文档库 最新最全的文档下载
当前位置:文档库 › 绝缘油变压器在线监测技术方案

绝缘油变压器在线监测技术方案

绝缘油变压器在线监测技术方案
绝缘油变压器在线监测技术方案

变压器油色谱在线监测系统

1、设备概述

变压器油色谱在线监测系统是用于电力变压器油中溶解气体的在线分析与故障诊断,适用于110kV及以上电压等级的电力变压器、电弧炉变压器、电抗器以及互感器等油浸式高压设备。目前电力行业普遍采用定期检测变压器油色谱的方法,来判断变压器的运行状况。这种定期的色谱分析方法虽然能定量的获取变压器油中故障气体的含量,但由于受到检测周期的影响很难及时地发现变压器的潜伏性,并且检测过程复杂,要求相关人员的理论修养比较高,给监测工作的开展和普及带来了不小的难度。在高电压等级变压器上引进先进的变压器油色谱在线监测系统,可有效保证变压器运行的安全性和可靠性,实现变压器实时运行状态监控。由于色谱分析技术能够发现油浸式电力变压器运行过程中的潜伏性故障,该产品利用在线监视技术实现变压器油色谱的在线监视。可及时发现电力变压器运行过程中的潜在故障,形成完善可靠的分析报告。该系统采用单一气敏传感器可以同时检测出变压器油中溶解的氢气、一氧化碳、甲烷、乙烷、乙烯、乙炔含量。

2、在线色谱简介

在线色谱技术是色谱技术的一种延伸和应用,对油中溶解气体氢气(H2)、一氧化碳(CO)、甲烷(CH4)、乙烷(C2H6)、乙烯(C 2H4)、乙炔(C2H2)、二氧化碳(CO2)等气体及总烃进行监测。典型

分析系统一般由油循环系统、油气分离系统、混合气体分离系统、气体检测、数据处理与故障诊断组成。整套系统具有以下技术特点:(1)通过油样分析,能够实时监测变压器等设备内部的状态信息;(2)

具有完善的上位机通讯,检测数据可纳入上一级自动控制系统和综合信息管理系统;(3)分析响应速度快;(4)集油样采集、组分分析、信号传输等功能于一体,在一定程度上消除了在采样过程中引起的误差;(5)结构紧凑、易安装,安装时变压器无需停电。

3、油色谱在线技术发展现状

目前国内外多家厂家在生产在线DGA 仪器或系统,如测量单组份(以H2为主的混合气体)监测设备,多组份(H2、CO、CH4、C 2H4、C2H6、C2H2、CO2等)监测设备。

3.1 单组份在线监测设备

就气体种类来说,单组份在线监测设备已不能满足对变压器中溶解气体的监测。

监测的为一种气体或混合气体浓度,而且主要以氢气为主,无法判断有无故障及故障的类型;虽然氢气产生于大多数电气缺陷及油的高温裂解,但氢气的产生原因是多种多样的。在制造过程中尤其是金属材料如奥氏体不锈钢、碳素钢等会吸付一定量的氢气,而且不锈钢吸付的氢气在真空处理时不一定能除去,在投运过程中会逐渐扩散出来;变压器油箱内壁及底部附近微水含量较高,而水在一定条件下可分解产生氢气,若该类产品安装在变压器油箱下部,极易出现误报。这种情况在国内已发生过[1]。

用户若要了解油中溶解的各个组分气体的体积分数,则必须经实验室进一步化验。根据经验公式,认定测试混合气体中8%是C 2H2,15%的CO,1%的C2H4等。如果变压器出现过负荷运行,产生超过100 ppm 的H2,则根据计算可得超过8 ppm的C2H4,不能立即反应变压器的运行情况。

单组份产品监测的气体结果,只能反应出产气率的大小,而对于变压器来说,不同的气体是伴随不同的故障产生的。选取哪几种油中溶解气体进行分析,对准确有效地分析诊断变压器故障类型、能量及发展趋势及其关键。从20 世纪90 年代国内开始应用单组分的监测设备,由于产品应用过程中局限性的逐步显露,气体的测试种类向6 种气体为基础的多组份产品发展,该类产品也有了较多的应用,随着在线监测产品的应用和在线技术的发展,测试6 种气体对于变压器整体状态的监测分析也是不全面的,DL/T 722-2000《变压器油中溶解气体分析和判断导则》规定以下7 种必测气体,即H2、C O、CO2、CH4、C2H4、C2H6和C2H2[2],油中溶解气体的分析目的见表1。

