文档库 最新最全的文档下载
当前位置:文档库 › 二组分完全互溶系统的气—液平衡相图

二组分完全互溶系统的气—液平衡相图

二组分完全互溶系统的气—液平衡相图
二组分完全互溶系统的气—液平衡相图

实验报告

课程名称:______大学化学实验(P)__________ 指导老师:____曹发和_____成绩:__________________

实验名称:二组分完全互溶系统的气液平衡相图 实验类型:_____________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求

1. 学习测定气—液平衡数据及绘制二元系统相图的方法,加深理解相律和相图等概念。 2. 掌握正确测量纯液体和液体混合物沸点的方法。

3. 熟悉阿贝折光仪的原理及操作,熟练掌握超级恒温槽的使用和液体折射率的测量。 4. 了解运用物理化学性质确定混合物组成的方法。

二、实验内容和原理

两种液态物质若能以任意比例混合,则称为二组分完全互溶液态混合物系统。当纯液体或液态混合物的蒸气压与外压相等时就会沸腾,此时的温度就是沸点。在一定的外压下,纯液体的沸点有确定的值,通常说的液体沸点是指101.325Kpa 下的沸点。对于完全互溶的混合物系统,沸点不仅与外界压力有关,还与系统的组成有关。

在一定压力下,二组分完全互溶液态混合物系统的沸点与组成关系可分为三类:(1)液态混合物的沸点介于两纯组分沸点之间(2)液态混合物有沸点极大值(3)液态混合物有沸点极小值。对于(1)类,在系统处于沸点时,气、液两相的组成不相同,可以通过精馏使系统的两个组分完全分离。(2)、(3)类是由于实际系统与Raoult 定律产生严重偏差导致。相图中出现极值的那一点,称为恒沸点。具有恒沸点组成的二组分混合物,在蒸馏时的气相组成和液相组成完全一样,整个蒸馏过程中沸点恒定不变,因此称为恒沸混合物。对有恒沸点的混合物进行简单蒸馏,只能获得某一纯组分和恒沸混合物。

液态混合物组成的分析是相平衡实验的关键。本实验采用折射率法。采用制作工作曲线的内插法得到未知液态混合物的组成。折射率是温度的函数,测定时必须严格控制温度。

三、主要仪器设备

仪器:沸点仪,阿贝折光仪,超级恒温槽,调压变压器。 试剂:环己烷(AR ),无水乙醇(AR )。

四、操作方法和实验步骤

1. 工作曲线的制定(实验室已完成)。 2. 相图数据的测定。 (1)安装沸点仪

检查带有温度计的软木塞是否塞紧及温度计的位置。加热用的电热丝要靠近容器底部中心。 (2)测定沸点

取样口中加入20~25ml 乙醇,开冷却水,缓缓加热,沸腾液体喷在水银球上,蒸汽在冷凝管中凝聚,温度计读数稳定,记录温度计度数。 (3)取样分析

冷却,吸取蒸汽冷凝液及残留液。测定蒸汽冷凝液和残留液的折射率各平行三次。加料口加入1,1,2,3,

姓名: 徐泰川

学号: 37 日期:________________ 地点:________________

5……ml环己烷,重复实验,分别测定折射率及沸点至沸点几乎不再下降及冷凝液和残留液折射率近似相等。吹干仪器,加入30ml环己烷,重复实验。

五、实验数据记录和处理

室温:25.5℃大气压:101.89Kpa

阿贝折光仪测量温度为:30.8℃

测量温度计露颈读数:48.0℃

30℃纯乙醇折光率为1.3570

30℃纯环己烷折光率为1.4202

表2 30ml初始环己烷,气相、液相数据

表3 制图数据

【清华】实验2_双液系的气液平衡相图_2006011835

`` 实验2 双液系的气液平衡相图 唐盛昌2006011835 分6 同组实验者:徐培 实验日期:2008-10-9,提交报告日期:2008-10-23 带实验助教:尚培华 1 引言(简明的实验目的/原理) 实验目的: 1.用沸点仪测定在常压下环已烷—乙醇的气液平衡相图。 2.掌握阿贝折射仪的使用方法。 实验原理: 将两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的相图,称为沸点和组成(T-x)图。沸点和组成(T-x)的关系有下列三种:(1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间见图5—1(a);(2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见图5—1(b);(3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点见图5—1(c)。第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。第一类混合物可用一般精馏法分离出这两种纯物质,第(2)、(3)类混合物用一般精馏方法只能分离出一种纯物质和另一种恒沸混合物。 图1 沸点组成图 为了测定二元液系的T-x图,需在气液达到平衡后,同时测定溶液的沸点、气相和液相组成。 本实验是测定具有最低恒沸点的环己烷—乙醇双液系的T-x图。方法是用沸点仪(图2)直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿贝折射仅测定其折射率。为了求出相应的组成,必须先测定已知组成的溶液的折射率,

二组分系统气液平衡相图的绘制(含数据)

