文档库 最新最全的文档下载
当前位置:文档库 › 线粒体功能与谷氨酸信号在胰岛素分泌中的作用

线粒体功能与谷氨酸信号在胰岛素分泌中的作用

线粒体功能与谷氨酸信号在胰岛素分泌中的作用
线粒体功能与谷氨酸信号在胰岛素分泌中的作用

胰岛的细胞组成与功能

胰岛的细胞组成及其功能 胰岛能分泌胰岛素与胰高血糖素等激素。人类的胰岛细胞按其染色和形态学特点,主要分为α细胞、β正常胰岛细胞、γ细胞及PP细胞。α细胞约占胰岛细胞的20%,分泌胰高血糖素;β细胞占胰岛细胞的60%-70%,分泌胰岛素;γ细胞占胰岛细胞的10%,分泌“生长抑素”;PP细胞数量很少,分泌胰多肽。 胰岛素对人体的糖脂肪和蛋白质代谢都有影响,但对于糖代谢的调 节作用尤为明显,胰岛素能够促进血液中的葡萄糖(血糖)进入组织 细胞被储存和利用。缺乏胰岛素时,血糖难以被组织细胞摄取,糖的 贮存和利用都将减少,这时血糖浓度如果过高,就会有一部分从尿液 中排出,形成糖尿。如果是因为胰岛素分泌不足导致,可以通过注射 胰岛素制剂来治疗。 2生物学作用 胰岛素是促进合成代谢、调节血糖稳定的主要激素。 1.对糖代谢的调节:胰岛素促进组织细胞对葡萄糖的摄取和利用, 加速葡萄糖合成为糖原,贮存于肝和肌肉中,并抑制糖异生,促进葡 萄糖转变为脂肪酸,贮存于脂肪组织,导致血糖水平下降。胰岛素缺 乏时,血糖浓度升高,如超过肾糖阈,尿中将出现糖,引起糖尿病。 2.对脂肪代谢的调节胰岛素促进肝合成脂肪酸,然后转运到脂肪细 胞贮存。在胰岛素的作用下,脂肪细胞也能合成少量的脂肪酸。胰岛 素还促进葡萄糖进入脂肪细胞,除了用于合成脂肪酸外,还可转化为 α-磷酸甘油,脂肪酸与α-磷酸甘油形成甘油三酯,贮存于脂肪细胞

中,同时,胰岛素还抑制脂肪酶的活性,减少脂肪的分解。胰岛素缺乏时,脂肪代谢紊乱,脂肪分解增强,血脂升高,加速脂肪酸在肝 内氧化,生成大量酮体,由于糖氧化过程发生障碍,不能很好处理酮 体,以致引起酮血症与酸中毒。 3.对蛋白质代谢的调节胰岛素促进蛋白质合成过程,其作用可在蛋 白质合成的各个环节上: ①促进氨基酸通过膜的转运进入细胞; ②可使细胞核的复制和转录过程加快,增加DNA和RNA的生成; ③作用于核糖体,加速翻译过程,促进蛋白质合成;另外,胰岛素还 可抑制蛋白质分解和肝糖异生。由于胰岛素能增强蛋白质的合成过 程,所以,它对机体的生长也有促进作用,但胰岛素单独作用时,对 生长的促进作用并不很强,只有与生长素共同作用时,才能发挥明显 的效应。受体。胰岛素受体已纯化成功,并阐明了其化学结构。 3分泌调节 (1)血糖的作用血糖浓度是调节胰岛素分泌的最重要因素,当血糖浓 度升高时,胰岛素分泌明显增加,从而促进血糖降低。当血糖浓度下 降至正常水平时,胰岛素分泌也迅速恢复到基础水平。在持续高血糖 的刺激下,胰岛素的分泌可分为三个阶段:血糖升高5min内,胰岛 素的分泌可增加约10倍,主要来源于B细胞贮存的激素释放,因此持续时间不长,5-10min后胰岛素的分泌便下降50%;血糖升高15min 后,出现胰岛素分泌的第二次增多,在2-3h达高峰,并持续较长的 时间,分泌速率也远大于第一相,这主要是激活了B细胞胰岛素合

胰岛素早相分泌

李强教授谈胰岛素早相分泌与餐后血糖 胰岛B细胞功能缺陷在2型糖尿病发生、发展过程中起了极其重要的作用,其中早相(第一时相)胰岛素分泌缺陷是其最早也是最主要的特征。早相胰岛素分泌减少,是导致餐后高血糖症和高胰岛素血症的重要环节,而餐后高血糖具有毒性作用,可加重胰岛素抵抗和B细胞功能缺陷,使早相胰岛素分泌进一步受损,如此形成恶性循环,最终导致糖尿病的发生。 胰岛素早相分泌在正常人中的生理意义 正常人体中葡萄糖刺激B细胞导致胰岛素分泌,胰岛素分泌包括基础(吸收后)和刺激后(餐后)两种状态,胰岛素对葡萄糖反应的动力学特征是它的双时相分泌。早在1968年,Donald等人在离体大鼠胰腺葡萄糖灌注1h的试验中就观察到这个现象:第一时相胰岛素分泌速度快,从第3min开始持续约2min减弱,随后是胰岛素缓慢释放的第二时相,持续到葡萄糖灌注的结束。同年,Cerasi等用葡萄糖输注试验将健康个体同糖尿病患者比较,发现人体中也存在双相的胰岛素分泌,并观察到IGT者和2型糖尿病患者的第一时相分泌峰值降低或完全消失。 在空腹的非糖尿病受试者中,胰岛素呈规则脉冲式分泌,每12~15min一次,葡萄糖是刺激人体分泌胰岛素的主要因素。在正常人体中,胰岛B细胞接受葡萄糖刺激的信号直接导致胰岛素分泌,其动力学特征是胰岛素的双时相分泌。正

