文档库 最新最全的文档下载
当前位置:文档库 › 二组份合金体系相图的绘制

二组份合金体系相图的绘制

二组份合金体系相图的绘制
二组份合金体系相图的绘制

深圳大学实验报告

课程名称:物理化学实验

实验项目名称:二组份合金体系相图的绘制学院:化学与化工学院

专业:_____ 化学(师范)

指导教师:_____ 周晓明___

报告人:mei学号:20121422 _班级:_级师范班实验时间:_______ 2014.6.3 _

实验报告提交时间:___ 2014.6.10

教务处制

实验六

二组份合金体系相图的绘制

一实验目的要求

1.用热分析法测量铅、锡二元金属相图,了解固-液相图的基本特点。

2.学会热电偶测温技术。

3.掌握可控升降温电炉和数字式控温仪的使用方法。

二实验原理

1.二组分固-液相图

以体系所含物质的组成为自变量,温度为应变量所得到的T-X图是常见的一种相图。

二组分体系的自由度与相的数目有以下关系:

自由度=组分数-相数+2 图Ⅱ-7-1(a)以邻-、对-硝基氯苯为例表示有低共溶点相图的构成情况:高温区为均匀的液相,下面是三个两相共存区,至于两个互不相溶的固相A、B 和液相L三相平衡共存现象则是固-液相图所特有的。在三相共存的水平线上,

自由度等于零。处于这个平衡状态下的温度T

E 、物质组成A、B和X

E

都不可改

变。T

E 和X

E

构成的这一点称为低共熔点。

2.热分析法和步冷曲线

热分析法是相图绘制工作中常用的一种实验方法。按一定比例配成均匀的液相体系,让它缓慢冷却,以体系温度对时间作图,则为步冷曲线。

图Ⅱ-7-1(b)为与图(a)标示的三个组成相应的步冷曲线。曲线(Ⅰ)表

时,体系温度将保持恒定直到样品完全凝固。曲线上示,将纯B液体冷却至T

B

出现一个水平段后再继续下降。在一定压力下,单组分的两相平衡体系自由度是定值。曲线(Ⅲ)具有低共溶物的成分。该液体冷却时,情况与纯为零,T

B

的B体系相似。曲线(Ⅱ)代表了上述两组成之间的情况。设把一个组成为X

1,即有B的固相析出。与前两种情况不同,这时体系还有一个自液相冷却至T

1

由度,温度将可继续下降。不过由于B的凝固所释放的热效应将使该曲线的斜

处出现一个转折。

率明显变小,在T

1

三实验仪器与试剂

KWL-09多头可控升降温电炉。

SWKY-1型数字控温仪,配控温热电偶和测温热电偶。

微型计算机,金属相图测绘软件。

1~6号样品,分别为含铅0、20、40、60、80、100%的铅锡合金

实验者自备U盘一个。

四实验步骤

1. 检查1~6号样品管是否依次放在试管架上,控温探头Ⅰ是否放入加热腔内,测温探头Ⅱ应放在1号样品管内。

2. 依次打开微型计算机和SWKY―1型数字控温仪的电源开关,调节SWKY―1型数字控温仪至380℃;按“工作/置数”键使工作指示灯亮,电炉开始通电升温。

3. 从微型计算机桌面双击“金属相图1.5”软件,进入软件主界面,点击“设置坐标”,弹出对话框,设置温度范围0~400℃,时间20min。

4. 从试管架上取出1号样品管放入电炉加热腔内,待“温度显示Ⅱ”示数(即样品的温度)升至380℃时(整个实验期间要绝对避免温度超过400℃,以免损坏仪器),小心将l号样品管连同测温热电偶移至冷却腔内,把2号样品管放入加热腔内加热。待“温度显示Ⅱ”示数开始下降时,点击“开始绘图”,金属相图软件会记录1号样品的步冷曲线图,当温度降至140℃,点击“停止绘图”。点击“保存”,文件名为“实验者姓名―00”,然后将1号样品管放回试

管架原位置,将测温探头Ⅱ插入2号样品管内,待温度超过350℃时,小心将2号样品管连同测温热电偶移至冷却腔内,按照1号样品相同步骤冷却绘图,并保存文件名为“实验者姓名―20”。

5.用同样的方法测余下4个样品的步冷曲线图。(在绘制6号样品图像的同时,把1号样品放在炉腔加热。) 完毕后关闭SWKY ―1型数字控温仪。

五 数据记录及整理

1.数据记录: 实验环境记录 大气压/KPa 室内温度/℃ 实验前 100.67 31.2 实验后 100.85

30.1

(1)记下“实验者姓名-00”跟“实验者姓名-100”的平台温度,以及“实验者姓名-20”、“ 实验者姓名-40”、“ 实验者姓名-60”、“ 实验者姓名-80”的平台温度和拐点温度。

(2)点击主界面“打开”键,在弹出对话框后选择文件“实验者姓名―00”,用鼠标点击图像,在平台曲线前中后各取1点,读取3点的 “纵坐标”并取这3点“纵坐标”的平均值,记录于下表,同时清屏;打开“实验者姓名―100”用鼠标点击图像,在平台曲线前中后各取1点,读取3点的 “纵坐标”并取这3点“纵坐标”的平均值,记录于下表,同时清屏;打开“实验者姓名―20”,点击第一拐点,读取并记录拐点温度,并找出该曲线的平台曲线温度,并记录于下表,同时清屏;依次读取“实验者姓名―20” “实验者姓名―40”、“ 实验者姓名―60”和“实验者姓名―80”的拐点与平台温度。