二组分系统气液平衡相图的绘制 一实验目的 1.确定不同组成的环己烷——乙醇溶液的沸点及气、液两相的平衡浓度,由此绘制其沸点组成图。 2.掌握阿贝折射仪的原理及使用方法。 二实验原理 本实验用回流冷凝法测定不同浓度的环己烷——乙醇溶液的沸点和气、液两相的组成,从而绘制T----x图。 下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD′C和BE′C 为液相线。体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。此时,气相组成为y′,与其平衡的液相组成为x′,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。 当压力一定时,对两相共存区进行相律分析:独立组分K=2,相数P=2,则自由度f=K-P+1=2-2+1=1 即有,体系温度一定,则气液两相成分确定。总量一定时,亮相的量也一定。在一实验装置中,控制气液两相的相对量一定,使体系温度一定, 则气液组成一定。 用精密温度计可以测出平衡温度,取出气液两相样品 测定其折射率可以求出其组成。折射率和组成有一一对应 关系,可以通过测定仪系列已知组成的样品折射率,绘出 工作曲线。测出样品就可以从工作曲线上找到未知样品的 组成。 三仪器与药品 仪器:阿贝折射仪、超级恒温槽、蒸馏瓶、调压 变压器、1/10℃刻度温度计、25ml移液管一支、5ml、 10ml移液管各两支、锥形瓶四个、滴管若干支 药品:环己烷、乙醇、丙酮 四实验步骤 1.工作曲线的测定 把超级恒温槽调至25℃,连接好恒温槽与阿贝折 射仪,使恒温水流经折射仪。 准确配制下列溶液,测定纯环己烷,乙醇和下列 溶液的折射率,并测定溶液温度。 环己烷 1 2 3 4ml 乙醇 4 3 2 1ml 2.测定环己烷的沸点 按图装好仪器,调压变压器调至最小,将25ml苯加入蒸馏瓶,打开冷凝水,接通电源,

物理化学课后习题第六章答案word版本

第六章相平衡 6.1指出下列平衡系统中的组分数C,相数P及自由度F。 (1)I2(s)与其蒸气成平衡; (2)CaCO3(s)与其分解产物CaO(s)和CO2(g)成平衡; (3)NH4HS(s)放入一抽空的容器中,并与其分解产物NH3(g)和H2S(g)成平衡;(4)取任意量的NH3(g)和H2S(g)与NH4HS(s)成平衡。 (5)I2作为溶质在两不互溶液体H2O和CCl4中达到分配平衡(凝聚系统)。解:(1)C = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1. (2)C = 3 – 1 = 2, P = 3, F = C–P + 2 = 2 – 3 + 2 = 1. (3)C = 3 – 1 – 1 = 1, P = 2, F = C–P + 2 = 1 – 2 + 2 = 1. (4)C = 3 – 1 = 2, P = 2, F = C–P + 2 = 2 – 2 + 2 = 2. (5)C = 3, P = 2, F = C–P + 1 = 3 – 2 + 1 = 2. 6.2 常见的Na 2CO 3 (s)水合物有Na 2 CO 3 ?H 2 O(s),Na 2 CO 3 ?7H 2 O(s)和Na 2 CO 3 ?10H 2 O(s). (1)101.325kPa下,与Na 2CO 3 水溶液及冰平衡共存的水合物最多能有几种?

(2)20℃时,与水蒸气平衡的水合物最多可能有几种? 解:(1)C = S – R - R' = 2 – 0 – 0 =2 F = C–P + 1 =2 –P + 1= 3 – P ≥0,即P-2≤1,那么能与Na2CO3水溶液及冰平衡共存的水合物最多只有一种。 (2)C = S – R - R' = 2 – 0 – 0 =2 F = C–P + 1 =2 –P + 1= 3 – P ≥0,即P-1≤2,那么与水蒸气平衡的水合物最多可能有两种。 6.4 单组分系统碳的想吐(示意图)如附图所示。 (1)分析图中各点、线、面的相平衡关系及自由度数; (2)25℃,101.325kPa下,碳以什么状态稳定存在? (3)增加压力可以使石墨转换为金刚石。已知石墨的摩尔体积大于金刚石的摩尔体积,那么加压使石墨转换为金刚石的过程吸热还是放热? 解:(1)OA线——石墨和金刚石的平衡 F=1 OB线——石墨和液相碳的平衡 F=1 OC线——金刚石和液相碳的平衡 F=1 O点——石墨,金刚石和液相碳的三相平衡点 F=0 A点——石墨和金刚石的不可区分点 B点——石墨和液相碳的不可区分点 C点——金刚石和液相碳的不可区分点 (2)从相图上可直接读得,碳在25℃,101.325kPa时稳定存在的形式是石墨;

双液系气液平衡相图的绘制

实验三双液系气液平衡相图的绘制姓名:学号: 班级:实验日期:2015年9月21日 提交报告日期:2015年9月28日 1、实验目的 1.了解沸点仪的原理和使用方法。 2.在大气压力下用沸点仪测绘环己烷-乙醇双液系的气相平衡相图。 3.掌握阿贝折射仪的使用方法。 2、实验原理 双液系是指两种液态物质混合而成的物系。双液系可以分为完全互溶双液系、部分互溶双液系和完全不溶双液系。 将两种挥发性液体混合,若该二组分的蒸气压不同,则溶液的组成与其平衡气相的组成不同。在压力保持一定,二组分系统气液达到平衡时,表示液态混合物的沸点与平衡时组成关系的平衡状态图,简称相图。沸点和组成的关系有下列三种:(1)理想液体混合物或接近理想液体混合物的双液系,其液体混合物的沸点介于两纯物质沸点之间;(2)各组分蒸气压对拉乌尔定律产生很大的负偏差,其溶液有最高恒沸点见;(3)各组分蒸气压对拉乌尔定律产生很大的正偏差,其溶液有最低恒沸点。第(2)、(3)两类溶液在最高或最低恒沸点时的气液两相组成相同,加热蒸发的结果只使气相总量增加,气液相组成及溶液沸点保持不变,这时的温度称恒沸点,相应的组成称恒沸组成。第一类混合物可用一般精馏法分离出这两种纯物质,第(2)、(3)类混合物用一般精馏方法只能分离出一种纯物质和另一种恒沸混合物。 为了测定二元液系的相图,需在气液达到平衡后,同时测定溶液的沸点、气相和液相组成。 本实验是测定具有最低恒沸点的环己烷—乙醇双液系的相图。方法是用沸点仪直接测定一系列不同组成之溶液的气液平衡温度(即沸点),并收集少量馏出液(即气相冷凝液)及吸取少量溶液(即液相),分别用阿