常人静脉注射葡萄糖后,可诱导胰岛素分泌呈双峰曲线。快速分泌相包含不同条件下的两种情况:当静脉注射葡萄糖后,B细胞接受葡萄糖刺激,在0.5~1.0min 的潜伏期后,出现快速分泌峰,峰值很高可达250~300mU/L,持续5~10min 后减弱,即使通过静脉继续维持葡萄糖浓度也是如此。该快速分泌相称为第一时n相。第一时相在血糖大于5.6mmol/L时即可诱发,是较好地评价胰岛B细胞功能指标,其生理意义在于可以迅速抑制血糖的升高。第二时相为延迟分泌相,快速分泌相后出现的缓慢但持久的分泌峰,其峰值位于刺激后30min左右。持续数小时,直到刺激消失,或血浆葡萄糖回落至基线水平。第二时相释放的胰岛素大约占B细胞胰岛素储备的20%。胰岛素第一时相分泌显示的是葡萄糖促使来自储存在B细胞中分泌胰岛素颗粒的迅速释放,第二时相分泌除了来自储存的分泌颗粒外,还包括不断新合成的胰岛素。 2型糖尿病患者的胰岛素分泌缺陷 在2型糖尿病早期阶段,第一时相胰岛素分泌减少或者消失,常低于 50mU/L,由于第一时相异常导致血糖升高,使第二时相胰岛素分泌量增加,且分泌峰值时间向后推移。随着患者胰岛功能的衰竭,第二时相可无峰值出现,最后基础分泌也逐渐消失。因此,葡萄糖诱导的胰岛素第一时相分泌受损是胰岛B细胞功能障碍的最早标志之一。影响糖尿病患者第一时相的因素包括以下方面: 1. 高热量饮食

2 型糖尿病胰岛素信号传导途径

2 型糖尿病胰岛素信号传导途径 【摘要】胰岛素与其受体结合, 通过一系列细胞内信号分子的作用, 引起细胞内信号转导, 激活两条信号途径,最终到达效应器,产生各种生理效应。胰岛素信号转导在胰岛素生理作用发挥中起着重要的作用。胰岛素信号转导障碍, 使胰岛素生理作用减弱, 导致胰岛素抵抗和2型糖尿病。 【关键词】2型糖尿病;胰岛素;信号转导 基金项目:天津市卫生局课题(编号:2005063) 2型糖尿病(type 2 diabetes Mellitus,T2DM),其主要病理生理改变为靶组织(主要为肝脏、肌肉)的胰岛素抵抗伴胰岛素分泌不足。其中, 胰岛素信号转导障碍在发病机制中起着重要作用。因此,研究2型糖尿病的胰岛素信号转导[1]具有重要意义。 1 胰岛素受体(IR)与胰岛素受体底物蛋白(IRS) 1.1 胰岛素受体(IR) 与细胞膜上的胰岛素受体结合是信号传导的第一步。胰岛素受体是一种跨膜糖蛋白, 为受体酪氨酸激酶家族的成员, 是由两个α亚基和两个β亚基通过二硫键结合的异四聚体。α亚基对β亚基有调控作用,胰岛素一旦与α亚基特异性结合,后者抑制β亚基的作用即解除,酪氨酸激酶被活化[2]。 1.2 胰岛素受体底物蛋白(IRS) IRS分子是胰岛素信号系统关键的介导者[3]。研究表明, IRS家族包括4种异构体蛋白, IRS1~IRS4。IRS蛋白的激活可募集和活化多种信号传导蛋白,介导IRS和IGF I等多向性细胞信号传导效应[4],避免了由多种受体直接招募SH2类蛋白到它的自身磷酸化位点,是一种经济而有效的细胞信号传导方式。通过多种受体分享使用IRS蛋白,是胰岛素和其他激素、细胞因子之间进行着重要的联系和功能调节[5]。 1.2.1 IRS 1 IRS1是一种分子量为185kDa的亲水性蛋白,主要分布在骨骼肌。IRS1的N端具有普列克底物蛋白同源(plechkstin homology,PH)结构域,后者能特异结合磷脂及细胞内其它信号蛋白。此外IRS1还含有与磷酸酪氨酸残基结合(PTB)的结构域,后者可与酪氨酸磷酸化的IR结合,传递胰岛素的信号[6]。IRS1介导的胰岛素信号传导障碍,可使骨骼肌、肝脏、脂肪3个胰岛素作用的外周靶组织均发生胰岛素抵抗,引起T2DM [7]。 1.2.2 IRS 2 IRS2是一种190kDa的蛋白质,在肝脏和胰腺β细胞大量表达,在肝的胰岛素信号传导和胰腺发育中起关键作用。胰岛素与IR结合后, IR的β亚基近膜区Tyr 自身磷酸化并与IRS2结合,IR上激活的PTK催化IRS2上多个Tyr磷酸化,为下游含SH2区的蛋白提供位点,形成信号蛋白复合物,介导进一步的信号传导。IRS2还可以将IGF I、白介素(ILs)、干扰素(IFN)、肿瘤坏死因子(TNFα)等细胞因子的受体和信号通路连接起来,此信号通路中介INS/IGF I刺激的葡萄糖转运、基因表达调节和细胞分裂,从而控制细胞生长分化和新陈代谢。IRS2缺陷诱发的胰岛素抵抗主要发生部位是肝脏。 1.2.3 IRS 3 和IRS 4 IRS3的分子量较小,仅为60kDa,只分布于脂肪细胞中。IRS4的分子量较大,为160kDa,分布于垂体、脑组织细胞中。目前普遍研究认为,IRS3、IRS4可以结合在胰岛素受体上,对IRS1、IRS2起负性调节作用。 2 胰岛素信号转导途径 2.1 PI3K信号转导途径胰岛素的代谢功能主要通过这条途径。PI3K是一种脂质激酶,在介导胰岛素的代谢效应中起关键性作用[8]。PI3K由一个分子量为85kDa的调节亚基(P85)和一个110kDa的催化亚基(P110)组成,前者与IRS结合,后者催化细胞膜上磷脂酰肌醇(PI)的磷酸化。静息状态时P85对P110起抑制作用,在胰岛素刺激下,IRS与P85相结合,其抑制作用解除,P110即活化。