(3)退出程序“金属相图1.5”,打开程序“金属相图1 .1”,设置坐标“温度0-400℃,时间20min ”. 点击“步冷曲线/金属相图”后,设置坐标“0-400℃”,再点击“相点坐标”,弹出对话框“金属相图坐标点”,输入低共熔点温度(即“实验者姓名―20”、 “实验者姓名―40”、“ 实验者姓名―60”、“ 实验者姓名―80”平台温度的平均数),测试次数为6。

Pb% 0

20

40 60 80 100 平台温度 /℃ 229.76 180.64 180.19 178.42 173.76 325.20 拐点温度 /℃

――

205.48

185.76

252.52

294.32

――

点击“添加”,此时下方会给出6组数据填写框,在其左侧方格内分别填入实验者姓名―00平台温度、实验者姓名―100平台温度、实验者姓名―20拐点温度、实验者姓名―40拐点温度、实验者姓名―60拐点温度、实验者姓名―80拐点温度,在右侧依次为0、100、20、40、60、80,点击“确定”后,在主界面上点击“绘制相图”,此时软件会拟合出金属相图,保存文件名为“实验者姓名-TU”。按键盘上“Print Screen SysRq”键进行拷屏,将其粘贴在word文档中并存盘至“金属相图数据文件夹”下,文件名为“实验者姓名TU”,用U盘将其拷回作为电子版实验报告数据相图。

(4)关闭电脑,整理实验台面。

2.数据处理

(1)绘制步冷曲线(含铅量不同的)。

①样品一的步冷曲线

含量Pb:0 ;Sn:100%

无拐点,平台温度:229.76℃

②样品二的步冷曲线

含量 Pb:20% ;Sn:80%

拐点温度:205.48℃ ;平台温度:180.64℃③样品三的步冷曲线

含量Pb:40% ;Sn:60%

拐点温度:185.76℃ ;平台温度:180.19℃

④样品四的步冷曲线

含量Pb:60% ;Sn:40%

拐点温度:252.52℃ ;平台温度:178.42℃⑤样品五的步冷曲线

含量Pb:80% Sn:20%

拐点温度:294.32℃ ;平台温度:173.76℃

⑥样品六的步冷曲线

含量Pb:100% ;Sn:0

无拐点;平台温度:325.20℃

(2)绘制金属相图,找出最低共熔点的温度及组成。

金属相图

实验者梅旭坤沈涛

实验时间2014.6.3

室温℃31.2

大气压Pa 100.67

Pb % 0 20 40 60 80 100

拐点温度℃229.8 205.5 185.8 252.5 294.3 325.2 平台温度℃229.8 180.6 180.2 178.4 173.8 325.2

最低共熔点的温度:

(180.64+180.19+178.42+173.76)/4=178.25℃

组成:Pb:22.22%,Sn:77.78%

六实验结果及分析

实验结果:

本实验通过热分析法测绘出6组不同组分的Sn-Pb样品的步冷曲线,并利用所测得的数据测绘出二组分Sn-Pb的固液金属相图,测得最低共熔点的温度为178.25℃,此时的成分组成:Pb:22.22%,Sn:77.78%

实验分析:

根据文献资料:

铅-锡的最低共熔点为T理=183.00(℃),ωSn理=61.9%

根据相图得出,最低共熔点:T=178.25℃),ωSn=77.78%。

相对误差:

E1=(178.25—183.00)/183.00*100%=—2.59%

E2=(77.78-61.9)/61.9*100%=25.65%

本实验测得最低共熔点的相对误差为—2.59%,锡含量的相对误差为26.65%。实验误差较大。造成实验误差的原因主要有:

(1)散热效果不佳,速率不稳定,影响了步冷曲线的绘制

(2)实验中拐点温度、平台温度的读取出现一定的误差

七思考题

1.步冷曲线各段的斜率以及水平段的长短与哪些因素有关?

答:步冷曲线的各段斜率是指样品冷却速率,水平段的长短是指样品固液共存的持续时间。它们和样品的组成成分、散热速率、实验温差有关。此次实验中,样品中含有的Sn越多,步冷曲线的水平段越长,这是由于Pb 的熔化热大于Sn的熔化热,也就是说熔化热越大,温度降低越迟缓,平台温度持续时间越长,水平段越长。

2.对于不同成分的混合物的步冷曲线,其水平段有什么不同?

答:纯物质的步冷曲线在其熔点出现水平段,混合物在共熔温度出现水平段。

3.试从实验方法比较测绘气-液相图和固-液相图的异同点。

答:不同点:绘制气-液相图时,由于气-液摩尔体积相差大,都外界压力影响大。而固-液相图中固-液与固-液相反,摩尔体积相差小,受外界压力影响大。实验时,气-液相图中的气-液是利用折光率来测其二元组成,而固-液相图使用热电偶来测其组成。

相同点:都是测量物质的不同组分的图像,都是确定温度与浓度之间的关系,都是热力学平衡下的测量结果

八实验结论

此次实验用热分析法测量铅、锡二元金属相图,此次实验通过热分析法测绘出6组不同组分的Sn-Pb样品的步冷曲线,并利用所测得的数据测绘出二组分Sn-Pb的固液金属相图,测得最低共熔点的温度为178.25℃,此时的成分组成:Pb:22.22%,Sn:77.78%,与文献理论值铅-锡的最低共熔点为T理=183.00(℃),ωSn理=61.9%相比,本实验测得最低共熔点的相对误差为—2.59%,锡含量的相对误差为26.65%。

造成实验误差的原因主要有:

(1)散热效果不佳,速率不稳定,影响了步冷曲线的绘制

(2)实验中拐点温度、平台温度的读取出现一定的误差

指导教师批阅意见:

成绩评定:

指导教师签字:

年月日备注:

铁碳合金相图分析报告

第四章铁碳合金 第一节铁碳合金的相结构与性能 一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心面心体心 同素异晶转变——固态下,一种元素的晶体结构 随温度发生变化的现象。 特点: ? 是形核与长大的过程(重结晶) ? 将导致体积变化(产生内应力) ? 通过热处理改变其组织、结构→ 性能 二、铁碳合金的基本相 基本相定义力学性能溶碳量 铁素体 F 碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大0.0218% 奥氏体 A 碳在γ-Fe中的间隙固溶体硬度低,塑性好最大2.11% 渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=09.69% 第二节铁碳合金相图 一、相图分析 两组元:Fe、Fe3C 上半部分图形(二元共晶相图) 共晶转变: 1148℃727℃ L4.3 → A2.11+ Fe3C → P + Fe3C莱氏体Ld Ld′  2、下半部分图形(共析相图) 两个基本相:F、Fe3C 共析转变: 727℃ A0.77→ F0.0218 + Fe3C 珠光体P 二、典型合金结晶过程 分类:

三条重要的特性曲线 ① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶 入奥氏体的终了线. ② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之 为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线. ③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727o C时达到最大值0.0218%.随着温度的降低铁素体中的溶碳量逐渐减少在300o C以下溶碳量小于0.001%.因此当铁素体从727o C冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ. 工业纯铁(<0.0218%C) 钢(0.0218-2.11%C)——亚共析钢、共析钢(0.77%C)、过共析钢 白口铸铁( 2.11-6.69%C)——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 L → L+A → A → P(F+Fe3C) L → L+A → A → A+F → P+F L → L+A → A → A+ Fe3CⅡ→ P+ Fe3CⅡ 4、共晶白口铸铁L → Ld(A+Fe3C) → Ld(A+Fe3C+ Fe3CⅡ) → Ld′(P+Fe3C+ Fe3CⅡ) 5、亚共晶白口铸铁L → Ld(A+Fe3C) + A → Ld+A+ Fe3CⅡ→ Ld′+P+ Fe3CⅡ 6、过共晶白口铸铁L → Ld(A+Fe3C) + Fe3C → Ld + Fe3C→ Ld′+ Fe3C

二组分简单共熔体系相图的绘制

二组分简单共熔体系相图的绘制

————————————————————————————————作者: ————————————————————————————————日期:

实验七二组分简单共熔体系相图的绘制 ------Cd~Bi二组分金属相图的绘制1实验目的及要求: 1)应用步冷曲线的方法绘制Cd~Bi二组分体系的相图。 2)了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。 2 实验原理:… 用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图,叫相图。 绘制相图的方法很多,其中之一叫热分析法。在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。从步冷曲线有无转折点就可以知道有无相变。测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图,如图Ⅱ一6一l所示。 纯物质的步冷曲线如①⑤所示,从高温冷却,开始降温很快,口6线的斜率决定于体系的散热程度。冷到A的熔点时,固体A开始析出,体系出现两相平衡(溶液和固体A),此时温度维持不变,步冷曲线出现bc的水平段,直到其中液相全部消失,温度才下降。 混合物步冷曲线(如②、④)与纯物质的步冷曲线(如①、⑤)不同。如②起始温度下降很快(如a′b′段),冷却到b′点的温度时,开始有固体析出,这时体系呈两相,因为液相的成分不断改变,所以其平衡温度也不断改变。由于凝固热的不断放出,其温度下降较慢,曲线的斜率较小(b′c′段)。到了低共熔点温度后,体系出现三相,温度不再改变,步冷曲线又出现水平段c′d′,直到液相完全凝固后,温度又迅速下降。 曲线⑧表示其组成恰为最低共熔混合物的步冷曲线,其图形与纯物相似,但它的水平段是三相平衡。 用步冷曲线绘制相图是以横轴表示混合物的成分,在对应的纵轴标出开始出现相变(即步冷曲线上的转折点)的温度,把这些点连接起来即得相图。 3仪器与药品: 加热电炉1只,热电偶(铜一康铜)1根,不锈纲试管8只,控温测定装置1台,计算机1台,镉(化学纯),铋(化学纯)。 4 实验步骤: 1)配制不同质量百分数的铋、镉混合物各100g(含量分别为0%,15%,25%,40%,55%,75%,90%,100%),分别放在8个不锈纲试管中。 2)用控温测定装置装置,依次测纯镉、纯铋和含镉质量百分数为90%,75%,55%,40%,25%,15%样品的步冷曲线。将样品管放在加热电炉中加热,让样品熔化,同时将热电偶的热端(连玻璃套管)插入样品管中,待样品熔化后,停止加热。用热电偶玻璃套管轻轻搅

铁碳合金相图分析及应用

第五章铁碳合金相图及应用 [重点掌握] 1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌; 2、根据相图,分析各种典型成份的铁碳合金的结晶过程; 3、铁碳合金的成份、组织与性能之间的关系。 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。 第一节铁碳合金基本相 一、铁素体 1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。 2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。 F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体 γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 三、渗碳体

Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。 渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 第二节 Fe-Fe3C相图分析 一、相图中的点、线、面 1.三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。 共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。 (3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:

三组分体系等温相图的绘制.