编号123456 7 8 贝折射仅测定其折射率。为了求出相应的组成,必须先测定已知组成的溶液的折射率,作出折射率对组成的工作曲线,在此曲线上即可查得对应于样品折射率的组成。 3、实验仪器和试剂 1.仪器 沸点仪1个、加热电源(0.5kW)1台、阿贝折射仪1台、长颈胶头滴管2支、镜头纸、 超级恒温槽、50~10℃温度计1支。 2.药品 乙醇、环己烷、丙酮。 4、实验操作步骤及方法要点 1.启动超级恒温槽的加热和搅拌系统,把超级恒温槽的控制温度调至27℃。 2.测定标准溶液的折射率 用与超级恒温槽相连接的已经恒温的阿贝折射仪测定标准溶液的折射率,作折射率对组成的工作曲线。 3.溶液沸点及气液平衡组成的测定。 往沸点仪中加入20mL乙醇,通冷却水,打开电源并调电压至12V,加热溶液至沸腾。待其温度计上所指示的温度保持恒定后,读下该温度值,同时停止加热,并立即在小泡中取气相冷凝液,迅速测定其折射率,并用另一滴管取少量液相测定其折射率。 接下来,往沸点仪中分别加入1mL、2mL、2mL、2mL、5mL环己烷,并按前述方法测定气液平衡温度和气液两相的折光率。结束后,将沸点仪中溶液倒入回收瓶并用电吹风把沸点仪烘干。 往沸点仪中加入20mL环己烷,经行实验。在之后往沸点仪中分别加入的是1mL、2mL、2mL、2mL、5mL乙醇。 注意:每次测量折射率后,要将折射仪的棱镜打开晾干,以备下次测定用。 5、实验数据 1)原始实验测量数据 大气压力:97.13kPa 室温:25.5℃ 以下数据测定过程中阿贝折射仪(恒温槽)温度为27.0℃。

二组分真实液态混合物的气—液平衡相图的绘制

实验四二组分真实液态混合物的气—液平衡相图的绘制 一、实验目的 1.掌握二组分真实液态混合物的沸点、气液组成的测定方法。 2.掌握阿贝折光仪的使用。 3.绘制环已烷—乙醇体系的沸点—组成图,确定其恒沸点及恒沸组成。 二、实验原理 在恒定压力下,二组分达到气液平衡时,表示溶液的沸点与组成的相图称为沸点—组成图,即t x —图可分为三类: —图。二组分真实液态混合物的t x (1)溶液的沸点介于两纯组分沸点之间(图4—10(a))。 (2)各组分对拉乌尔定律发生最大正偏差,其溶液有最低恒沸点(图4—10(b))。 (3) 各组分对拉乌尔定律发生最大负偏差,其溶液有最高恒沸点(图4—10(c))。 对(2)、(3)类系统在最低或最高沸点处的气液两相组成相同,加热蒸发的结果只能使气相总量增加,气液两相组成及溶液沸点保持不变,这是的温度称为恒 沸点,相应的组成称为恒沸组成。 为了测定t x —图,需在气—液两相达到平衡后,同时测 定气相组成、液相组成和溶液的沸点。本实验采用折光率法 测定系统的组成。即需测定已配置好的不同组成的溶液的折 光率,然后绘制折光率与组成的标准曲线,即本实验的工作 曲线。实验采用简单蒸馏瓶,用电热丝直接放入溶液中加热 (如图4—11),以减少过热和暴沸现象。气相分析是取冷凝 器下端小玻璃球中的冷凝液,液相分析是取蒸馏瓶内的液体。 分析仪器采用阿贝折光仪。 三、仪器和药品 蒸馏瓶一个;温度计一支(50℃~100℃,0.01精度);阿 贝折光仪一台;长、短滴管各一支;20ml量筒一个;1ml刻 度滴管一支。 环已烷;无水乙醇;20%、40%、60%、80%环已烷—乙 醇混合液;脱脂棉。 四、实验步骤

物理化学实验报告二组分简单共熔合金相图绘制

一、实验目的 1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。 2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。 二、主要实验器材和药品 1、仪器:KWL-II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳 2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡 三、实验原理 压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图。 、 较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi- Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn 或Bi- Sn系统。 研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法。溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。此法适用于常温F易测定组成的系统,如水盐系统。 热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。根据步冷曲线可以判断体系有无相变的发生。当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分。这是因为相变时的热效应使温度随时间的变化率发生了变化。因此,由步冷曲线的斜率变化可以确定体系的相变点温度。测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。 图3- 15(b)是具有简单低共熔点的A- B二元系相图,左右图中对应成分点、的步冷曲线。下面对步冷曲线作简单分析。 在固定压力不变的条件下,相律为: f=c-φ+1 (3-6-1) 式中:c为独立组分数;为相数。 》 对于纯组分熔融体系,c=1,q=1。在冷却过程中若无相变化发生,其温度随时间变化关系曲线为平滑曲线。到凝固点时,固液两相平衡,=2,自由度为0,温度不变,出现水平线段。等体系全部凝固后,其冷却情况同纯熔融体系一样,呈一平滑曲线。图3- 15(a)中曲线ave属于这种情况。

实验五 二组分凝聚系统相图

南昌大学物理化学实验报告 学生姓名:李江生学号:5802216018 专业班级:安全工程161班实验日期:2018-04-17 实验五二组分凝聚系统相图 一、实验目的 (1)掌握热分析法(步冷曲线法)测绘Bi-Sn二组分凝聚系统相图的原理和方法。 (2)了解简单固液相图的特点、步冷曲线及相图中各曲线代表的物理意义巩固相律等有关知识。 二、实验原理 压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度-组成图。 热分析法:其原理是将系统加热融化,然后使其缓慢而均匀地冷却,每隔一定时间记录一次温度,绘制温度与时间的关系曲线——步冷曲线。若系统在均匀冷却过程中无相变化,其温度将随时间均匀下降;若系统在均匀冷却过程中有相变化,由于体系产生的相变热与体系放出的热量相抵消,步冷曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成体系的相变温度。 由于冷却过程中常常发生过冷现象,其步冷曲线常如上图中虚线所示,由横轴表示混合物的组成,纵轴表示温度,利用步冷曲线所得到的一系列组成和所对应的相变温度数据,就可以绘出相图,如下图:

简单低共熔混合物二组分系统步冷曲线及相图 三、仪器与药品 步冷曲线测定装置1套(可控升降温电炉1台,数字控温仪1台,控温探头I,测温探头Ⅱ),不锈钢试样管5只,坩埚钳1把,劳保手套1副,Sn、Bi及其合金。 四、实验步骤 1、将数字控温仪温度Ⅰ设定为320℃,按“工作/置数”按钮,切换到工作状态。传感器Ⅰ插入加热炉Ⅰ样品管口内;传感器Ⅱ插入加热炉Ⅱ样品管口内;加热到320℃; 2、将“冷风量调节”旋钮逆时针旋到底,加热使温度降为250℃左右后; 3、适当调节“冷风量调节”旋钮,使温度降温绘制步冷曲线,降温速率控制为6-8℃/min,以便找到曲线拐点; 4、打开金属相图软件,设置绘步冷曲线图坐标; 5、实验结束后,关闭仪器电源,将实验桌面整理干净。 五、数据记录与处理 由以上数据作图得:

二组分气液平衡相图的绘制讲义

双液系气-液平衡相图的绘制 一、实验目的、要求 1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。 2. 掌握阿贝折射仪的原理和使用方法。 二、实验原理 液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过汽液见相变达到平衡后,各组分在汽、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各组分。其中,恒压数据应用更广,测定方法也较简便。 本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液相线与汽相线组成的完整相图。 下图为环己烷——乙醇的沸点组成图的大致形状,ADC和BEC为气相线,AD′C和BE′C 为液相线。体系总组成为x的溶液开始沸腾时,气象组成为y ,继续蒸馏,气相量增加,液相量减少(总量不变),溶液温度上升,回流作用,控制了两相的量一定,沸点一定。此时,气相组成为y′,与其平衡的液相组成为x′,体系的平衡沸点为t沸,此时气液两相服从杠杆原理。 当压力一定时,对两相共存区进行相律分析:独立组分C=2,相数P=2,则自由度F=C-P+1=2-2+1=1 即有,体系温度一定,则气液两相成分确定。总量一定时,两相的量也一定。在一实验装置中,控制气液两相的相对量一定,使体系温度一定, 则气液组成一定。用精密温度计可以测出平衡温度,取出 气液两相样品测定其折射率可以求出其组成。折射率和组 成有一一对应关系,可以通过测定仪系列已知组成的样品 折射率,绘出工作曲线。测出样品就可以从工作曲线上找 到未知样品的组成。 三、使用仪器、材料 沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇 四、实验步骤 1、测定折射率与组成的关系,绘制工作曲线 将9支小试管编号,依次移入0.1 ml, 0.2 ml, …, 0.9 ml的环己烷,然后依次移入0.9 ml, 0.8 ml,…, 0.1 ml的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。 2、测定环己烷-乙醇体系的沸点与组成的关系 (1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷0.5, 1.0, 1.5, 2.0, 4.0, 14.0 ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 (2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入

双液系的气液平衡相图

双液系的气-液平衡相图 1. 简述由实验绘制环己烷-乙醇气-液平衡T-x相图的基本原理。 答:通过测定不同沸点下组分的气、液相的折射率,在标准的工作曲线上找出该折射率对应的浓度,结合其沸点画出平衡相图。 2. 在双液系的气-液平衡相图实验中,作环己烷-乙醇的标准折光率-组成曲线的目的是什么? 答:作标准曲线的目的是通过测气、液相相得折射率从而在标准工作曲线上找出对应的浓度。 3. 用精馏的方法是否可把乙醇和环己烷混合液完全分离,为什么? 答:不能完全分离。因为环己烷-乙醇二组分具有最低恒沸点。 4. 测定纯环己烷和纯乙醇的沸点时,沸点仪中有水或其它物质行吗? 答:有水和其他物质都是不行的。因为有水和其他物质会使所测沸点改变。 5. 为什么工业上常生产95%酒精?只用精馏含水酒精的方法是否可能获得无水酒精? 答:因为水-乙醇二组分具有最低恒沸点,所以工业上常生产95%的酒精。用精馏的方法无法获得无水酒精,只能获得95%的酒精。 6. 在双液系的气-液平衡相图实验中,如何判断气-液相达平衡状态?

答:观察贝克曼温度计的读数,如果读数稳定3-5分钟,说明已达平衡状态。 7. 在双液系的气-液平衡相图实验中,每次加入沸点仪中的环己烷或乙醇是否应按记录表所规定的体积精确计量?为什么? 答:不需要按记录表的加。因为组分的浓度不是按所加物质的量计算得来的,而是通过测折射率间接得到的。 8. 在双液系的气-液平衡相图实验中,在测定沸点时,溶液出现分馏现象,将使绘出的相图图形发生什么变化? 答:出现馏分将使测得的沸点偏高,使相图向上移动。 9. 在双液系的气-液平衡相图实验中,蒸馏器中收集气相冷凝的小球大小对结果有何影响? 答:小球太小难以收集气相,小球太大,小球内的组分更新太慢,产生馏分,导致实验误差。 10. 在双液系的气-液平衡相图实验中,通过测定什么参数来测定双液系气-液平衡时气相和液相的组成? 答:通过测定组分的折射率来测定双液系气-液平衡时气相和液相的组成。 11. 在双液系的气-液平衡相图中,如何通过测定溶液的折光率来求得溶液的组成? 答:通过测得的折射率在标准曲线上找出对应的浓度,根据气、液相平衡浓度与测得的沸点作出平衡相图。