胰岛素的生理作用

1 胰岛素的生理作用 1.1 对血糖代谢的调节 促进细胞摄取葡萄糖。血糖浓度升高时,迅速引起胰岛素的分泌,使全身各个组织加速摄取和储存葡萄糖,尤其能加速肝细胞和肌细胞摄取葡萄糖,并且促进它们对葡萄糖的贮存和利用。肌肉组织在无胰岛素作用时,几乎不能摄取葡萄糖。 肝细胞和肌细胞大量吸收葡萄糖后,一方面将其转化为糖原贮存起来,或在肝细胞内将葡萄糖转变成脂肪酸,转运到脂肪组织贮存;在肝脏,胰岛素使进食后吸收的葡萄糖大量转化成糖原,并促进葡萄糖转变成脂肪酸,转运到脂肪组织贮存。此外胰岛素还抑制糖原异生。胰岛素不但可使葡萄糖迅速转运入肌细胞,而且可加速葡萄糖的利用和肌糖原的合成,从而使血糖浓度降低。胰岛素缺乏时糖不能被贮存利用。另一方面促进葡萄糖氧化生成高能磷酸化合物作为能量来源,结果使血糖水平下降。 1.2 对脂肪代谢的调节 胰岛素对脂肪合成和贮存起着非常重要的作用,不但在肝脏能加速葡萄糖合成脂肪酸,然后贮存到脂肪细胞中,而且脂肪细胞本身在胰岛素作用下也可合成少量脂肪酸。胰岛素还能促进葡萄糖进入脂肪细胞,使其转化成a-磷酸甘油,并与脂肪酸形成甘油三酯贮存于脂肪细胞中。胰岛素还抑制对激素敏感的脂解酶的活性,进而抑制脂肪分解。胰岛素缺乏不仅引起糖尿病,而且还可造成脂类代谢的严重紊乱、血脂升高、引起动脉硬化,并常常导致心血管和脑血管系统的严

重疾病。 1.3 对蛋白质代谢的调节 胰岛素能促进氨基酸进入细胞,然后直接作用于核糖体,促进蛋白质的合成。它还能抑制蛋白质分解。 2 胰岛素降低血糖的生理机制 2.1 胰岛素与组织细胞膜上的胰岛素受体结合 在人体内许多组织的细胞膜上都存在着胰岛素受体。胰岛素在细胞水平发挥生理作用,首先必须与靶细胞膜上的胰岛素受体结合后,才能开始发挥其生物效应,这是胰岛素发挥正常生理作用的先决条件。不同种类的细胞,其膜上胰岛素受体的数量亦不相同,每个脂肪细胞和肝细胞膜上大约有300 000个受体,而每个红细胞膜上大约有40个受体。胰岛素受体具有高度的特异性。胰岛素作用的靶细胞主要有肝细胞、脂肪细胞、肌肉细胞、血细胞、肺脏和肾脏的细胞、睾丸细胞等。 2.2 安排糖分的贮藏和使用 当血糖浓度升高时,胰岛素分泌增加,和靶细胞的胰岛素受体结合后,可以“命令”从食物中吸收进血液的糖分加速进入肝脏、肌肉等组织,并以糖原的形式贮藏起来备用;同时又约束贮存在这些组织里的糖原不能轻易溜回血液里,免得引起血糖过高。 2.3 帮助脂肪的合成和贮存 胰岛素可以促进肝脏合成脂肪酸,使三酰甘油合成增多,极低密度脂蛋白合成增快。它还可以抑制脂解酶的活性,从而抑制脂肪的分

胰岛功能

胰岛功能测定及临床意义 —、胰岛功能检查包括胰岛素释放试验、C肽释放试验、胰岛素抗体和血糖测定 试验。 二、试验方法及注意事项 1 )方法:在早晨空腹的情况下,进食75g葡萄糖或100g面粉的馒头前后分别于空腹,餐后0.5小时,1小时,2小时,3小时抽静脉血测定五个时间点的血糖,胰岛素释放,C-肽释放值。 2)注意事项:应禁食一夜后次日清晨空腹状态下采血。许多生理和药物因素影响血糖值、胰岛素和C肽的分泌,如做试验时的情绪、禁食时间的长短等;另外有些药物(如氨茶碱类,阻滞剂、糖皮质激素、口服避孕药等)应停服3天后再进行试验。三、胰岛素释放试验 1概述 胰岛素是由胰岛B细胞合成其前体胰岛素原,经生化过程形成的一种降低血糖的激素,主要作用是促进葡萄糖的转化和糖原,抑制糖原异生,从而维持血糖的恒定。胰岛素缺乏时,血糖浓度升高,可超过肾糖阈,发生胰岛素依赖型。血清或血浆胰岛素定量的测定,主要用于胰岛B细胞的分泌功能和糖尿病的研究,确定糖尿病的类型,对于的诊断,探讨机理,研究某些药物对糖代谢的影响以及内分泌紊乱疾病等都有一定的意义和价值。 2临床意义 胰岛素释放试验是让患者口服葡萄糖或用馒头餐使血糖升高而刺激胰岛 B -细胞分泌胰岛素,通过测定空腹及餐后0.5小时、餐后1小时、2小时、3小时的血浆胰岛素水平,了解胰岛B-细胞的储备功能,从而有助于糖尿病的早期诊断、分型和指导治疗。 3糖尿病患者的胰岛素释放试验曲线可分以下3种类型: (1)胰岛素分泌不足型:为试验曲线呈低水平状态,表示胰岛功能衰竭或遭到严重破坏,说明胰岛素分泌绝对不足,见于胰岛素依赖型糖尿病,需终身胰岛素治疗。(2)胰岛素分泌增多型:患者空腹胰岛素水平正常或高于正常,刺激后曲线上 升迟缓,咼峰在2小时或3小时,多数在2小时达到咼峰,其峰值明显咼于正常值,

胰岛素及其分泌

胰岛是在胰脏腺泡之间的散在的细胞团。 胰岛能分泌胰岛素与胰高血糖素等激素。参考资料:胰岛人类的胰岛细胞按其染色和形态学特点,主要分为A细胞、B细胞、D 细胞及PP细胞。A细胞约占胰胰岛细胞的20%,分泌胰主血糖素(glucagon);B细胞占胰岛细胞的60%-70%,分泌胰岛素(insulin);D细胞占胰岛细胞的10%,分泌生成抑素;PP细胞数量很少,分泌胰多肽(pancreatic polyeptide)。一、胰岛素胰岛素是含有51个氨基酸的小分子蛋白质,分子量为6000,胰岛素分子有靠两个二硫键结合的A链(21个氨基酸)与B链(30个氨基酸),如果二硫键被打开则失去活性(图11-21)。B细胞先合成一个大分子的前胰岛素原,以后加工成八十六肽的胰岛素原,再经水解成为胰岛素与连接肽(C 肽)。图11-21 人胰岛素的化学结构胰岛素与C肽共同释入血中,也有少量的胰岛素原进入血液,但其生物活性只有胰岛素的3%-5%,而C肽无胰岛素活性。由于C肽是在胰岛素合成过程产生的,其数量与胰岛素的分泌量有平行关系,因此测定血中C肽含量可反映B 细胞的分泌功能。正常人空腹状态下血清胰岛素浓度为 35-145pmol/L。胰岛素在血中的半衰期只有5min,主要在肝灭活,肌肉与肾等组织也能使胰岛素失活。1965年,我国生化学家首先人工合成了具有高度生物活性的胰岛素,成为人类历史上第一次人工合成生命物质(蛋白质)的创举。(一)胰岛素的生物学作用胰岛素是促进合成代谢、调节血糖稳定的主要激素。1.对糖代谢的调节胰岛素促进组织、细胞对葡萄糖的摄取和利用,加速葡萄糖合成为糖原,

