乂2*2;壬3,『3"…=,则图形对y 轴和x 轴 的静矩分别为 图I-1 则 0

S y = " S yi = ' A i X i i 4 i 4 n n S x = ' S xi = ' A i y i i 4 i 4 截面图形的形心坐标为 、' A i X i 4. 静矩的特征 (1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2)静矩有的单位为m 3 (3)静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 ⑷ 若已知图形的形心坐标。则可由式(1-1)求图形对坐标轴的静矩。 若已 知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。组 合图形的形心位置,通常是先由式(1-3)求出图形对某一坐标系的静 矩,然后由式(1-4)求出其形心坐标。 (二)■惯性矩惯性积惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A '2dA (1-5) 图形对y 轴和x 轴的光性矩分别定义为 I y 「A X 2dA , I x 「A y 2dA ( I-6) 惯性矩的特征 (1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐 标轴 定义的。 (2)极惯性矩和轴惯性矩的单位为m 4 (1-3) 、A i y i (1-4)

惯性矩的计算方法 (2)

第1节静矩和形心 4.1 静矩和形心 任何受力构件的承载能力不仅与材料性能和加载方式有关,而且与构件截面的几何形状和尺寸有关.如:计算杆的拉伸 与压缩变形时用到截面面积A ,计算圆轴扭转变形时用到横截面的极惯性矩I等.A 、I等是从不同角度反映了截面的几何特性,因此称它们为截面图形的几何性质. 4.1 静矩和形心 设有一任意截面图形如图4 — 1 所示,其面积为A .选取直角坐标系yoz ,在坐标为(y,z) 处取一微小面积dA ,定义微面积dA 乘以到y 轴的距离z ,沿整个截面的积分,为图形对y 轴的静矩S,其数学表达式 (4 -1a ) 同理,图形对z 轴的静矩为 (4-1b) 图4-1 截面静矩与坐标轴的选取有关,它随坐标轴y 、z 的不同而不同.所以静矩的数值可能是正,也可能是负或是零.静矩的量纲为长度的三次方. 确定截面图形的形心位置( 图4-1 中C 点): (4 -2a ) (4-2b)

式中y、z 为截面图形形心的坐标值.若把式(4-2) 改写成 (4-3) 性质: ?若截面图形的静矩等于零,则此坐标轴必定通过截面的形心. ?若坐标轴通过截面形心,则截面对此轴的静矩必为零. ?由于截面图形的对称轴必定通过截面形心,故图形对其对称轴的静矩恒为零。 4 )工程实际中,有些构件的截面形状比较复杂,将这些复杂的截面形状看成是由若干简单图形( 如矩形、圆形等) 组合而成的.对于这样的组合截面图形,计算静矩(S) 与形心坐标(y、z ) 时,可用以下公式 (4-4) (4-5) 式中A,y ,z 分别表示第个简单图形的面积及其形心坐标值,n 为组成组合图形的简单图形个数. 即:组合图形对某一轴的静矩等于组成它的简单图形对同一轴的静矩的代数和.组合图形的形心坐标值等于组合图形对相应坐标轴的静矩除以组合图形的面积.组合截面图形有时还可以认为是由一种简单图形减去另一种简单图形所组成的. 例4-1 已知T 形截面尺寸如图4-2 所示,试确定此截面的形心坐标值.

惯性矩的计算方法及常用截面惯性矩计算公式

一.重点及难点: (一).截面静矩和形心 1.静矩的定义式 如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 ydA dSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ??==A A y ydA Sx xdA S (I-1) 2.形心与静矩关系 图I-1 设平面图形形心C 的坐标为C C z y , 则 0 A S y x = , A S x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。 推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。 3.组合图形的静矩和形心 设截面图形由几个面积分别为n A A A A ??321,,的简单图形组成,且一直各族图形的形心坐标分别为??332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为 ∑∑∑∑========n i n i i i xi x n i i i n i yi y y A S S x A S 11 11 S (I-3) 截面图形的形心坐标为

∑∑===n i i n i i i A x A x 11 , ∑∑===n i i n i i i A y A y 11 (I-4) 4.静矩的特征 (1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。 (2) 静矩有的单位为3m 。 (3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。 (4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径 1. 惯性矩 定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为 ?=A p dA I 2ρ (I-5) 图形对y 轴和x 轴的光性矩分别定义为 ?=A y dA x I 2 , dA y I A x ?=2 (I-6) 惯性矩的特征 (1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐 标轴定义的。 (2) 极惯性矩和轴惯性矩的单位为4m 。 (3) 极惯性矩和轴惯性矩的数值均为恒为大于零的正值。 (4) 图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐标原 点的任意一对坐标轴的轴惯性矩之和,即 ??+=+==A x y A p I I dA y x dA I )(222ρ (I-7)

相关文档
相关文档 最新文档