3.2 多组份的在线监测设备

上面所提及的监测种类的发展和变化,从对变压器相关数据的统计和分析来看,CO2的测试还是很有必要的。

3.2.1 CO2 是监测设备绝缘老化的重要指标

首先,从变压器的内部结构来看,绝缘材料主要是绝缘油和绝缘纸,绝缘油由各种碳氢化合物所组成的混合物,碳、氢两种元

素占其全部重量的95%~99%;变压器运行中,绝缘油受温度、电场、氧气以及水分和金属等作用,发生氧化、裂解与碳化反应,会分解产生CO2、低分子烃类气体和氢气,这已为许多绝缘油热分解模拟试验所证明。例如,日本山冈道彦将绝缘油局部加热到230~600 ℃时,其结果如表2 所示。

其次,绝缘纸和绝缘纸板的主要成分为α—纤维素,其分子结构决定在长年使用的过程中,绝缘材料缓慢老化会逐渐释放CO2。随着电力设备运行时间的增长,绝缘材料除了自身老化,变压器本身还会受到不同的外施作用,加速老化,其电气性能通常会有不同程度的降低,设备的耐受强度逐步下降,直到最后设备损坏,寿命终结。同时绝缘纸的主要成分纤维素在高温下的热分解产物的模拟实验结

果中,碳氢化合物很少,主要是CO2、CO、水和焦炭。老化产物会使绝缘纸的击穿电压和体积电阻率降低,介质损耗增大,抗张强度下降。

3.2.2 CO2与变压器故障的关系

变压器的内部故障主要有热性故障、电性故障。至于变压器的机械性故障,除因运输不慎受到震动,使某些紧固件松动、线圈位移或引线损伤等外,也可能由于电应力的作用,如过磁振动造成,但最终仍将以热性或电性故障形式表现出来。

在国内对359 台故障变压器故障类型的不完全统计分析中,过热性故障变压器为226 台,占总故障台数的63%;高能放电故障的变压器为65 台,占故障总台数的18.1%;过热兼高能放电故障

的变压器为36 台,占故障总台数的10%;火花放电故障变压器为25台,占故障总台数的7%;其余7 台变压器为受潮或局部放电故障,占故障总台数的1.9%。

从以上统计的结果来看,过热故障占变压器故障率最高,会加速变压器绝缘老化,一般认为,过热故障除某些特殊故障(如漏磁通在某一部位特别集中,或者在线圈内部有较大的涡流发生源),一般其发展不易很快危及设备的安全运行,因此监视故障的发展便可以及时安排检修进行处理,这样对主要特征气体的变化趋势的监测就尤为重要。

当热故障只影响到热源处的变压器油的分解而不涉及固体绝缘时,主要产生低分子烃类气体,但作为严重的涉及固体绝缘的过热故障时,会产生较多的CO、CO2,并且随着温度的增高,CO 与CO2的比值会逐渐增大。固体绝缘材料热击穿时产生的气体见图1。

图1 固体绝缘材料热击穿时产生气体示意图

还要注意的是,变压器内部固体材料的吸附作用会引起溶解气体的“隐藏与重现”,其机理是固体材料表面的原子和分子能够吸附外界分子,吸附的容量取决于被吸附物质的化学组成和表面结构。某些故障气体,特别是CO2、CO,由于其分子结构类似于纤维素,因而极易被绝缘纸吸附,同时随着温度的变化绝缘纸对气体的“吸附和释放”会交替进行,因此要密切关注此类气体的变化和变压器油温、负荷等运行状况[2]。

我国现行的GB/T 7252-2001 《变压器油中溶解气体分析和判断导则》中也对H2、CO、CH4、C2H6、C2H4、C2H2、CO2各种气体的特征及对应变压器内部状况的关系,是建立油中溶解气体组分极限值的判断依据。

4、变压器油色谱在线监测技术的进展

变压器油色谱在线监测具有实时性和连续性等特点,能及时发现被监测设备存在的故障,作为变压器油气相色谱分析的补充和发展,安装成熟的油气在线监测装置实时监测变压器的运行状态,对保障大型变压器乃至电网的安全可靠运行是必要的,是变压器从计划检修向状态检修的过渡,是提高其运行可靠性的重要技术手段[4]。

以色谱分离技术为基本原理的在线监测装置在20 世纪80 年代初已在国外一些电力工业发达的国家研制成功并投入使用。近年来随着国内外色谱分离技术的发展,可检测H2、CO、CH4、C2H4、C 2H6、C2H2、CO2等7 种组分含量的色谱在线监测装置,使色谱技术有了新的进展。

随着变压器油色谱在线监测技术的发展和装置需求的增加,一些新型、先进的检测原理和方法将不断出现,变压器油色谱在线监测装置的可靠性、准确度、灵敏度会进一步提高,将朝着气体种类全面化、监测对象综合化、诊断技术智能化、与其他自动化技术一体化的方向发展。