贮存于肝和肌肉中,并抑制糖异生,促进葡萄糖转变为脂肪酸,贮存于脂肪组织,导致血糖水平下降。胰岛素缺乏时,血糖浓度升高,如超过肾糖阈,尿中将出现糖,引起糖尿病。2.对脂肪代谢的调节胰岛素促进肝合成脂肪酸,然后转运到脂肪细胞贮存。在胰岛素的作用下,脂肪细胞也能合成少量的脂肪酸。胰岛素还促进葡萄糖进入脂肪细胞,除了用于合成脂肪酸外,还可转化为α-磷酸甘油,脂肪酸与α-磷酸甘油形成甘油三酯,贮存于脂肪细胞中,同时,胰岛素还抑制脂肪酶的活性,减少脂肪的分解。胰岛素缺乏时,出现脂肪代谢紊乱,脂肪分解增强,血脂升高,加速脂肪酸在肝内氧化,生成大量酮体,由于糖氧化过程发和障碍,不能很好处理酮体,以致引起酮血症与酸中毒。3.对蛋白质代谢的调节胰岛素促进蛋白质合成过程,其作用可在蛋白质合成的各个环节上:①促进氨基酸通过膜的转运进入细胞;②可使细胞核的复制和转录过程加快,增加DNA和RNA 的生成;③作用于核糖体,加速翻译过程,促进蛋白质合成;另外,胰岛素还可抑制蛋白质分解和肝糖异生。由于胰岛素能增强蛋白质的合成过程,所以,它对机体的生长也有促进作用,但胰岛素单独作用时,对生长的促进作用并不很强,只有与生长素共同作用时,才能发挥明显的效应。近年的研究表明,几乎体内所有细胞的膜上都有胰岛素受体。胰岛素受体已纯化成功,并阐明了其化学结构。胰岛素受体是由两个α亚单位和两个β亚单位构成的四聚体,α亚单位由719个氨基酸组成,完全裸露在细胞膜外,是受体结合胰岛素的主要部位。α与α亚单位、α与β亚单位之间靠二硫键结合。β亚单位由

胰岛素信号转导以及葡萄糖和脂类代谢的规则

胰岛素信号转导以及葡萄糖和脂类代谢的调控 2型糖尿病的流行和被削弱的葡萄糖耐受力是世界上发病率和死亡率的主要原因。在两种病症中,一些组织(例如肌肉,脂肪和肝脏)对胰岛素变得不敏感或者抵抗。这个状态也和其他常见的健康问题有关联,例如肥胖,多囊性卵巢疾病,高脂血压,高血压和动脉粥样硬化。胰岛素抵抗的病理生理学包括一个复杂的、受胰岛素受体激活的信号通路网络,它能够立即调控细胞内的新陈代谢及其组织。但是最近的研究显示,许多其他激素和信号事件削弱胰岛素的作用,这些对于2型糖尿病是很重要的。 不管是进食还是禁食期间,正常人体的血糖总是维持在一个介于4-7mM的狭窄范围内。这个严格的控制来自于葡萄糖在肠道处的吸收,肝脏的产生和周边组织吸收和代谢之间的平衡管理。胰岛素提高肌肉和脂肪中葡萄糖的吸收(见Box1),并且抑制肝葡萄糖的产生,所以担任血糖浓度的主要监管机制。胰岛素也刺激细胞生长和分化,并且通过刺激脂肪生成、糖原和蛋白质合成及抑制脂肪、糖原和蛋白质分解,而提高脂肪、肝脏和肌肉中酶作用物的储存(Fig. 1)。胰岛素抵抗或者缺乏在这些过程中导致深远的调节异常,并在禁食和餐后的葡萄糖和脂类水平中产生高峰。 胰岛素通过促进葡萄糖转运蛋白GLU4从细胞内位点转运至细胞表面而提高细胞内葡萄糖的吸收(见Box1)。多达75%的胰岛素依赖性葡萄糖消耗发生在骨骼肌,脂肪组织只占其中的一小部分。尽管如此,肌肉中胰岛素受体被敲除的的老鼠拥有正常的葡萄糖耐受量,然而那些被敲除了脂肪中胰岛素敏感的葡萄糖转运蛋白的老鼠却显示受损的葡萄糖耐受量,这显然是由于胰岛素抵抗是在肌肉和肝脏中引发的。肥胖症和脂肪萎缩都会引起胰岛素抵抗和容易感染2型糖尿病,这证明了脂肪组织在在超出它吸收葡萄糖能力的新陈代谢的调节过程中是至关重要的。尽管胰岛素不促进葡萄糖在肝脏内的吸收,但它阻碍肝糖原分解和糖异生,从而调节人的空腹血糖水平。组织中的胰岛素作用并不通常被认为是对胰岛素敏感,包括大脑和胰β细胞,也许也对于葡萄糖内稳态起重要作用。(见下) 近端胰岛素信号通路 胰岛素受体 胰岛素受体属于受体酪氨酸激酶的一个亚科,受体酪氨酸激酶包括胰岛素样生长因子(IGF)-Ⅰ受体和胰岛素受体相关受体(IRR)。这些受体是由作为变构酶的两个α-亚基和两个β-亚基组成的四聚体蛋白,在这些变构酶中α-亚基抑制β-亚基的酪氨酸激酶的活性。胰岛素与α-亚基结合导致β-亚基中激酶活性的脱抑制作用,其后为β-亚基的转磷酸作用和一个进一步提高激酶活性的构象变化。胰岛素,IGF-Ⅰ和IRR可以形成功能型混合物;所以,一个受体中的抑制突变可以抑制其他受体的活性。 胰岛素/ IGF-Ⅰ受体的同源物已经在果蝇、秀丽隐杆线虫和后生动物海绵中鉴定出来。这些低级生物使用一些和哺乳动物细胞同样的关键调控的下游信号,包括磷脂酰基醇-3-OH(PI(3)K),苏氨酸激酶和叉头转录因子。C.线虫中胰岛素/IGF系统的抑制突变体比在其他正常动物中存活的更久,从而引发了许多关于高胰岛素血症/胰岛素抵抗和缩短寿命的环境(如肥胖、糖尿病和加速动脉粥样硬化)之间的联系的有趣的问题。胰岛素受体底物 至少有九种细胞间的胰岛素/IGF-Ⅰ受体激酶的底物已经被鉴定出来(Fig. 2)。其