实验八三组分体系等温相图的绘制 【目的要求】 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 【实验原理】 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为: f*=3-Φ 式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中,P点的组成表示如下: 经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C 完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图 图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 【仪器试剂】 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

铁碳合金相图教案

铁碳合金相图教案文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

课题:铁碳合金相图 【设计者】:浙江工业大学,周云中 【教材】:机械工业出版社《机械制造基础》第二版第四章 【课程标准】:学生通过本课程的学习,了解不同成分的钢和铸铁在不同温度下所具有的组织或状态,了解铁碳合金的成分,组织,性能之间的关系。并能根据铁碳合金相图选择合适的钢材。 【内容分析】: 铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。铁碳合金相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;为制定热加工工艺提供依据。【学情分析】:

本节课是在学生通过《机械制造基础》前三章的学习,已经掌握了金属材料的力学性能和金属和合金的晶体结构及结晶的基础上,探究不同成分的钢和铸铁在不同温度下所具有的组织或状态。在教学时,可以让学生清楚了解不同的含碳量对铁碳合金性能的影响,知道各合金常温下的状态。在这一基础上,进一步让学生体会机械制造的魅力。教材的编写意图是通过本课时学习目标,使学生能把所学,运用到学生的实际生活,培养发展提出问题和解决问题的能力。 【学习目标】: 1:能绘制合金相图 2:学生能对典型铁碳合金的结晶过程分析 3:能应用铁碳合金相图选择合适的钢铁材料 【评价设计】: 1.针对目标1,通过教师在黑板上绘制铁碳合金相图并分析绘制的要点,让学生了解并能跟着教师的步骤一步一步绘制基本的铁碳合金相图2.针对目标2,教师对书本上铁碳合金的结晶过程做具体的分析,让学生了解典型铁碳合金的过程,教师解释完成后,允许学生以小组的形式互相讨论,5分钟后随机叫学生回答,看学生能否对典型铁碳合金的过程做出分析。 3.针对目标3,教师告诉学生具体的钢材选择原则,如建筑结构选用含碳量低的钢材,机器结构选用碳含量适中的钢等,之后给出实际案例让学生选用合适的钢材。考察学生能否根据机器不同的使用情况选择合适的钢材。

三组分体系相图的制备

中国石油大学化学原理(二)实验报告 实验日期:2013-10-24 成绩: 班级:石工12-11 学号:12093406 姓名:王景乐教师: 同组者:赵润达 三组分体系相图制备 一、实验目的 制备等温等压下甲苯—水—乙醇三组分体系相图 二、实验原理 三组分体系相图的组成可用等边三角形坐标表示。等边三角形三个顶点分别代表纯组分A、B和C。则AB线上各点相当于A和B组分的混合体系,BC线上各点相当于B和C的组分的混合体系,AC线上各点相当于A和C的组分的混合体系。 在甲苯—水—乙醇三组分体系中。甲苯与水是部分互溶的,二乙醇和甲苯、乙醇和水都是完全互溶的。设由一定量的甲苯与水组成一个体系,其组成为K,此体系分为两相:一相为水相,另一相为甲苯相。当在体系中加入乙醇时,体系的总组成沿AK线移至N点。此时乙醇溶于水相和甲苯相,同时乙醇促使水与甲苯互溶,故此体系由两个分别含有三个组分的液相组成。但这两个的液相的组成 不同,若分别用、表示这两个平衡的液相的组成,此两点的连线成为连系线, 这两个溶液称为共轭溶液。代表液—液平衡体系中所有共轭溶液相组成点的连线称为溶解度曲线(如图1—1)。曲线以下区域为两相共存区,其余部分均为相区。此图称为含一对部分互溶组分的三组分体系液—液平衡相图 按照相律,三组分相图要画在平面上,必须规定两个独立变量。本实验中,它们分别是温度(即室温)和压力(大气压力)。 三、实验仪器与药品 1.仪器 25ml酸式滴定管2支,5ml移液管1支,50ml带盖锥形瓶8个。 2.药品

甲苯(分析纯),无水乙醇(分析纯),蒸馏水。 四、实验步骤 1.取8个干燥的50ml带盖锥形瓶,按照记录表格中的规定体积用滴定管及移液管配制6种不同浓度的甲苯—乙醇溶液,及两种不同浓度的水—乙醇溶液。 2.用滴定管向已配制好的水—乙醇溶液中滴甲苯,至清夜变浊,记录此时甲苯的体积。用滴定管向已配制好的甲苯—乙醇溶液中滴甲苯,至清夜变浊,记录此时水的体积。滴定时必须充分震荡,同时注意动作迅速,尽量避免由于甲苯、乙醇的挥发而引入的误差。 3.读取室温 t=17.0 4.记录表格 表1—1 溶解度曲线有关数据记录表 五、数据处理 将各溶液滴定终点时的各组分的体积,根据它们在实验温度下的密度换算为质量,求出各溶液滴定终点时的质量分数或质量分数的浓度。 由附录二查得在17.0时水的密度为=0.9988g/mL 由附录三查得甲苯的密度公式为: =0.88412-0.9225**t+0.0152**-4.223**t—温度( 温度范围0—99 无水乙醇的密度公式为: =0.80625-0.8461**t+0.16**t—温度(

三组分体系相图绘制.doc

实验八三组分体系等温相图的绘制 一、目的要求 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 二、实验原理 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA 分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中, P点的组成表示如下:经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

2 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器试剂 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2只)。

三组分液-液系统相图的绘制

三组分液-液系统相图的绘制 一、实验目的 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 用溶解度法作出苯-乙酸-水体系的相图。 二、实验原理 对于三组分体系C=3,当处于恒温恒压条件时,根据相律,其自由度*f为: * =3 f- P 式中,P为体系的相数。体系最大条件自由度max * f=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-6所示。等边三角形的三个顶点分别表示纯物质A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-6中,P点的组成表示如下: 经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。 苯-乙酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-7所示。

图2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-乙酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器药品 仪器:具塞锥形瓶(100mL)1只;酸式滴定管(20mL)1只;移液管(1mL、2mL)各1只;刻度移液管(10mL)1只。 药品:冰乙酸(AR.);苯(AR.);去离子水等。 四、实验步骤 1. 测定互溶度曲线 在洁净的酸式滴定管内装水,用移液管移取10.00mL苯及2.00mL 醋酸,置于干燥的100mL具塞锥形瓶中,然后在不停地摇动下慢慢地滴加水,至溶液由清变浑时,即为终点,记下水的体积。向此瓶中再图1 等边三角形表示三元相图2 共轭溶液的三元相图