物化第六章 - 答案

第六章相平衡练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、纯物质两相达平衡时,两相的吉布斯函数值一定相等。() 2、理想液态混合物与其蒸气达成气、液两相平衡时,气相总压力p与液相组成x B 呈线性关系。() 3、已知Cu-Ni 可以形成完全互溶固熔体,其相图如右图,理论上,通过精炼可以得到两个纯组分。() 4、二组分的理想液态混合物的蒸气总压力介于二纯组分的蒸气压之间。( ) 5、在一定温度下,稀溶液中挥发性溶质与其蒸气达到平衡时气相中的分压与该组分在液相中的组成成正比。() 6、恒沸混合物的恒沸温度与恒沸组成不随压力而改变。( ) 7、在一个给定的体系中,特种数可以分析问题的角度不同而不同,但独立组分数是一个确定的数。() 8、自由度就是可以独立变化的变量。() 9、单组分体系的相图中两相平衡线都可以用克拉贝龙方程定量描述。() 10、在相图中总可以利用杠杆规则计算两相平衡时两相的相对量。( )

二、选择题 1、在p下,用水蒸气蒸馏法提纯某不溶于水的有机物时,系统的沸点:()。 (1)必低于373.2 K; (2)必高于373.2 K; (3)取决于水与有机物的相对数量; (4)取决于有机物相对分子质量的大小。 2、已知A(l)、B(l)可以组成其t-x(y)图具有最大恒沸点的液态完全互溶的系统, 则将某一组成的系统精馏可以得到:( )。 (1)两个纯组分;(2)两个恒沸混合物;(3)一个纯组分和一个恒沸混合物。 3、已知A和B 可构成固溶体,在组分A 中,若加入组分B 可使固溶体的熔点提高,则组B 在此固溶体中的含量必________组分B 在组分液相中的含量。 (1)大于;(2)小于;(3)等于;(4)不能确定。 4、硫酸与水可形成H2SO4H2O(s),H2SO42H2O(s),H2SO44H2O(s)三种水合物,问在101325 Pa的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种?( ) (1) 3种;(2) 2种;(3) 1种;(4) 不可能有硫酸水合物与之平衡共存 5、对恒沸混合物的描写,下列各种叙述中哪一种是不正确的?

完全互溶双液系气液平衡相图的绘制

完全互溶双液系气液平衡相图的绘制 一.实验目的 1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。 2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。 3.掌握阿贝折射仪的使用方法及原理。 4.了解和掌握沸点仪的测定原理及方法。 5.加深对完全互溶双液系气液平衡相图的理解和增强个人动手能力。 二.实验原理 两种液体物质混合而成的两组分体系称为双液系。根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。当压力保持一定,混合物沸点与两组分的相对含量有关。 恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x图),根据体系对拉乌尔定律的偏差情况,可分为三类: (1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(a)所示。 (2)最大负偏差:存在一个最小蒸气压值,比两个纯液体的蒸气压都小,混合物存在着最高沸点,如盐酸-水体系,如图1 (b)所示。 (3)最大正偏差:存在一个最大蒸气压值,比两个纯液体的蒸气压都大,混合物存在着最低沸点,如正丙醇—水体系,如图1(c))所示。 对于后两种情况,为具有恒沸点的双液系相图。它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。 为了绘制双液系的T-x相图,需测定几组原始组成不同的双液系在气-液两相平衡后的沸点和液相、气相的平衡组成。 本实验以环己烷-乙醇为体系,该体系属于上述第三种类型。在沸点仪(如图2所示)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。 本实验中气液两相的组成均采用折光率法测定。 折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。溶液的浓度不同、组成不同,折光率也不同。因此可先配制一系列已知组成的溶液,在恒定温度下测其折光图1 二组分真实液态混合物气-液平衡相图(T-x图)

大学物理化学5-相图课后习题及答案

相图 一、是非题 下述各题中的说法是否正确?正确的在题后括号内画“√”,错的画“?”。 1.相是指系统处于平衡时,系统中物理性质及化学性质都均匀的部分。( ) 2.依据相律,纯液体在一定温度下,蒸气压应该是定值。( ) 3.依据相律,恒沸温合物的沸点不随外压的改变而改变。( ) 二、选择题 选择正确答案的编号,填在各题题后的括号内。 1NH4HS(s)和任意量的NH3(g)及H2 S(g)达平衡时有:( )。 (A)C=2,φ=2,f =2;(B) C=1,φ=2,f =1; (C) C=1,φ=3,f =2;(D) C=1,φ=2,f =3。 2已知硫可以有单斜硫,正交硫,液态硫和气态硫四种存在状态。硫的这四种状态____稳定共存。 (A) 能够;(B) 不能够;(C) 不一定。 3硫酸与水可形成H2SO4?H2O(s),H2SO4?2H2O(s),H2SO4?4H2O(s)三种水合物,问在101 325Pa的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种?( ) (A) 3种;(B) 2种;(C) 1种;(D) 不可能有硫酸水合物与之平衡共存。 4将固体NH4HCO3(s) 放入真空容器中,恒温到400 K,NH4HCO3按下式分解并达到平衡:NH4HCO3(s) === NH3(g) + H2O(g) + CO2(g) 系统的组分数C和自由度数f为:( ) (A) C=2,f =2;(B) C=2,f =2; (C) C=2,f =0;(D) C=3,f =2。 5某系统存在C(s)、H2O(g)、CO(g)、CO2(g)、H2(g)五种物质,相互建立了下述三个平衡: H 2O(g)+C(s) H2(g) + CO(g) CO 2(g)+H2(g) H2O + CO(g) CO 2(g) + C(s) 2CO(g) 则该系统的独立组分数C为:( )。 (A) 3;(B) 2;(C) 1;(D) 4。 三、计算题 习题1 A,B二组分在液态完全互溶,已知液体B在80?C下蒸气压力为101.325 kPa,汽化焓为30.76 kJ·mol-1。组分A的正常沸点比组分B的正常沸点高10 ?C。在101.325kPa下将8 mol A和2 mol B混合加热到60 ?C产生第一个气泡,其组成为y B=0.4,继续在101.325 kPa下恒压封闭加热到70?C,剩下最后一滴溶液其组成为x B=0.1。将7 mol B和3 mol A气体混合,在101.325 kPa下冷却到65?C产生第一滴液体,其组成为x B=0.9,继续定压封闭冷却到55?C时剩下最后一个气泡,其组成为y B=0.6。 (1) 画出此二组分系统在101.325kPa下的沸点一组成图,并标出各相区; (2) 8 mol B和2 mol A的混合物在101.325 kPa,65 ?C时,