促进胰岛素分泌的药物

促进胰岛素分泌的药物 ①磺脲类药物(主要通过刺激胰岛β细胞产生胰岛素发挥降糖作用。对胰岛功能完全破 坏的患者,本类药物的治疗效果不佳。本类药物起效慢,故一般提前在餐前半小时服用,而且该类药物作用时间长,均易引起低血糖反应。) 格列本脲(优降糖) 格列吡嗪(美吡哒,唐可泰,优哒灵,瑞易宁) 格列齐特(达美康或缓释片) 格列喹酮(糖适平) 格列美脲(佑苏等) ②非磺脲类或苯甲酸类(格列奈类)(这类药物也是刺激胰岛β细胞分泌胰岛素, 属于超短效药物。应在饭前即刻口服,可在服用一小时内发挥作用,降糖作用持续时间短,对胰岛功能完全破坏或磺脲类药物失效的患者,本类药物的治疗效果不佳,低血糖反应较磺脲类少。) 瑞格列奈(诺和龙、孚来迪) 那格列奈(唐力) 非促进胰岛素分泌的药物 ①双胍类(主要是抑制肝糖原的分解,并增加胰岛素在外周组织(如肌肉)的敏感性。单独使用本类药物不会引起低血糖,但可引起胃肠系统的不适感而减少食欲,故双胍类药物应在 ) 二甲双胍 格华止 迪化糖锭 美迪康 ②葡萄糖苷酶抑制剂(主要可抑制小肠的0c一糖苷酶,导致食物中碳水化合物不能在 此段肠腔全部分解成单个葡萄糖,从而延缓葡萄糖的肠道吸收、降低餐后高血糖。本类药物应于吃第一口饭时服用。单独使用本类药物不会引起低血糖,但服药早期有些人可能会出现腹胀和轻度腹泻等反应,如先用小剂量,逐步加量,2—3周后,小肠α-糖苷酶逐渐被食糜中的碳水化合物诱导而复苏,则全小肠开始吸收葡萄糖,此时腹胀的症状即可好转或消失。) 阿卡波糖(拜糖苹、卡博平) 伏格列波糖(倍欣) ③噻唑烷二酮类( 抵抗的患者效果好。本类药物服用每日1次,时间固定,单独使用本类药物不会引起低血糖,但要注意其对肝脏有不良影响,故在服药期间必须定期检查肝功能。) 马来酸罗格列酮(文迪雅、太罗等) 盐酸吡格列酮(瑞彤、艾汀等)

参与细胞信号转导通路的蛋白简写及全拼

参与细胞信号转导通路的蛋白简写及全拼 4E-BP eIF4E binding protein Abl Ableson protein tyrosine kinase ACTR A histone acetyltransferase AIF Programmed cell death protein 8 ANT Adenine nucleotide translocation channel Apaf-1 Apoptotic protease activating factor 1 APP beta-Amyloid precursor protein APPs Acute phase proteins ASIP Agouti switch protein ASK Apoptosis signal-regulating kinase (e.g., ASK1) ATF-2 Activating transcription factor 2 ATM Ataxia telangiectasia?mutated protein kinase ATR ATM and Rad3?related protein kinase Bam32 B-cell adaptor molecule 32 kDa BCAP B-cell adaptor for PI3K Bcl-10 B-cell leukemia 10 protein Bfl-1 Bcl-2-related protein A1 Bid A BH3 domain?only death agonist protein Bimp1 B-lymphocyte-induced maturation protein 1 BLNK B-cell linker protein BRCA Breast cancer growth suppressor protein Btk Brutonís tyrosine kinase C3G Guanine nucleotide?releasing factor 2 CAD Caspase-activated deoxyribonuclease Cam Calmodulin CaMK Calcium/calmodulin-dependent kinase CAP c-Cbl-associated protein Cas p130CAS, Crk-associated substrate Caspase Cysteine proteases with aspartate specificity CBL Cellular homologue of the v-Cbl oncogene CBP CREB binding protein CD19 B-lymphocyte antigen CD19 CD22 B-cell receptor CD22 CD40 B-cell surface antigen CD40 CD45 Leukocyte common antigen, a phospho-tyrosine phosphatase CD5 Lymphocyte antigen CD5 cdc2 Cell division cycle protein 2, CDK1 cdc34 Cell division cycle protein 34, a ubiquitin conjugating (E2) enzyme cdc42 Cell division cycle protein 42, a G-protein CDK Cyclin-dependent kinase Chk Checkpoint kinase CHOP C/EBP homologous protein 10

第九章 细胞信号转导知识点总结

第九章细胞信号转导 细胞通讯:一个信号产生细胞发出的信息通过介质(又称配体)传递到另一个靶细胞并与其相应的受体相互作用,然后通过信号转导产生靶细胞内一系列的生理生化变化,最终表现为靶细胞整体的生物学效应。 信号传导:是指信号分子从合成的细胞中释放出来,然后进行传递。信号传导强调信号的产生、分泌与传送。 信号转导:是指信号的识别、转移与转换,包括配体与受体的结合、第二信使的产生及其后的级联反应等。信号转导强调信号的接收与接收后信号转换的方式与结果。 受体:是一类能够结合细胞外特异性信号分子并启动细胞反应的蛋白质。 第二信使:细胞外信号分子不能进入细胞,它作用于细胞表面受体,经信号转导,在细胞内产生非蛋白类小分子,这种细胞内信号分子称为第二信使。 分子开关:细胞信号传递级联中,具有关闭和开启信号传递功能的分子。 信号通路:细胞接受外界信号,通过一整套特定机制,将胞外信号转化为胞内信号,最终调节特定基因表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 G蛋白偶联受体:指配体-受体复合物与靶细胞的作用是要通过与G蛋白的偶联,在细胞内产生第二信使,从而将细胞外信号跨膜传递到胞内影响细胞行为的受体。 cAMP信号通路:细胞外信号与细胞相应受体结合,导致细胞内第二信使cAMP 水平的变化而引起细胞反应的信号通路。 (磷脂酰肌醇信号通路)双信使系统:胞外信号分子与细胞表面G蛋白偶联受体结合,激活膜上的磷脂激酶C,使质膜上的PIP2分解成IP3和DAG两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激活两种不同的信号通路,即IP3-Ca2+和DAG-PKC途径,实现对胞外信号的应答,因此将这种信号通路称为“双信使系统”。 钙调蛋白:真核细胞中普遍存在的Ca2+应答蛋白。 Ras蛋白:Ras基因的产物,分布于质膜胞质侧,结合GTP时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。