铁碳相图和铁碳合金

铁碳相图和铁碳合金

铁碳相图和铁碳合金(一) 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组 织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

三组分体系相图的制备实验报告

中国石油大学化学原理(二)实验报告 实验日期:2012.10.17 成绩: 班级:石工11-12班学号:11021579 姓名张伟教师:王增宝 同组者:李云浩赵红帅 三组分体系相图的制备 一:实验目的 制备等温、等压下苯-水-乙醇三组分体系相图。 二、实验原理 三组分体系的组成可用等边三角坐标表示。等边三角形三个顶点分别代表纯组分A、B和C。则AB线上各点相当于A和B组分的混合体系,BC线上各点相当于B和C组分的混合体系,AC线上各点相当于A和C组分的混合体系。 在苯-水-乙醇三组分体系中,苯与水是部分互溶的,而乙醇和苯、乙醇和水都是完全互溶的。设由一定量的苯和水组成一个体系,其组成为K,此体系分为两项:一相为水相,一项为苯相。当在体系中加入乙醇时,体系的总组成沿AK 线移至N点。此时乙醇溶于水相及苯相,同时乙醇促进苯与水互溶,故此体系由两个分别含有三个组分的液相组成,但这两个液相的组成不同。若分别用b1、c1表示这两个平衡的液相的组成,此两点的连线称为连系线,这两个溶液称为共轭溶液。代表液-液平衡体系中所有共轭液相组成点的连线称为溶解度曲线(如图1-1)。曲线以下区域为两相共存区,其余部分为均相区。此图称为含一对部分互溶组分的三组分体系液-液平衡相图。 图1-1 三组分体系液-液平衡相图 按照相律,三组分相图要画在平面上,必须规定两个独立变量。本实验中,它们分别是温度(为室温)和压力(为大气压)。 三、实验仪器与药品

1、仪器 25ml酸式滴定管2支、5ml移液管1支、50ml带盖锥形瓶8个。 2、药品 苯(分析纯)、无水乙醇(分析纯)、蒸馏水。 四、实验步骤 1、取8个干燥的5毫升带盖锥形瓶,按照记录表格中的规定提及用滴定管即移液管配制六种不同浓度的苯乙醇溶液,即两种不同浓度的水乙醇溶液。 2、用滴定管向已配好的水-乙醇溶液中滴苯,至清液变浑浊,记录此时每种清液中水的体积。滴定时必须充分摇荡,同时注意动作迅速,尽量避免由于苯、乙醇的挥发而引起的误差。 3、读取室温。 4、记录表格。 五、实验数据 表1-2 溶解度曲线有关数据记录表 室温:22℃ 溶液编号 体积(ml) 苯水乙醇 1 0.10 3.50 1.50 2 0.21 2.50 2.50 3 1.00 2.73 5.00 4 1.50 1.50 4.00 5 2.50 1.04 3.50 6 3.00 0.55 2.50 7 3.50 0.37 1.50 8 4.00 0.15 1.00 六、数据处理 将各溶液滴定终点时各组分的体积,根据它们在实验温度下的密度(查附录二和附录三)换算为质量,求出各溶液滴定终点时的质量分数或质量分数的浓度。求出各溶液滴定终点时的质量分数或质量分数的浓度。将所得的点及笨与水的相互溶解的点(见附录一)绘于三角坐标纸上,并将各点连成平滑曲线。 实验数据的处理方法如下: 已知苯、水、乙醇的体积,参照附录二、附录三以及其中的公式,可求出各自的密度,再换算为质量。

二组分气液平衡相图的绘制

双液系气-液平衡相图的绘制 一、实验目的、要求 1. 测定常压下环己烷-乙醇二元系统的汽液平衡数据,绘制101325Pa下的沸点-组成的相图。 2. 掌握阿贝折射仪的原理和使用方法。 二、实验原理 液体混合物中各组分在同一温度下具有不同的挥发能力。因而,经过汽液见相变达到平衡后,各 组分在汽、液两相中的浓度是不相同的。根据这个特点,使二元混合物在精馏塔中进行反复蒸馏,就可分离得到各纯组分。为了得到预期的分离效果,设计精馏装置必须掌握精确的汽液平衡数据,也就是平衡时的汽、液两相的组成与温度、压力见的依赖关系。大量工业上重要的系统的平衡数据,很难由理论计算,必须由实验直接测定,即在恒压(或恒温)下测定平衡的蒸汽与液体的各 组分。其中,恒压数据应用更广,测定方法也较简便。 本实验测定的恒压下环己烷-乙醇二元汽液平衡相图。图中横坐标表示二元系的组成(以B的摩尔分数表示),纵坐标为温度。用不同组成的溶液进行测定,可得一系列数据,据此画出一张由液 相线与汽相线组成的完整相图。 分析汽液两相组成的方法很多,有化学方法和物理方法。本实验用阿贝折射仪测定溶液的折射率 以确定其组成。预先测定一定温度下一系列已知组成的溶液的折射率,得到折射率-组成对照表。以后即可根据待测溶液的折射率,由此表确定其组成。 三、使用仪器、材料 沸点仪1套,阿贝折射仪,移液管,环己烷,无水乙醇 四、实验步骤 1、测定折射率与组成的关系,绘制工作曲线 将9支小试管编号,依次移入 ml, ml, …, ml的环己烷,然后依次移入 ml, ml,…, ml 的无水乙醇,配成9份已知浓度的溶液,用阿贝折射仪测定每份溶液的折射率及纯环己烷和纯无水乙醇的折射率,以折射率对浓度作图。 2、测定环己烷-乙醇体系的沸点与组成的关系 (1) 右半部沸点-组成关系的测定取20 ml无水乙醇加入沸点仪中,然后依次加入环己烷, , , , , ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 (2) 左半部沸点-组成关系的测定取25 ml环己烷加入沸点仪中,然后依次加入无水乙醇, , , , , ml,测定溶液沸点,及气、液组分折射率n。完成后,将溶液倒入回收瓶。 五、实验过程原始记录(数据、图表、计算等) 标准曲线 V环己烷(ml) V乙醇(ml) xEtOH x环己烷折射率 0 1 1 0 1 0 0 1