双液系的气液平衡相图(物理化学实验)

双液系的气液平衡相图 实验者:林澄昱生04 2010030007 同组者:张弯弯 实验日期:2012-03-10 提交日期:2012-03-16 实验指导:刘晓惠 1引言 两种蒸气压不同的挥发性液体在混合之后,其溶液组成与与其平衡气相的组成不同。 在恒外压下,二组分系统达到气液平衡时,表示液态混合物的沸点与平衡时气液两相组成关系的相图,称为沸点和组成(T-x)图。大致分为三大类,包括: (1)理想液体混合物或接近理想液体混合物的双液系,其混合物沸点介于两纯物质沸点之间。见图1(a); (2)各组分蒸气压对拉乌尔定律产生很大的负偏差,有最高恒沸点。见图1(b); (3)各组分蒸汽压对拉乌尔定律产生很大的正偏差,有最低恒沸点。见图2(c)1。 图1 三类沸点组成(T-x)图 本实验为了绘制常压下环己烷-乙醇的气液平衡相图,先利用阿贝折射仪测定一系列已知组成混合溶液及纯液体的折射率,绘制标准曲线,再通过沸点仪测定一系列混合溶液的沸点,收集少量气相冷凝液以及溶液,测定其各自折射率,反查标准曲线得到气液两相的组成,绘得双液系的气液平衡相图。 2实验操作 2.1实验药品、仪器及测试装置示意图 2.1.1实验药品 环己烷,无水乙醇; 2.1.2实验仪器 沸点仪,调压器,温度传感器,锥形瓶,分析天平(AR2140),阿贝折射 仪(型号不明,为靠近恒温箱的一台),恒温箱,胶头滴管,10ml吸量管, 洗耳球; 2.1.3装置示意图

1. 冷却水入口 2. 气相冷凝液贮存小泡 3. 温度传感器 4. 喷嘴 5. 电热丝 6. 调压器2 图2 沸点仪 2.2实验条件 恒温槽温度:26 ℃ 室温:未测 气压:未测 2.3实验操作步骤及方法要点 2.3.1标准曲线的测定及绘制 2.3.1.1标准溶液的配制 取5个干燥、洁净的锥形瓶,编号为1~5,分别称量空瓶质量并记录;依照表1分别量取并加入相应体积的环己烷和无水乙醇,每加 入一种溶液以后称量其质量并记录;得到5份已知组分的标准溶液。 表1 标准溶液的配制方案 通过称量得到的质量,可以计算得到每锥形瓶中液体含有的环己烷质量分数,通过测定其折射率,可以确定特定环己烷质量分数与折 射率的关系;同时,直接量取纯的无水乙醇和环己烷,测定其折射率, 可以绘制在环己烷质量分数在0~1之间的无水乙醇混合溶液与折射率 的关系曲线。 2.3.1.2标准溶液折射率测定 (1)将阿贝折射仪与恒温箱相连,调节反光镜使目镜视野明亮,此 时仪器可以用来测量; (2)用胶头滴管加入待测溶液,在右目镜视野中观察,用右侧旋钮 调节色散程度,使明暗分界线清晰,再用左侧旋钮调节,使明 暗交界线处于叉丝中心。注意接下来实验过程中保证左侧旋钮

物化第六章-答案教学提纲

第六章相平衡练习题 、是非题,下列各题的叙述是否正确,对的画V错的画X 1、纯物质两相达平衡时,两相的吉布斯函数值一定相等。() 2、理想液态混合物与其蒸气达成气、液两相平衡时,气相总压力p与液相组成X B呈线性关系。() 3、已知Cu-Ni可以形成完全互溶固熔体,其相图如右图,理论上,通过精炼 可以得到两个纯组分。() 4、二组分的理想液态混合物的蒸气总压力介于二 纯组分的蒸气压之间。() 5、在一定温度下,稀溶液中挥发性溶质与其蒸气达到平 衡时气相中的分压与该组分在液相中的组成成正比。 () 6 恒沸混合物的恒沸温度与恒沸组成不随压力而改变。() 7、在一个给定的体系中,特种数可以分析问题的角度不同而不同,但独立组分数是一个确定的数。() 8、自由度就是可以独立变化的变量。() 9、单组分体系的相图中两相平衡线都可以用克拉贝龙方程定量描述。() 10、在相图中总可以利用杠杆规则计算两相平衡时两相的相对量。() 二、选择题 1、在p下,用水蒸气蒸馏法提纯某不溶于水的有机物时,系统的沸点:() (1)必低于373.2 K; (2)必高于373.2 K; (3)取决于水与有机物的相对数量; (4)取决于有机物相对分子质量的大小。 2、已知A(l)、B(l)可以组成其t-x(y)图具有最大恒沸点的液态完全互溶的系统, 则将某一组成的系统精馏可以得到:()。 (1)两个纯组分;(2)两个恒沸混合物;(3)一个纯组分和一个恒沸混合物。