1变压器油中溶解气体分析

对变压器油中气体的检测分析是对变压器运行状态进行判断的

重要监测手段。变压器在运行中由于种种原因产生的内部故障, 如局部过热、放电、绝缘纸老化等都会导致绝缘劣化并产生一定量的气体溶解于油中,不同的故障引起油分解所产生的气体组分也不尽相同(见表1), 从而可通过分析油中气体组分的含量来判断变压器的内部故障或潜伏性故障。对变压器油中溶解气体采用在线监测方法, 能准确地反映变压器的主要状况, 使管理人员能随时掌握各站主变的运行状态, 以便及时作出决策,预防事故的发生。变压器油中溶解气体在线监测的关键技术包括油气分离技术、混合气体检测技术。

表1 不同故障类型产生的油中溶解气体

目前现有的国内技术特点

2.1 油气分离技术

目前, 国内外都没有直接检测变压器油中溶解气体含量的技术, 无论是离线还是在线检测, 必须将由故障产生的气体从变压器油中脱出, 再进行测量, 从变压器油中脱出故障特征气体是快速检测、准确计量的关键和必要前提。

离线检测的脱气方法主要是使用溶解平衡法(机械振荡法) 和真空法(变径活塞泵全脱法) 。这两种方法存在结构复杂、操作手续繁多、动态气密性保持差等问题, 难以实现在线化。

在线油气分离的方法目前主要有薄膜/毛细管透气法、真空脱气法、动态顶空脱气法及血液透析装置等方法。

2.1.1 薄膜/毛细管透气法

某些聚合薄膜具有仅让气体透过而不让液体通过的性质, 适宜于在连续监测的情况下, 从变压器绝缘油中脱出溶解气体。在气室的进口处,安装了高分子膜, 膜的一侧是变压器油, 另一侧是气室。油中溶解的气体能透过膜自动地渗透到另一侧的气室中。同时, 已渗透过去的自由气体也会透过薄膜重新溶解于油中。在一定的温度下, 经过一定时间后( 通常需要经过几十小时) 可达到动态平衡。达到平衡时, 气室中给定的某种气体的含量保持不变并与溶解在油中的这种气体的含量成正比。通过计算即可得出溶解于油中的某种气体含量。

这种方法的缺点是脱气速度缓慢,不适宜应用在便携式装置中进行快速的现场测量。另外, 油中含有的杂质及污垢不可避免地会使薄膜逐渐堵塞, 因而需要经常更换薄膜。

目前国内外普遍选用聚四氟乙烯膜作为油中溶解气体在线监测的透气膜, 常规聚四氟乙烯膜渗透6 种气体(H2 、CO、CH4 、C2H2 、C2H4 、C2H6)需要100 h。日立公司采用PFA 膜, 又称四氟乙烯- 全氟烷基乙烯基醚共聚物, PFA 膜对6 种气体渗透性能较好, 渗透6 种气体组分所需时间为80 h。上海交大采用带微孔的聚四氟乙烯膜,最优厚度为0.18 mm , 最优孔径为8~10μm , 透气性能优于PFA 膜, 渗透6 种气体组分所需时间为24 h。加拿大Morgan Schaffer 公司使用聚四氟乙烯尼龙管束, 渗透6 种气体组分所需时间为4 h[1]。Hydren 公司采用聚四氟乙烯及氟化乙丙稀。

2.1.2 真空脱气法

真空脱气法包括波纹管法和真空泵脱气法。

波纹管法是利用电动机带动波纹管反复压缩,多次抽真空, 将油中溶解气体抽出。日本三菱株式会社就是利用波纹管法开发了一种变压器油中溶解气体在线监测装置。

2.1.3 动态顶空脱气法

该方法在脱气的过程中, 采样瓶内的搅拌子不停地旋转, 搅动油样脱气;析出的气体经过检测装置后返回采样瓶的油样中。在这个过程中, 间隔测量气样的浓度, 当前后测量的值一致时, 认为脱气完毕。该方法脱气效率介于薄膜透气及真空脱气之间, 重复性较好, 有相当高的测量一致性。因此,逐渐被承认并广泛采用。

2.1.4 血液透析装置

美国Severon 公司的TRUEGAS 采用医学上的血液透析装置, 透

气快, 每4h 监测1次,最短可缩短到每2h监测1 次。

2.2 混合气体检测技术

依据监测气体组分分类, 变压器油中溶解气体在线监测装置目前可分为4 类: 单组分气体(H2) 、总可燃气体( TCG) 、多组分气体及全组分气体。

目前单组分气体检测主要采用气敏传感器,利用靶栅场效应管对氢气具有良好的选择敏感特性, 用于制作单氢检测器;某些燃料电池型传感器对H2 、CO、C2H2 和C2H4 的选择敏感性是100 %、18 %、8 %和1.5 % , 可用于变压器的早期故障监测和判断。