三组分体系相图绘制

精品 实验八三组分体系等温相图的绘制 一、目的要求 1. 熟悉相律,掌握用三角形坐标表示三组分体系相图。 2. 掌握用溶解度法绘制相图的基本原理。 二、实验原理 对于三组分体系,当处于恒温恒压条件时,根据相律,其自由度f*为:f*=3-Φ式中,Φ为体系的相数。体系最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个,可用平面图表示体系状态和组成间的关系,通常是用等边三角形坐标表示,称之为三元相图。如图2-8-1所示。 等边三角形的三个顶点分别表示纯物A、B、C,三条边AB、BC、CA分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图2-8-1中,P点的组成表示如下: 经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等份,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。

精品 苯-醋酸-水是属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对液体B和C只能有限度的混溶,其相图如图2-8-2所示。 图2-8-1 等边三角形法表示三元相图图2-8-2 共轭溶液的三元相图图2-8-2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1和K2L2是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线外是单相区。因此,利用体系在相变化时出现的清浊现象,可以判断体系中各组分间互溶度的大小。一般来说,溶液由清变浑时,肉眼较易分辨。所以本实验是用向均相的苯-醋酸体系中滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器试剂 具塞锥形瓶(100mL,2只、25mL,4只);酸式滴定管(20mL,1支);碱式滴定管(50mL,1支);移液管(1mL,1支、2mL,1支);刻度移液管(10mL,1支、20mL,1支);锥形瓶(150mL,2只)。

76 实验七十六 三组分液-液体系的平衡相图

第一部分:思考题 实验七十六三组分液-液体系的平衡相图 1、什么是平衡相图? 2、试用相律分析一下恒温恒压条件时,三组分液-液体系单相区的条件自由度是几?两相区的条件自由度是几? 3、等边三角形坐标的顶点、线上的点、面上的点分别代表几组分的组成? 4、如何确定等边三角形坐标面上的点的组成? 5、通过任一顶点B向其对边引直线BD,则BD线上的各点所表示的组成中,A、C两个组分含量的比值如何? 6、如果有两个三组分体系D和E,将其混合之后其组成点会落在哪? 7、对于等边三角形坐标内的任意一组成O,向其加纯B,体系的组成点会落在哪?若蒸发掉B,体系的组成点又会落在哪? 8、已知一三组分体系P的百分组成为:B%=20,C%=30,A%=50,如何在等边三角形坐标上绘制出P点? 9、请绘制出有一对部分互溶的三组分液-液体系的平衡相图的草图,并分析各相区的相数及相态。 10、要绘制出有一对部分互溶的三组分液-液体系的平衡相图关键是找出哪些点? 11、由K′滴加乙醇到曲线上的d点,体系由两相区进人单相区,溶液由浑浊转为清澈,为何还要继续加乙醇至e点?而不是在d点直接滴加水? 12、三组分液-液体系的平衡相图实验中,要绘制单相区与两相区的分界线,即双结点溶解度曲线或双结线,应准确记录哪些数据,知道哪些数据,计算出哪些数据? 13、三组分液-液体系的平衡相图实验中,如果滴定过程中有一次清浊转变时读数不准,是否需要立即倒掉溶液重新做实验?为什么? 14、三组分液-液体系的平衡相图中,连接线交于曲线上的两点代表什么? 15、三组分液-液体系的平衡相图实验中,使用的锥形瓶、分液漏斗为什么要事先干燥? 16、三组分液-液体系的平衡相图实验中,用水或乙醇滴定至清浊变化以后,为什么还要加入过量?过量的多少对结果有何影响? 17、三组分液-液体系的平衡相图实验中,当体系总组成点在曲线内与曲线外时相数有何不同?总组成点通过曲线时发生了什么变化? 18、温度升高,体系的溶解度曲线会发生什么样的变化?在本实验操作中应注意哪些问题, 以防止温度变化而影响实验的准确性?

机械工程材料第四章铁碳合金相图

第四章铁碳合金相图 教学目的及其要求 通过本章学习,使学生们掌握铁碳合金的基本知识,学懂铁碳相图的特征点、线及其意义,了解铁碳相图的应用。 主要内容 1.铁碳合金的相组成 2.铁碳合金相图及其应用 3.碳钢的分类、编号及应用 学时安排 讲课4学时 教学重点 1.铁碳合金相图及应用 2.典型合金的结晶过程分析 教学难点 铁碳合金相图的分析和应用。 教学过程 第一节纯铁、铁碳合金中的相 一、铁碳合金的组元 铁:熔点1538℃,塑性好,强度硬度极低,在结晶过程中存在着同素异晶转变。不同结构的铁与碳可以形成不同的固溶体。 由于纯铁具有同素异构转变,在生产上可以通过热处理对钢和铸铁改变其组织和性能。 碳:在Fe-Fe3C相图中,碳有两种存在形式:一是以化合物Fe3C形式存在;二是以间隙固溶体形式存在。 二、铁碳合金中的基本相 相:指系统中具有同一聚集状态、同一化学成分、同一结构并以界面隔开的均匀组成部分。 铁碳合金系统中,铁和碳相互作用形成的相有两种:固溶体和金属化合物。固溶体是铁素体和奥氏体;金属化合物是渗碳体。这也是碳在合金中的两种存在形式。 1.铁素体