3、已知A和B可构成固溶体,在组分A中,若加入组分B可使固溶体的熔点提高,则组B在此固溶体中的含量必 组分B在组分液相中的含量 (1)大于;(2)小于;(3)等于;(4)不能确定。 4、硫酸与水可形成H2SO4H2OG), H2SO4 2H2O(S), H2SO44H2OG)三种水合物,问在101325 Pa的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种?( ) (1) 3 种;(2) 2 种;(3) 1 种;(4) 不可能有硫酸水合物与之平衡共存 5、对恒沸混合物的描写,下列各种叙述中哪一种是不正确的? (1) 与化合物一样,具有确定的组成; (2) 恒沸混合物的组成随压力的改变而改变; (3) 平衡时,气相和液相的组成相同; (4) 其沸点随外压的改变而改变。 6、将固体NH4HCO3(s) 放入真空容器中,等温在400 K,NH4HCO3 按下式分 解并达到平衡:NH4HCO3(s) = NH3(g) + H2O(g) + CO2(g) 系统的组分数C和自由度数F为:()。 (1 )C = 2, F =1; (2 )C = 2, F=2; (3 ) C=1, F=0;(4 ) C = 3, F=2O 7、在101 325 Pa的压力下,I2在液态水和CCI4中达到分配平衡(无固态碘存在)则该系统的自由度数为:( )o (1) F=1; (2)F=2; (3)F=0; (4)F=3o 8、组分A(高沸点)与组分B(低沸点)形成完全互溶的二组分系统,在一定温度下,向纯B中加入少量的A,系统蒸气压力增大,则此系统为:()O (1)有最高恒沸点的系统; (2)不具有恒沸点的系统; (3)具有最低恒沸点的系统。 9、克-克龙方程可适用于: ( )o

二组分气液平衡相图

实验三二组份气液平衡相图 一、目的 1、用沸点仪测定和绘制乙醇和环己烷的二组份气液平衡相图; 2、用阿贝折射仪测定液体的组成,了解液体折射率的测量原理及方法。 二、基本原理 两种液态物质混合而成的二组份系统称为双液系。二液体若能按任意比例互相溶解,称完全互溶双液系;若只能在一定比例范围内互相溶解,则称部分互溶双液系。例如水-乙醇双液系、苯-甲苯双液系都是完全互溶双液系,苯-水双液系则是部分互溶双液系。 液体的沸点是指液体的蒸汽压和外压相等时的温度。在一定的外压下,纯液体的沸点有确定的值,但对于双液系,沸点不仅与外压有关,而且还与双液系的组成有关,即和双液系中两种液体的相对含量有关。通常用几何作图的方法将双液系的沸点对其气相、液相的组成作图,即得二组份气液平衡相图,它表明溶液在各种沸点的液相组成和与之成平衡的气相组成的关系。 在恒压下,二组份完全互溶双液系的沸点组成图可分为三类: (1)溶液的沸点介于两纯组份沸点之间,如苯和甲苯、水和甲醇等。

(2)溶液有最高沸点,如氯化氢与水、硝酸和水、丙酮与氯仿等。 (3)溶液有最低沸点,如水和乙醇、苯和乙醇、乙醇和环已烷等。 这三种类型的相图如下图所示 图4-1 二组份气液平衡相图的三种类型 图中、T 分别表示纯A 纯B 的沸点。图中两曲线包围的区域为气-液两相平衡共存区。它的上方G 代表气相区,下方L 为液相区。C 和C'分别表示最高和最低恒沸物的沸点和组成。 T A *B * 测绘这类相图时,要求同时测定溶液的沸点及气液平衡时两相的组成。本实验用回流冷凝法测定环己烷-乙醇溶液在不同组成时的沸点。所用沸点仪如图4-2所示,是一只带有回流冷凝管的长颈园底烧瓶,冷凝管底部有一球形小室D ,用以收集冷凝下来的气相样品,液相样品则通过烧瓶上的支管L 抽取,图中E

二元液系气液平衡相图

实验二二元液系气液平衡相图 一、实验目的 1、了解环己烷—乙醇系的沸点—组成图 2、由图上得出其最低恒沸温度及最低恒沸组成(含乙醇%) 3、学会使用数字阿贝折射仪 4、学会使用WTS—05数字交流调压器 二、原理 一个完全互溶双液体系的沸点—组成图,表明在气液二相平衡时沸点和二相成分间的关系,它对了解这一体系对行为及分馏过程都有很大的实用价值。 在恒压下完全互溶双液系的沸点与组分关系有下列三种情况:1、溶液沸点介于二纯组分之间;2、溶液有最高恒沸点;3、溶液有最低恒沸点。 图1表示有最低恒沸点,本次实验图形也像如此的样子,A′LB′代表液相线的交点表示在该温度时互成平衡的二相的成份。 绘制沸点—成份图的简单原理如下:当总成份为X的溶液开始蒸馏时,体系的温度沿虚线上升,开始沸腾时成份为Y的气相生成。若气相量很少,x、y二点即代表互成平衡时液气二相成份。继续蒸馏,气相量逐渐增多,沸点沿虚线继续上升,气液二相成份分别在气相和液相线上沿箭头指示方向变化。当二相成份达到某一对数值x′和y′,维持二相的量不变,则体系气液二相又在此成份达到平衡,而二相的物质数量按杠杆原理分配。 本实验利用回流的方法保持气液二相相对量一定,则体系温度恒定。待二相平衡后,取出二相的样品,用阿贝折光仪测定其折射率。得出该温度下气液二相平衡成份的坐标点,改变体系的总成份,再用上法找出一对坐标点,这样测得若干坐标点后,分别按气相点和液相点连成气相线和液相线,即得T—X平衡图。 三、步骤 1、安装接通仪器,打开冷凝水; 2、加入环己烷20ml,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器; 3、A组加入乙醇0.5ml,用上法测定温度,然后关闭调压器,取出气相,液相的样品,测其折射率,以后分别加入1.0,2.0,4.0,8.0,12.0ml乙醇;