总可燃气体检测采用催化燃烧型传感器, 该传感器对可燃气体选择具有敏感性, 但溶解气体中包含CO,影响了对烃类气体含量的监视。烃类气体在线监测则是将单氢离子火焰检测器的气相色谱仪应用到在线监测中, 需要很多的辅助设备,可靠性较差, 维护量较大,难以推广。

全组分在线监测技术由于其提供的信息量较充分, 与实验室DGA(油中溶解气体含量)完全相同, 对全面分析变压器的绝缘状况较有利, 目前全组分气体分析检测技术主要有热导检测器、半导体气敏传感器、红外光谱技术和光谱声谱技术。

2.3 在线监测产品

目前市面上的变压器油中溶解气体在线监测产品主要分为三大类:

第一类是以半透膜脱气,气敏半导体传感器为检测器的第一代产

品。这类产品的缺点是:半透膜容易老化、破裂,发生堵塞;脱气平衡时间长,一般需要2~3 d;气敏半导体传感器容易被污染、老化,导致测试偏差;测试气体一般为混合气体,不能真实反映变压器内部的故障状态,容易出现误报警或拒报警。

第二类是以实验室的气相色谱技术为基础的第二代产品。二代产品的脱气方式多样,有真空脱气、顶空脱气和毛细管脱气。其中真空脱气的重复性较差;而毛细管脱气则容易发生堵塞、老化断裂等问题。这类产品大多需要载气和标气,需要更换的耗材较多,并且由于载气、标气以及色谱柱的应用,不能长期稳定的运行,维护工作量大。

第三类是以光谱技术为基础的第三代产品。基于光声光谱技术为基础的变压器油中溶解气体在线监测系统有如下优点: 1)无需载气、标气,没有色谱柱,系统完全免维护;2)系统工作稳定可靠,寿命较长;3)系统响应速度快,最快检测速度可达1 次/ h ;4)除油中溶解气体,也可进行微水检测。

变压器在线监测技术的发展前景和方向

变压器的在线监测可以提早发现设备内部可能存在的缺陷或性

能劣化,为检修提供判断,提高供电可靠性和经济性。因此,变压器的在线监测具有十分广阔的发展前景。

其发展方向主要有:

1)由对单台的设备进行监测向整个系统的在线监测延伸,并根据系统设备的运行情况,由专家系统判定最优化的运行计划。

2)实现设备的远程监测。

3)状态监测系统和其他系统联网,增强系统的安全性和可操作性。

虽然包括变压器在线监测在内的电力设备在线监测技术已经发

展了几十年,但在线监测系统的选型、日常运行、判据分析、状态评价等方面仍缺乏相应的标准、规范和导则,运行单位对在线监测系统按电力设备的日常管理、维护工作有待规范。还有抗干扰等技术问题、设备的可靠运行和维护问题、经济效益(投入在线监测设备所产生的经济效益和成本)问题等。随着科学技术的不断发展进步,国内外标准的发布执行,电力设备的在线监测必将是未来高电压设备检测研究的重点。

油色谱在线监测系统技术特点及其优点

取油方式:油泵循环,检测及时,无死区油样,循环取样。

脱气方式:纳米陶瓷脱气,循环脱气取样。

检测周期:小于3小时

检测原理:进口气敏传感器TEM

测量种类:H

2、CO、CO

2

、CH

4

、C

2

H

2

、C

2

H

4

、C

2

H

6

及微水

分离方式:进口激光器,采用油气分离。进行色谱分析

进样方式:电磁六通阀进样,具有六个阀门。

温度控制:模糊PID控制,恒温控制模块。

标定方式:峰高外标法

数据通讯:RS232/GPRS 有线/无线通讯可选

通讯距离:RS232,2000米(现场装置与后台监控系统之间的通讯)

通讯协议:与变电站综自系统及调度自动化系统兼容,可方便实现信息远传。网络协议:支持TCP/IP网络协议,支持远程监测与远程维护

报警方式:现场装置亮灯报警;后台软件二级声/光报警,手机信号报警等

故障诊断:IEC60599、国标三比值法、两比值法、大卫三角形法、立方图示法等。与以往的超高频和射频检测方法中的有一进步,主要是代替局部放电测试法和单杯取样的绝缘击穿等方面技术,完全能够在本台设备上一次性的检测完成。