肝细胞胰岛素信号传导通路与胰岛素抵抗

肝细胞胰岛素信号传导通路与胰岛素抵抗 【摘要】肝脏在人体的葡萄糖代谢中有着重要作用,从胰岛素与其受体(InsR)结合开始,肝脏糖代谢构成了一个复杂的传导通路,起到稳定血糖的生理作用。对这一信号通路的深入研究将有利于进一步阐明糖尿病的发病机制并为糖尿病的治疗提供思路。基于此原因,本文综述了肝细胞胰岛素信号传导通路的传导机制及其意义。 【关键词】胰岛素信号传导;磷脂酰肌醇-3激酶;促分裂原活化蛋白激酶;2型糖尿病;胃转流手术 据世界卫生组织预计,未来50年内,2型糖尿病(T2DM)仍将是一个严重的全球公共卫生问题。但目前,其发病机制尚不完全清楚,胰岛素抵抗(insulin resistance,IR)在T2DM发生发展中的作用已成为糖尿病发病机制研究中的一个热点课题。考虑到肝脏在葡萄糖代谢中的独特作用,本文就IR与肝细胞胰岛素信号传导通路的关系作一综述。 1IR的概念 IR是机体对胰岛素的反应减退,是指正常剂量的胰岛素产生低于正常生物学效应的一种状态,即胰岛素敏感细胞(主要为肝细胞、肌细胞、脂肪细胞)对胰岛素介导的葡萄糖摄取及代谢的抵抗。T2DM患者均表现为不同程度的IR。 1.1IR的细胞水平机制IR的细胞水平机制主要表现为肝细胞、肌细胞、脂肪细胞的糖代谢缺陷。肝细胞糖代谢缺陷主要表现为葡萄糖的转化利用及糖原合成减少,产生及输出增加,造成空腹高血糖症,同时肝糖产生及输出增多也是餐后血糖升高的原因之一。 1.2IR的分子水平机制①受体前缺陷:包括胰岛素抗体形成——多为注射动物胰岛素所致;胰岛素基因突变引起胰岛素分子结构异常;胰岛素降解加速;胰岛素拮抗激素的作用致胰岛素抵抗;②受体缺陷:胰岛素受体为含2个α亚单位及2个β亚单位的异四聚体,为一跨膜糖蛋白。胰岛素受体缺陷表现为受体数目及亲和力降低,呈现出胰岛素生物效应的降低;③受体后缺陷:指胰岛素与受体结合后信号传导到细胞内引起的一系列代谢过程受到阻碍。 目前的研究表明,受体后缺陷--胰岛素与受体结合后信号传导过程障碍,是绝大多数胰岛素抵抗的发生机制。信号通路的任何环节受到干扰,均会影响胰岛素的信号传导。从这个角度上胰岛素抵抗可以定义为胰岛素信号传导的缺陷[2]。 2肝细胞胰岛素信号传导途径 胰岛素是蛋白质类含氮激素,其主要作用为促进合成代谢、稳定机体的血糖水平,作用机制属Sutherland研究组提出的“第二信使学说”[3]。

什么食物可以刺激胰岛素分泌

什么食物可以刺激胰岛素分泌 南瓜:性温,味甘。能补中益气。南瓜中主要含有瓜氨酸、维生素B、脂肪、纤维素等。近年来的研究发现,南瓜含有大量的果胶,当南瓜与淀粉类食物同食时,会提高胃内容物的黏度,延缓胃的排空,果胶在肠道内充分吸水后形成一种凝胶状物质,可延缓肠道对糖的吸收,降低餐后血糖。此外,南瓜中微量元素钴含量丰富,钴是人体胰岛细胞合成胰岛素所必须的微量元素,能够促进体内胰岛素的分泌,可降低血糖。常食南瓜还可以降血脂、减肥。可将南瓜烘干研粉,每次5克,每日3次,也可用鲜南瓜250克煮熟食用,既充饥又可降低血糖。食用提示:每次食用量不要太多,因为南瓜中也含有碳水化合物,如果不加控制也会因总热量“超标”而引起血糖升高;南瓜性温,多食容易“上火”,因此,阳盛体质者不宜多食;不要食用放置过久的南瓜。冬瓜:性微寒,味甘。能利小便,止渴消烦闷,去头面热,解毒。常食有减肥作用。 葫芦:性平,味甘。能止消渴,利水道,除烦。适用于糖尿病生痈、疖、口鼻中有肉烂痛者。可以长期食用。 西葫芦:性平,味甘。可以清暑利湿,也可以止泻。含有丰富的维生素。糖尿病病人可以多食常食,用之充饥。 黄瓜:性寒,味甘。能除邪热,清热解渴,利小便,具有降血糖、降血脂和减肥作用。糖尿病病人可以用之充饥,也可以解渴除热。药理研究

证实,供给热量低,可抑制糖类转化为脂肪,故合并高血压、高血脂的糖尿病患者宜多食黄瓜。 苦瓜:性寒,味苦。能除邪热,解疲乏,清心明目。苦瓜清热解毒,除烦止渴,价廉物美,炒、拌、盐渍均可,是大众餐桌上的常见之菜。明代李时珍称苦瓜“苦、寒、无毒”,具有“清邪热、解劳乏、清心明目,益气壮阳之功”。苦瓜有“植物胰岛素”之称。药理试验发现,苦瓜中所含的苦瓜皂甙,不仅有类似胰岛素的作用,而且还可刺激胰岛素释放,有非常明显的降血糖作用。用苦瓜皂甙制剂给Ⅱ型糖尿病病人口服治疗,其降血糖总有效率可达到78.3%。因此糖尿病人长期服用有明显的降血糖作用。苦瓜含多种营养成份,据测定,每100克苦瓜中含蛋白质0.9克、脂肪0.2克、碳水化合物3克、抗坏血酸(维生素C)84毫克、钙18毫克。磷29毫克、铁0.6毫克,还含有胡萝卜素、硫胺素、核黄素、尼克酸等。其中,苦瓜中维生素C的含量高居各种瓜类之首。食用提示:糖尿病脾胃虚寒者不宜服用。慢性肠炎患者不宜多食;食用时宜急火快炒、不宜长时间的炖煮。 胡萝卜:糖尿病患者其血液中会产生大量的自由基因,正是这些自由基因破坏了人体内胰岛素的活性。只要能找到一种可清除自由基团的方法,就能阻断糖尿病的发展。而胡萝卜中含有大量的?胡萝卜素,可以清除体内的自由基,因此日常饮食中多吃胡萝卜、甘蓝及其它富含胡萝卜素的蔬菜,对预防糖尿病有极大的帮助。美国疾病控制与防治中心的流行病专家对1665名年龄在40-74岁的志愿者进行了普查。研究人员测量了受试者血液中血糖含量,同时比较每一个体血液中?胡萝卜素含