二组分凝聚系统相图实验报告

二组分凝聚系统相图 一、实验目的 1.熟悉热分析法测绘Sn-Pb二组分凝聚系统相图的原理; 2.掌握热电偶测温的基本原理。 二、实验原理 热分析法是绘制凝聚系统相图的基本方法之一。其原理是根据系统在加热或冷却过程中发生相变所对应的温度来确定系统的状态图。当一个熔融系统均匀冷却时,如无相变化,它的温度将连续均与地下降,在温度-时间图上将得到一条平滑的曲线;如在冷却过程中发生了相变,则令温度下降减缓甚至因新相析出所放出的热量抵消了散失的热量而令温度不变,于是冷却曲线上就会出现转折点或水平线段,而产生水平或转折的温度就是发生相变的温度。 本实验所测定的是具有最低共熔点的固态部分互溶的Sn-Pb系统,实验室测定一系统冷却曲线。如图1(a)中的曲线A为Pb的冷却曲线,熔融的Pb 在高于327℃时,系统中只有液态的Pb,根据相律F=C-P+1可知,单组分系统的自由度为1,故温度可以改变且均匀下降。当逐渐冷却至温度为327℃时,Pb开始凝固,此时系统为两相共存,其自由度为零,即冷却曲线上出现水平线段。当Pb全部凝固后,系统自由度变为1,系统的温度又均匀下降。 图1(a)中曲线E所示的是组成为61.9%Sn的冷却曲线。它和纯金属的冷却曲线很相像,当液体冷却到一定温度时,从液体中同时析出两个固相,三相共存,因此自由度为零,故也出现水平段。此温度是低共熔温度。 对含Sn量在19.5%-97.4%之间的其他样品,冷却曲线比较复杂。本实验中测试的是组分为30%Sn和80%Sn的系统。以30%Sn系统为例,开始均匀冷却,当冷却到图中C点处温度时,开始析出α固溶体,此时自由度为1,温度仍可变化,但由于固相析出而放出相变热,使冷却速度减慢,冷却曲线斜率变小,出现转折点C,随着含有Pb量高的固溶体α的析出,液相中Pb 含量逐渐减少,只有降低温度才能继续析出固体,当温度降到D点处而且液相组成也变成低共熔组成时,另一固溶体β也达到饱和,系统变成三相,自由度为零,冷却曲线上出现水平段,直至液相消失。之后系统只剩下两个相,自由度为1,温度又开始均匀下降。 对Sn含量小于19.5%和含量高于97.5%的样品冷却曲线应该有三个转折点,但本实验热分析方法观测不到。

双液体系气液平衡相图的绘制及思考题样本

双液体系气—液平衡相图的绘制 一、 实验目的 1. 绘制环己烷—异丙醇双液体系的沸点组成图, 确定其恒沸组成和恒沸温度。 2. 掌握回流冷凝管法测定溶液沸点的方法。 3.掌握阿贝折射仪的使用方法。 二、 实验原理 两种液体物质混合而成的两组分体系称为双液系。根据两组分间溶解度的不 同, 可分为完全互溶、 部分互溶和完全不互溶三种情况。两种挥发性液体混合形成完全互溶体系时, 如果该两组分的蒸气压不同, 则混合物的组成与平衡时气相的组成不同。当压力保持一定, 混合物沸点与两组分的相对含量有关。 恒定压力下, 真实的完全互溶双液系的气-液平衡相图( T -x ) , 根据体系对拉乌尔定律的偏差情况, 可分为3类: ( 1) 一般偏差: 混合物的沸点介于两种纯组分之间, 如甲苯-苯体系, 如图 (a)所示。 ( 2) 最大负偏差: 存在一个最小蒸汽压值, 比两个纯液体的蒸汽压都小, 混合物存在着最高沸点, 如盐酸—水体系, 如图 (b)所示。 ( 3) 最大正偏差: 存在一个最大蒸汽压值, 比两个纯液体的蒸汽压都大, 混合 物存在着最低沸点如图 (c)) 所示。 t A t A t A t B t B t B t / o C t / o t / o x B x B x B A B A A B B (a) (b) (c) x ' x '

上图为二组分真实液态混合物气—液平衡相图( T-x图) 后两种情况为具有恒沸点的双液系相图。它们在最低或最高恒沸点时的气相和液相组成相同, 因而不能象第一类那样经过重复蒸馏的方法而使双液系的两个组分相互分离, 而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。 为了测定双液系的T-x相图, 需在气-液平衡后, 同时测定双液系的沸点和液相、气相的平衡组成。 本实验以环己烷-异丙醇为体系, 该体系属于上述第三种类型, 在沸点仪中蒸馏不同组成的混合物, 测定其沸点及相应的气、液二相的组成, 即可作出T -x相图。 本实验中两相的成分分析均采用折光率法测定。 三、仪器与试剂 1、仪器: 沸点仪1台; 调压变压器1台; 阿贝折射仪1台; 温度计(0-100℃) 1支; 长滴管1个; 短滴管2支; 2、试剂: 环己烷(分析纯); 异丙醇(分析纯) 异丙醇—环己烷标准溶液(异丙醇分别为0.20, 0.40, 0.50, 0.60, 0.80, 0.90) 四、主要实验步骤 1. 测定环己烷、异丙醇及标准溶液的折射率 调节阿贝折射仪, 用一支干燥的短滴管吸取环己烷数滴, 注入折射仪的加液孔内, 测定其折射率n, 读数两次, 取其平均值。然后打开棱镜组, 待环己烷挥发后, 再用擦镜纸轻轻吸去残留在镜面上的液体, 合上棱镜组。

相关文档
相关文档 最新文档