电力变压器交接试验标准

第六章电力变压器 第6.0.1条电力变压器的试验项目,应包括下列内容:一、测量绕组连同套管的直流电阻;二、检查所有分接头的变压比;三、检查变压器的三相接线组别和单相变压器引出线的极性;四、测量绕组连同套管的绝缘电阻、吸收比或极化指数;五、测量绕组连同套管的介质损耗角正切值tgδ;六、测量绕组连同套管的直流泄漏电流;七、绕组连同套管的交流耐压试验;八、绕组连同套管的局部放电试验;九、测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻;十、非纯瓷套管的试验;十一、绝缘油试验;十二、有载调压切换装置的检查和试验;十三、额定电压下的冲击合闸试验;十四、检查相位;十五、测量噪音。注:①1600kVA以上油浸式电力变压器的试验,应按本条全部项目的规定进行。②1600kVA及以下油浸式电力变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十四款的规定进行。③干式变压器的试验,可按本条的第一、二、三、四、七、九、十二、十三、十四款的规定进行。④变流、整流变压器的试验,可按本条的第一、二、三、四、七、九、十一、十二、十三、十四款的规定进行。⑤电炉变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十三、十四款的规定进行。 ⑥电压等级在35kV及以上的变压器,在交接时,应提交变压器及非纯瓷套管的出厂试验记录。 第6.0.2条测量绕组连同套管的直流电阻,应符合下列规定:一、测量应在各分接头的所有位置上进行;二、1600kVA及以下三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kV A以上三相变压器,各相测得值的相互差值应小于平均值的2%;线间测得值的相互差值应小于平均值的 1%;三、变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;四、由于变压器结构等原因,差值超过本条第二款时,可只按本条第三款进行比较。

润滑油取样分析诊断

油液的诊断与监测 润滑油变质及携带的外来污染物均会造成设备的故障,设备有故障时产生的颗粒及泄漏物也会落在润滑油中,因此我们检测润滑油的各指标及污染物的含量,即可推测设备状况和作出故障预测。 1 润滑油常规指标变化 指标变化到一定程度后,继续使用该润滑油就会影响设备的正常工作或使设备磨损加剧而发生故障,措施就是更换新油。为了保护设备,润滑油生产厂和设备生产厂都推荐一些换油指标值,提供给设备使用者或管理者作为换油的指导。反过来,可把这些值作为设备将可能发生故障的警告值,并从设备运行过程中这些值的异常变化推测设备发生故障的可能性。如某设备在运行中润滑油粘度突然快速上升,酸值也随之快速上升,数值己高于换油的警告值,就可肯定润滑油在这阶段在高温下工作而剧烈氧化,应从造成油温高的原因去跟踪,检查影响温度升高的有关部位如冷却系统等的故障。又如某柴油机油使用中粘度下降较大,其闪点也随之下降,可以肯定原因是润滑油被柴油稀释,就应去检查柴油雾化系统有何问题。内燃机润滑油在运行中几个常规指标的变化原因如表1所示。 表1 润滑油在运行中几个常规指标的变化与设备故障

在用润滑油测试出某一指标达到规定值时,表明此油已不胜任其工作而需更换新油,若继续使用,会影响设备的正常工作或对设备有损害,但与设备将发生故障并无直接关系,只有一定的因果关系。凭以上的几个常规指标对润滑油及设备状态监测已很足够,并不一定要动用很多复杂的仪器。例如在很多情况下设备会因进水而发生不正常磨损,我们只要从油中含水量即可得到警告,而不必从润滑油中颗粒分析得知异常磨损,再去进行油的常规分析,从含水量超标得知异常磨损的原因,才去寻找水的来源,这种因果倒置的思路大大增加了工作量,贻误了处理故障的时间。又如从润滑油的闪点和粘度大幅下降肯定润滑油被汽柴油稀释,必然表明此发动机燃烧不良及可能磨损大,应及时检查燃料供给系统。 润滑油在降解后,除了各常规理化指标发生变化外,润滑性能也随之变坏,如抗氧性、抗磨性、抗泡性、抗乳化、空气释放值等与新油比也越来越差,也预示故障的发生,因而也要定时测定。 在监测分析中,对设备用油进行的理化分析项目有粘度、总酸值、水分、抗乳化性。 粘度指标能总体反映油品的品质状况,粘度值的明显升高或降低,都能直接或间接表明油品的品质有劣化,如被污染、油品变质等方面的可能性,是油品的重要理化指标。一般而言,液压油或齿轮油失效的粘度变化报警限值在新油粘度的±10%。从粘度监测情况看,各油品的粘度的变化趋势动均在±10%之内,故油品的粘度变化均在正常的变化范围,说明油品未受到明显的外来污染、及发生明显的氧化变质。 另一反映油品氧化变质的重要指标是总酸值(TAN),TAN是对油品酸度进行衡量的指标,TAN的升高,能直接反映油品使用过程中因受到氧化而发生变质劣化的程度,并可间接表征油品受外界污染颗粒或磨损金属颗粒污染的程度,监测的重点是观察其变化的趋势,因氧化的速率变化比其绝对值更为重要。 水份指标可反映油品中混入外来水的可能性,明显的水份能破坏油膜的形成,

变压器绝缘油中气体在线监测装置技术规范书

变压器绝缘油中溶解气体在线监测装置 技术规范书 工程项目: 广西电网公司 2008年10月 目次 1总则 2使用条件 3技术参数和要求 4试验 5供货范围 6供方在投标时应提供的资料 7技术资料及图纸交付进度 8包装、运输和保管要求 9技术服务和设计联络