胰岛细胞及其功能

胰岛细胞及其功能 岛细胞根据其分泌激素的功能分为以下几种 一、B细胞(β细胞),约占胰岛细胞的60%~80%,分泌胰岛素,胰岛素可以降低血糖。缺乏胰岛B细胞将导致糖尿病的发生。 二、A细胞(α细胞),约占胰岛细胞的24%~40%,分泌胰高血糖素,胰高血糖素作用同胰岛素相反,可增高血糖。 三、D细胞(δ细胞-),约占胰岛细胞总数的6%~15%,分泌生长抑素。 四、胰岛PP细胞,约占胰岛细胞的1%,分泌胰多肽。 胰腺既是内分泌腺又是外分泌腺,它位于胃的后面。胰腺含有多组特异性的细胞,我们称之为朗格汉斯岛(胰岛)。这些细胞构成了胰腺的内分泌部分(无导管),其功能与外分泌腺部分(有导管)截然不同,后者在消化过程中向小肠内分泌消化酶。胰腺作为内分泌腺发挥作用时直接向血流中分泌激素,其中最重要的激素是胰岛素和胰高血糖素。 ?胰岛素作为特定物质如葡萄糖的转运机制,形成细胞膜上的载体,使葡萄糖能够穿过细胞膜。胰岛素促进糖原的合成,即将胰岛素转化为糖原,后者继而储存在肝脏中以供将来需要时使用。 ?胰岛素通过增加葡萄糖向细胞内的转运来增加碳水化合物的代谢并降低血糖的代谢(降低血糖的效应)。 ?胰岛素通过促进氨基酸向细胞内的转运,增加了蛋白质的合成。 ?当血糖水平高时,胰岛素能够防止糖原异生作用(糖原转化为葡萄糖)。 当血糖浓度过高时,葡萄糖转移进入肝脏的各个细胞。这刺激了胰岛素的释放,其作用是阻止糖原向葡萄糖的转化并随后被释放到血流中。这一过程的直接结果就是血糖下降到正常水平。当胰岛细胞不能产生胰岛素时,葡萄糖就无法进入细胞内,这样,它会蓄积在血液中并随尿液排出。这种情况导致的疾病被称为糖尿病。与此相反,胰岛素的过度分泌导致低血糖症

刺激胰岛素分泌的食物

刺激胰岛素分泌的食物 若一个人身体中胰岛素分泌不正常的话,就有可能会引起糖尿病这个严重的疾病。所以对于糖尿病患者来说,每天都需要定期注射胰岛素,这样才能够维持生命正常所需。如果发现自己身体中的胰岛素分泌不充足,这时候可以通过饮食来刺激胰岛素的分泌。因此有哪些食物可以刺激胰岛素的分泌呢? 什么食物可以刺激胰岛素分泌? 1、西葫芦 西葫芦中含有瓜氨酸、腺嘌呤、天门冬氨酸、葫芦巴碱等物质,且含钠盐很低,具有很好的保健功效,最新研究发现:这种蔬菜还具有促进体内胰岛素分泌的功效,能够调节血糖,有效预防糖尿病。因此,糖友们是适宜食用西葫芦的。 2、马齿苋 马齿苋是我们在田间、地里经常看到的一种植物,它肥厚多汁,马齿苋中含有高浓度的去甲肾上腺素和二羟基苯乙胺(去甲肾上腺素的前体),能调整体内糖代谢过程,促进胰腺分泌胰岛素,达到降低血糖的效果。糖尿病人可以凉拌着吃,也可以做菜馅来吃。 3、苦瓜 这是一种非常适合糖尿病人来食用的蔬菜,这是因为它有这样的特点:苦瓜中所含的苦瓜皂甙,不仅有类似胰岛素的作用,而且还可刺激胰岛素释放,有非常明显的降血糖作用。糖尿病人

适量的吃些苦瓜,对控制血糖是大有帮助的! 4、洋葱 洋葱甜润而白嫩,能够帮助我们够刺激胰岛素的合成与分泌,从而达到辅助治疗糖尿病的作用。不仅如此,在洋葱中还含有独有的前列腺素a和硫胺基酸,这种物质具有扩张血管、调节血脂的作用,经常食用可有效的预防动脉硬化。对于糖尿病患者来说,用洋葱100克,开水泡后再加点酱油调食,可有效的控制血糖。 5、银耳 银耳性味甘平,具有滋阴调燥、生津养胃的作用,不仅营养丰富,而且有较高的药用价值,又含有丰富的食物纤维,糖尿病患者食之有延缓血糖上升的作用。近年来有研究报道,银耳中含有较多的银耳多糖,它对胰岛素降糖活性有影响。在动物实验中发现,银耳多糖可将胰岛素在动物体内的作用时间从3~4小时延长至8~12小时。因此糖尿病患者宜常食银耳。 6、肉桂 肉桂性味辛温,具有补元阳、暖脾胃的作用。美国科学家研究发现,肉桂可使血中胰岛素水平升高,对糖尿病患者有辅助治疗作用。建议在烹调时加入1~3克肉桂末,但肉桂辛热,不适宜阴虚型糖尿病患者。 7、黄膳 黄膳性味甘温,具有补五脏、填精血的作用。现代药理研究表明,黄膳所含的黄腊素A和B两种物质,能刺激胰岛,有降低血糖的作用。日本人已从黄膳体内提取出两种物质制成降糖药物——糖尿清,用于治疗糖尿病,疗效满意。