碳溶于α-Fe中形成的间隙固溶体称为铁素体,用α或者F表示,为体心立方晶格结构。塑性好,强度硬度低。 2.奥氏体 碳溶于γ-Fe中形成的间隙固溶体称为奥氏体,用γ或者A表示,为面心立方晶格结构。塑性好,强度硬度略高于铁素体,无磁性。 3.渗碳体Fe3C:晶体结构复杂,含碳量6.69%,熔点高,硬而脆,几乎没有塑性。 渗碳体对合金性能的影响: (1)渗碳体的存在能提高合金的硬度、耐磨性,使合金的塑性和韧性降低。 (2)对强度的影响与渗碳体的形态和分布有关: 以层片状或粒状均匀分布在组织中,能提高合金的强度; 以连续网状、粗大的片状或作为基体出现时,急剧降低合金的强度、塑性韧性。 二、两相机械混合物 珠光体:铁素体与渗碳体的两相混合物,强度、硬度及塑性适中。 莱氏体:奥氏体与渗碳体的混合物;室温下为珠光体与渗碳体的混合物,又硬又脆。 铁素体、奥氏体、渗碳体、珠光体和莱氏体为铁碳合金中的基本组织,是铁碳合金中的组织组成物。 组织组成物:指构成显微组织的独立部分,可以是单相,也可以是两相或多相混合物。 显微组织:指在金相显微镜下所观察到的金属及合金内部的微观形貌,包括相和晶粒的形态、大小、分布等。 第二节铁碳合金相图 一、相图中的点(14个) 1.组元的熔点: A (0, 1538) 铁的熔点;D (6.69, 1227) Fe3C的熔点 2.同素异构转变点:N(0, 1394)δ-Fe ?γ-Fe;G(0, 912)γ-Fe?α-Fe 3.碳在铁中最大溶解度点: P(0.0218,727),碳在α-Fe中的最大溶解度 E(2.11,1148),碳在γ-Fe 中的最大溶解度 H (0.09,1495),碳在δ-Fe中的最大溶解度 Q(0.0008,RT),室温下碳在α-Fe中的溶解度

8 三组分体系等温相图

实验八三组分体系等温相图 1 实验目的 (1) 熟悉相律,掌握用三角形坐标表示三组分体系相图。 (2) 掌握用溶解度法绘制相图的基本原理。 (3) 用溶解度法作出具有一对共轭溶液的苯—醋酸—水体系的相图(溶解度曲线及连结线)。 2 实验原理 三组分体系C=3,当体系处于恒温恒压条件,根据相律,体系的条件自由度f*为f* = 3 - Φ (1) 式中,Φ为体系的相数。体系最大条件自由度f*max =3-1=2,因此,浓度变量最多只有两个可用平面图表示体系状态和组成间的关系,称为三元相图。通常用等边三角形坐标表示,见图1.1所示。 等边三角形顶点分别表示纯物A、B、C,AB、BC、CA三条边分别表示A和B、B和C、C和A所组成的二组分体系的组成,三角形内任何一点都表示三组分体系的组成。图1.1中的P点,其组成表示如下: 经P点作平行于三角形三边的直线,并交三边于a、b、c三点。若将三边均分成100等分,则P点的A、B、C组成分别为:A%=Pa=Cb,B%=Pb=Ac,C%=Pc=Ba。 本实验讨论的苯—醋酸—水体系属于具有一对共轭溶液的三液体体系,即三组分中二对液体A和B,A和C完全互溶,而另一对B和C只能有限度的混溶,见图1.2所示。 图1.1 等边三角形法表示三元相图图1.2 共轭溶液的三元相图 图1.2中,E、K2、K1、P、L1、L2、F点构成溶解度曲线,K1L1、K2L2等是连结线。溶解度曲线内是两相区,即一层是苯在水中的饱和溶液,另一层是水在苯中的饱和溶液。曲线

外是单相区。因此,利用体系在相变化时清浊现象的出现,可以判断体系中各组分间互溶度的大小。本实验是向均相的苯—醋酸体系滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 为了绘制连结线,在两相区配制混合溶液,达平衡时,两相的组成一定,只需分析每相中的一个组分的含量(重量百分组成),在溶解度曲线上就可以找出每相的组成点,连接共轭溶液组成点的连线,即为连结线。本实验先在两相区内配制两个混合液(组成已知),然后用NaOH分别滴定每对共轭相中的醋酸含量,根据醋酸含量在溶解度曲线上找出每对共轭相的组成点,连接此二组成点即为连结线(注意:连结线必须通过混合液的物系点)。 3 仪器药品 带塞锥形瓶(100mL) 2只 带塞锥形瓶(25mL) 4只 酸式滴定管(20mL) 1只 碱式滴定管(50mL) 1只 移液管(1mL、2mL) 各1只 刻度移液管(10mL、20mL) 各1只 锥形瓶(150mL) 2只 冰醋酸(分析纯) 苯(分析纯) 标准NaOH溶液(0.2mo1·dm-3) 酚酞指示剂。 4 实验步骤 (1)测定互溶度曲线 在洁净的酸式滴定管内装水,用移液管取10.00mL苯及4.00mL醋酸于干燥的100mL带塞锥形瓶中,然后慢慢滴加水,同时不停摇动,至溶液由清变浑,即为终点,记下水的体积,再向此瓶中加入5.00mL醋酸,体系又成均相,再用水滴定至终点,然后依次用同样方法加入8.00mL、8.00mL醋酸,分别用水滴至终点,记录每次各组分的用量。最后再加入10.00mL 苯和20.00mL水,加塞摇动,并每间隔5min摇动一次,30min后用此溶液测连结线。 另取一只干燥的100mL带塞锥形瓶,用移液管加入1.00mL苯及2.00mL醋酸,用水滴至终点,以后依次加入1.00mL、1.00mL、1.00mL、1.00mL、2.00mL、10.00mL醋酸,分别用水滴定至终点,并记录每次各组分的用量。最后再加入15.00mL苯和20.00mL水,每隔5min摇一次,30min后用于测定另一条连结线。 (2)连结线的测定 上面所得的两份溶液,经半小时后,待二层液分清,用干燥的移液管(或滴管)分别吸取上层液约5mL,下层液约1mL于已称重的4个25mL带塞锥形瓶中,再称其重量,然后用水洗入150mL锥形瓶中,以酚酞为指示剂,用0.2mol·dm-3标准氢氧化钠溶液滴定各层溶液中醋酸的含量。 5 数据处理