1 总则 1.1本规范书适用于变压器绝缘油中溶解气体在线监测装置,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套满足本规范书和现行有关标准要求的高质量产品及其相应服务。 1.3如果供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全满足本规范书的要求。如有异议,不管是多么微小,都应在投标书中以“对规范书的意见和和规范书的差异”为标题的专门章节加以详细描述。本规范书的条款,除了用“宜”字表述的条款外,对低于本规范书技术要求的差异一律不接受。 1.4本设备技术规范书经需供双方确认后作为订货合同的技术附件,和合同正文具有同等的法律效力。 1.5供方须执行现行国家标准和行业标准。应遵循的主要现行标准如下。下列标准所包含的条文,通过在本技术规范中引用而构成为本技术规范的条文。本技术规范出版时,所示版本均为有效。所有标准都会被修订,供需双方应探讨使用下列标准最新版本的可能性。有矛盾时,按现行的技术要求较高的标准执行。 DL/T 596-1996 电力设备预防性试验规程 DL/T 572-1995 电力变压器运行规程 DL/T722-2000 变压器油中溶解气体分析和判断导则 DL/573-1995 电力变压器检修导则 GB7957-1998 电力用油检验方法 GB/T17623-1998 绝缘油中溶解气体组份含量的气相色谱测定法 IEC60599-1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则 GB190-1990 危险货物包装标志 GB5099-1994 钢质无缝钢瓶 DL/T5136-2001 火力发电厂、变电所二次接线设计技术规程 GB/T17626.1 电磁兼容试验和测量技术抗扰度试验总论 GB/T17626.2 电磁兼容试验和测量技术静电放电抗扰度试验 GB /T17626.3 电磁兼容试验和测量技术射频电磁场抗扰度试验 GB/T17626.4 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T17626.5 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T17626.6 电磁兼容试验和测量技术射频场感应的传导抗扰度

变压器绝缘油的常规试验项目

1、变压器绝缘油的常规试验项目有哪些,标准是多少 变压器油的标准: 变压器绝缘油的常规试验项目(物理--化学性质的项目) 1》在20/40℃时℃比重不超过0.895(新油)。 2》在50℃时粘度(思格勒)不超过1.8(新油)。 3》闪光点(℃)不低于135(运行中的油不比新油降低5℃以上)。 4》凝固点(℃)不高于-25(在月平均最低气温不低于-10℃的地区,如无凝固点为-25℃的绝缘油时,允许使用凝固点为-10℃的油)。 5》机械混合物无。 6》游离碳无。 7》灰分不超过(%)0.005(运行中的油0.01)。 8》活性硫无。 9》酸价(KOH毫克/克油)不超过0.05(运行中的油0.4)。 10》钠试验的等级为2。 11》安定性:<1>氧化后的酸价不大于0.35。<2>氧化后沉淀物含量(%)0.1。 12》电气绝缘强度(标准间隙的击穿电压)不低于(KV):<1>用于35KV及以上的变压器(40)。 <2>用于6~35KV的变压器(30)。<3>用于6KV以下的变压器(25)。 13》溶解于水的酸或殓无。 14》水分无。 15》在+5℃时的透明度(盛于试管内)透明。 16》tgδ和体积电阻(如果浸油后的变压器tgδ和C2/C50值增高则应进行测量)tgδ不超过(%)在20℃时为1(运行中为2),在70℃时为4(运行中为7),体积电阻(无规定值但应与最低值进行比较)。 产品参数 品牌长城GreatWall 型号10/25 基本参数 产地中国石化

供货地上海南汇 包装200L 技术参数 倾点-9/-24 ℃ 闪点162/168 ℃ 运动粘 11.20/10.67 m㎡/s 度 (40℃)

运行中变压器油质量标准 GB7595—87

中华人民共和国国家标准 UDC621.892.098 ∶543.06 运行中变压器油质量标准GB7595—87 Quality criteria of transformer oils in service 国家标准局1987-03-26批准1988-01-01实施 本标准适用于充油电气设备所用各种牌号矿物变压器油在运行中的质量监督;对上述油品规定了常规检验项目、检验周期及必须达到的质量标准。 1 引用标准 GB 261 石油产品闪点测定法(闭口杯法) GB 264 石油产品酸值测定法 GB 507 电气用油绝缘强度测定法 GB 2536 变压器油 GB 5654 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的试验方法 GB 6541 石油产品油对水界面张力测定法(圆环法) GB 7598 运行中变压器油、汽轮机油水溶性酸测定法(比色法) GB 7599 运行中变压器油、汽轮机油酸值测定法(BTB法) GB 7600 运行中变压器油水分含量测定法(库仑法) GB 7601 运行中变压器油水分测定法(气相色谱法) YS-6-1界面张力测定法 YS-27-1 油泥析出测定法 YS-30-1 介质损耗因数和体积电阻率测定法 YS-C-3-1 气体含量测定法(真空脱气法) YS-C-3-2 气体含量测定法(二氧化碳洗脱法) 2 技术要求 2.1 新变压器油的验收,应按GB 2536的规定进行。 2.2 运行中变压器油应达到的常规检验质量标准列于表1。 2.3 当主要变压器用油的pH值接近4.4或颜色骤然变深时,应加强监督; 若其他某项指标亦接近允许值或不合格时,则应立即采取措施。 2.4 发现闪点下降时,应按YS—C—3—1分析油中溶解气体,以查明原因。 表 1 运行中变压器油质量标准