胰岛素功能检测

胰岛素功能检测 作用 胰岛素功能检测可以帮助分辨患者是否有胰岛素分泌缺陷或胰岛素作用缺陷 意义 ①.可以帮助进行糖尿病分型 ②.评估患者病情 ③.做用药选择 ④.做预后判断 分类 ①.口服葡萄糖耐量试验(ogtt试验) 口服葡萄糖耐量试验是一种葡萄糖负荷试验,用以了解胰岛β细胞功能和机体对血糖的调节能力,是诊断糖尿病的确诊试验,广泛应用于临床实践中。 口服葡萄糖耐量试验,是指在无摄入任何热量八个小时后,清晨空腹状态下在五分钟以内口服75g无水葡萄糖或标准的馒头餐二两,从口服的第一口开始计时,餐后的半小时,一小时,两小时,三小时分别在前臂采血测血糖,然后测其血糖变化,观察病人耐受葡萄糖的能力,是目前公认的诊断糖尿病的金标准,在血糖异常增高但尚未达到糖尿病诊断标准时,为明确是否为糖尿病可以采用该试验 注意: 试验期间患者避免剧烈运动、体力劳动,安静休息,不能吸烟,禁食、水。 对于怀疑有反应性低血糖的而患者,延长试验时间,加测服糖后4小时和5小时的血糖。观察患者服糖后的反应,如患者在试验时出现面色苍白、恶心、晕厥应停止试验。若以上症状是在服糖后3~4小时出现,应考虑低血糖反应,立即采血查血糖,嘱患者食用稀饭、馒头之类食物,密切观察病情变化。 采取血糖后应立即送检。 ②.胰岛素释放试验 就是令病人空腹时定量口服葡萄糖(或馒头),使血糖升高刺激胰岛β细胞释放胰岛素,通过测定空腹及服糖后0.5小时.1小时、2小时、3小时的血浆胰岛素水平,来了解胰β细胞的储备功能,也有助于糖尿病的分型及指导治疗 注意: 不适用于注射胰岛素的患者。此类人群应检查c肽释放试验 ③.c肽释放试验 C肽释放试验可测定C肽,有助于糖尿病的临床分型,有助于了解患者的胰岛功能 C肽是胰岛β细胞的分泌产物,它与胰岛素有一个共同的前体-胰岛素原。一个分子的胰岛素原在特殊的作用下,裂解成一个分子的胰岛素和一个分子的C肽,因此在理论上C肽和胰岛素是等同分泌的,血清中游离的C肽不被肝脏破坏,它的半衰期较胰岛素明显为长,故测定C肽水平更能反应β细胞合成与释放胰岛素功能。

细胞信号传导通路

细胞信号传导通路 1. 信息传导通路的基本组成 人体细胞之间的信息转导可通过相邻细胞的直接接触来实现,但更重要的也是更为普遍的则是通过细胞分泌各种化学物质来调节自身和其他细胞的代谢和功能,因此在人体中,信息传导通路通常是由分泌释放信息物质的特定细胞、信息物质(包含细胞间与细胞内的信息物质和运载体、运输路径等)以及靶细胞 (包含特异受体等)等构成。 信号转导通常包括以下步骤: 释放信息物质→信息物质经扩散或血循 环到达靶细胞→与靶细胞的受体特异性 结合→受体对信号进行转换并启动细胞 内信使系统→靶细胞产生生物学效应 【1】。通过这一系列的过程,生物体对外界刺激作出反应。 3. 信息物质及其分类 信息物质可分为细胞间信息物质与细胞内信息分子。 凡由细胞分泌的调节靶细胞生命活动的化学物质统称为细胞间信息物质,即第一信使,按照细胞分泌信息物质的方式又可将细胞间信息物质分为神经递质、内分泌激素、局部化学介质和气体信号分子。在细胞内传递细胞调控信号的化学物质称为细胞内信息物质,其组成多样化。通常将Ca2+、cAMP、cGMP、DAG、IP3、Cer、花生四烯酸及其代谢物等这类在细胞内传递信息的小分子化合物称为第二信使。责细胞核内外信息传递的物质称为第三信使,能与靶基因特异序列结合,发挥着转录因子或转录调节因子的作用。 研究发现一些信息物质能与位于分泌细胞自身的受体结合而起调节作用,称为自分泌信号。如肝癌细胞能分泌多种血管生成因子,其中VEGF是目前发现的刺激肿瘤血管形成最重要的促进因子,研究表示,肿瘤细胞分泌的VEGF除选择性作用于肿瘤血管内皮细胞上的特异性VEGF受体(Flt-1和KDR),通过酪氨酸激酶介导的信号转导,调控内皮细胞分化和血管形成外,肿瘤细胞自身也有VEGF受体的表达,而且针对VEGF及其受体的干预措施可以改变这些肿瘤细胞的体外增殖活性和其他生物学特征,这些研究表示肿瘤中存在VEGF的自分泌机制【2】。自分泌所产生的信息物质也具有其独特而重要的生理功能。4. 受体分类及与受体相关的信息转导途径 受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,他能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。存在于细胞质膜上的受体称为膜受体,化学本质绝大部分是糖镶嵌蛋白;位于胞液和细胞核中的受体称为胞内受体,它们

Junctophilin3调控胰岛β细胞胰岛素分泌功能研究上课讲义

此文档收集于网络,如有侵权请联系网站删除 浙江大学研究生学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江太堂或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名:龙砒签字日期:矽I歹年6月∽日 学位论文版权使用授权书 本学位论文作者完全了解浙江太堂有权保留并向国家有关部门或机构送交本论文的复印件和磁盘,允许论文被查阅和借阅。本人授权浙逛太堂可以将学位论文的全部或部分内容编入有关数据库进行检索和传播,可以采用影印、 缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:杰;觋导师签名: 签字日期:功I,年易月叼日签字日期:矽,r年么月;。日

此文档收集于网络,如有侵权请联系网站删除万方数据

此文档收集于网络,如有侵权请联系网站删除 本课题受以下基金资助 1.国家自然科学基金项目《胚胎干细胞衍生的可兴奋细胞Junctophilins功能特征及其GSNO修饰效应》(No 30973600); 2.国家自然科学基金项目《胚胎干细胞衍生的可兴奋细胞ca2+穿梭运动耦联能 量代谢及GSNO干预效应》(No 81 173135); 3.浙江省自然科学基金重点项目《§亚硝基谷胱甘肽调控胚胎干细胞定向分化 过程Ca2+穿梭运动特征与毒理学机制》(Z12H310002); 4.国家自然科学基金重大研究计划资助项目《ES细胞衍生肝组织TGF—p—microRNA炎症馈路调控肝癌发生研究新体系》(非可控炎症恶性转化的调控 网络及其分子机制.培育项目)(N0 91229124)。

相关文档
相关文档 最新文档