二组分简单共熔系统相图的绘制

二组分简单共熔系统相图的绘制 实验名称:二组分简单共熔系统相图的绘制一、实验目的: 1. 用热分析法绘制Sn-Zn相图 2. 熟悉热分析法的测量原理 3. 掌握热电偶的标定和测温技术 二、实验原理: 本实验采用热分析法中的步冷曲线方法绘制Zn-Sn系统的固液平衡相图。在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。从步冷曲线有无转折点就可以知道有无相变。测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图。 在冷却过程中,常出现过冷现象,布冷曲线在转折点出现起伏,遇此情况可通过作图法找到正常的转折点。 用热分析法测绘相图时,被测系统必须时时处于或接近相平衡状态,因此,系统的冷却速度必须足够慢,才能得到较好的结果。 三、仪器与试剂:

仪器 : 镍铬-镍硅热电偶1支;U-36电位差计1台;小保温瓶1只;盛合金的硬 质玻璃管7只;高温管式电炉2只(加热炉、冷却炉);调压器(2KW)1只; 坩埚钳1把;二元合金相图计算机测试系统1套。 试剂 :锡、锌、铋(均为AR);石墨粉。 四、实验步骤: (1)热电偶的制作:取一段长约0.6m的镍铬丝,用小瓷管穿好,再取两段各长0.5m的捏个丝,参照教材制作热电偶。(实验室已制作)。 (2)配置样 品:100%Bi;100%Sn;100%Zn;45%Sn+55%Zn;75%Sn+25%Zn;91.2%Sn+8.8%Zn ;95%Sn+5% Zn。 (3)安装:安装仪器并接好线路。 (4)加热溶化样品,制作步冷曲线:依次测 1100%Bi;100%Sn;100%Zn;45%Sn+55%Zn;75%Sn+25%Zn;91.2%Sn+8.8%Zn ;95%Sn+5%Zn;样品的步冷曲线。 装了样品的玻璃管放在加热炉中,接通电炉电源,调节变压器,待样品完全熔化后,再升高温度50?,停止加热,然后把样品从加热炉里拿出放在冷却炉中。 当样品放入冷却炉后,开始用UJ-36电位差计测定热电偶在冷却过程中的热电势,每20秒读取一次,连续渎至热电势不随时间变化后又开始下降后2min左右即可停止。 五、数据记录及处理: (1)以热电势为纵坐标,时间为横坐标,绘制所有步冷曲线。(7张附后)。 (2)绘制热电偶矫正曲线如下: 样品熔点? 热电势 //mV 100%Zn 419.5 16.10

三组分液—液系统相图的绘制

物理化学实验报告 序号: 学生姓名: 学号: 学院:化学化工学院 班级: 10级制药班 专业:制药工程 指导老师: 实验名称:三组分液-液系统相图的绘制 实验日期: 2012年9月19日 实验室: 7509 同组者:

三组分液-液系统向图的绘制 一、实验目的 1.熟悉相律,掌握用三角形坐标表示三组分体系相图。 2.用溶解度法作出笨-乙酸-水体系的相图(溶解度曲线)。 二、实验原理 三组分体系C=3,当体系处于恒温恒压条件,根据相律,体系的条件自由度f*=3-P。 式中,P为体系的相数。体系的最大条件自由度f*max=3-1=2,因此,浓度变量最多只有两个可用平面图表示体系状态和组成的关系。其图称为三元相图,通常用等边三角形坐标表示。 笨-乙酸-水是属于具有一对共轭溶液的三液体体系相图,利用体系在相变化时清浊现象的出现,可以判断体系中各组分间互溶度的大小。 向均相的笨-乙酸体系滴加水使之变成二相混合物的方法,确定二相间的相互溶解度。 三、仪器和试剂 100ml锥形瓶2只;酸式滴定管;1ml移液管;2ml移液管;10ml 刻度移液管。 乙酸(分析纯);笨(分析纯)。 四、实验步骤 1.洗净酸式滴定管,并于其中装满水。 2.用移液管移取10.00ml笨及4.00ml乙酸于干燥的100ml锥形瓶中, 慢慢滴加水,同时不停摇动,至溶液由清变浊,即为终点,记下水的体积。再依次向此瓶中加入5.00ml、8.00ml、8.00ml醋酸,体系又成均相,再用水滴定至终点,记录水的体积。 3.另取一只洁净干燥的100ml锥形瓶,用移液管加入1.00ml苯和 2.00ml乙酸,用水滴定至终点,记录水的体积。再依次加入1.00ml、 1.00ml、1.00ml、1.00ml、 2.00ml、10.00ml醋酸,分别用水滴定 至终点,记录每次所用水的体机。 五、数据处理与记录 1.实验数据记录 室温:24.9℃大气压:101.07KPa 2.溶解度曲线的绘制。

相关文档
相关文档 最新文档