润滑油检测技术服务模板

润滑油检测技术服务协议 合同编号: 甲方:XX风能有限公司 乙方: 甲乙双方就甲方委托乙方对甲方风力发电机组所用润滑油进行分析检测事宜,经协商一致,达成如下协议: 一、检验内容及检验所需资质 1.1甲方委托乙方对项目油样(具体如下表所示)进行分析检测,并形成报告。 1.1.1检测项目:40℃运动粘度、100℃运动粘度、水分、总酸值、光谱元素分析、污染度。 1.2 乙方确认,为进行上述检测,乙方已完整具备检测所需资质,具体为: 附件1:中国实验室国家认可委员会认可证书; 附件2:中国国家认证认可监督管理委员会颁布的计量认证合格证书; 附件3:国家机械工业产品质量监督检测机构认可证书。 1.3乙方将按照标准对油样进行检测,乙方确认,此标准已完全满足国家、行业对该油样的检测需求。 二、检测费用及支付 2.1 检测费用 2.1.1 乙方为甲方提供以下项目的成套检测项目服务:

检测费用合计为个×元= 元(大写:人民币元整) 2.1.2在实际监测工作中,如发生2.1.1款约定之外的其他项目的检测,乙方应将其他检测项目名称、检测原因、费用等内容书面通知甲方,甲方同意并书面回复后,乙方方可进行;如未经甲方同意乙方予以检测的,检测费用视为已在油样检测费中,甲方不再另行支付。 2.2 费用支付:汇款 2.2.1乙方出具油样检测数据报告经甲方审核无异议后,乙方向甲方提供税务发票,甲方于收到发票和书面检测报告后一个月内付清检测费用。 2.2.2乙方提供账户信息如下: 户名: 开户行: 银行账号: 乙方保证上述信息的真实、准确性。 三、双方权责 3.1 甲方职责 3.1.1 负责现场采样; 3.1.2 正确标识油品的型号、取样时间、取样位置; 3.1.3 提供油样清单,主要是设备名称、使用油品型号、设备使用时间、油品使用时间等; 3.1.4 提供的每个油样数量不得少于【100】ml,对所取油样的标识应齐全可靠。 3.1.5 负责将油样邮寄到乙方实验室: 地址: 邮编: 收件人: 电话: 3.2 乙方职责

变压器油取样方法

变压器油取样方法 一、取样工具 ?1.取样瓶:KDZD-GKP油化瓶,规格500CC;KDZD-ZSQ针筒油化瓶规格100CC。500~1000mL 磨口具塞玻璃瓶,并应贴标签。 适用范围:适用于常规分析。发电厂,电力,钢铁,铁路,变电站,石化等部门相关单位实验室做油品取样试验。 ?取样瓶的准备:取样瓶先用洗涤剂进行清洗,再用自来水冲洗,最后用蒸馏水洗净,烘干、冷却后,盖紧瓶塞。 2.注射器:应使用20~100mL的全玻璃注射器(最好采用铜头的),注射器应装在一个专用油样盒内,该盒应避光、防震、防潮等。注射器头部用小胶皮头密封。适用于油中水分含量测定和油中溶解气体(油中总含气量)分析。 3.注射器的准备 ??取样注射器使用前,按顺序用有机溶剂、自来水、蒸馏水洗净,在105℃温度下充分干燥,或采用吹风机热风干燥。干燥后,立即用小胶头盖住头部待用(最好保存在干燥器中)。 4.油桶取样用的取样管 5.油罐或油槽车取样用的取样勺 从充油电气设备中取样,还应有防止污染的密封取样阀(或称放油接头)及密封可靠的医用金属三通阀和作为导油管用的透明胶管(耐油)或塑料管。 6. 二、取样方法和取样部位 1.对于变压器、油开关或其他充油电气设备,应从下部阀门处取样。取样前,油阀门需先用干净甲级棉纱或布擦净,再放油冲洗干净。对需要取样的套管,在停电检修时,从取样孔取样。 ?没有放油管或取样阀门的充油电气设备,可在停电或检修时设法取样。进口全密封无取样阀的设备,按制造厂规定取样。 2.检查油的脏污及水分时,自油箱底部取样。 注:①在取样时应严格遵守用油设备的现场安全规程。

?②基建或进口设备的油样除一部分进行试验外,另一部分尚应保存适当时间,以备考查。 ?③对有特殊要求的项目,应按试验方法要求进行取样。 三、变压器油中水分和油中溶解气体分析取样 取样方法: 1.取样的要求 ??a.油样应能代表设备本体油,应避免在油循环不够充分的死角处取样。一般应从设备底部的取样阀取样,在特殊情况下可在不同取样部位取样。 ??b.取样要求全密封,即取样连接方式可靠,不能让油中溶解水分及气体逸散,也不能混入空气(必须排净取样接头内残存的空气),操作时油中不得产生气泡。 ??c.取样应在晴天进行。取样后要求注射器芯子能自由活动,以避免形成负压空腔。 ??d.油样应避光保存。 2.取样操作 ??a.取下设备放油阀处的防尘罩,旋开螺丝6让油徐徐流出。 ??b.将放油接头4安装于放油阀上,并使放油胶管(耐油)置于放油接头的上部,排除接头内的空气,待油流出。 ??c.将导管、三通、注射器依次接好后,装于放油接头5处,按箭头方向排除放油阀门的死油,并冲洗连接导管。 ??d.旋转三通,利用油本身压力使油注入注射器,以便湿润和冲洗注射器(注射器要冲洗2~3次)。 ??e.旋转三通与设备本体隔绝,推注射器芯子使其排空。 ??f.旋转三通与大气隔绝,借设备油的自然压力使油缓缓进入注射器中。 ??g.当注射器中油样达到所需毫升数时,立即旋转三通与本体隔绝,从注射器上拔下三通,在小胶头内的空气泡被油置换之后,盖在注射器的头部,将注射器置于专用油样盒内,填好样品标签。 3.取样量: ??a.进行油中水分含量测定用的油样,可同时用于油中溶解气体分析,不必单独取样。 ??b.常规分析根据设备油量情况采取样品,以够试验用为限。

电力变压器试验项目和标准说明

电力变压器试验项目及标准说明 1 绝缘油试验或SF6气体试验; 2 测量绕组连同套管的直流电阻; 3 检查所有分接头的电压比; 4 检查变压器的三相接线组别和单相变压器引出线的极性; 5 测量与铁心绝缘的各紧固件(连接片可拆开者)及铁心(有外引接地线的)绝缘电阻; 6 非纯瓷套管的试验; 7 有载调压切换装置的检查和试验; 8 测量绕组连同套管的绝缘电阻、吸收比或极化指数; 9 测量绕组连同套管的介质损耗角正切值 tanδ ; 10 测量绕组连同套管的直流泄漏电流; 11 变压器绕组变形试验; 12 绕组连同套管的交流耐压试验; 13 绕组连同套管的长时感应电压试验带局部放电试验; 14 额定电压下的冲击合闸试验; 15 检查相位; 16 测量噪音。 注:除条文内规定的原因外,各类变压器试验项目应按下列规定进行: 1 容量为1600kVA 及以下油浸式电力变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行; 2 干式变压器的试验,可按本条的第2、3、4、5、7、8、12、14、15款的规定进行; 3 变流、整流变压器的试验,可按本条的第1、2、3、4、5、7、8、12、14、15款的规定进行; 4 电炉变压器的试验,可按本条的第1、2、3、4、5、6、7、8、12、14、15款的规定进行;

5 穿芯式电流互感器、电容型套管应分别按本标准第9章互感器、第16章的试验项目进行试验。 6 分体运输、现场组装的变压器应由订货方见证所有出厂试验项目,现场试验按本标准执行。 7.0.2油浸式变压器中绝缘油及SF6气体绝缘变压器中SF6气体的试验,应符合下列规定: 1 绝缘油的试验类别应符合本标准中表20.0. 2 的规定;试验项目及标准应符合本标准中表20.0.1 的规定。 2 油中溶解气体的色谱分析,应符合下述规定:电压等级在66kV 及以上的变压器,应在注油静置后、耐压和局部放电试验24h后、冲击合闸及额定电压下运行24h后,各进行一次变压器器身内绝缘油的油中溶解气体的色谱分析。试验应按《变压器油中溶解气体分析和判断导则》GB/T 7252进行。各次测得的氢、乙炔、总烃含量,应无明显差别。新装变压器油中H2 与烃类气体含量(μL/L)任一项不宜超过下列数值: 总烃:20, H2:10, C2H2:0, 3 油中微量水分的测量,应符合下述规定:变压器油中的微量水分含量,对电压等级为 110kV 的,不应大于 20mg/L;220kV 的,不应大于 15mg/L ;330~500kV 的,不应大于 10mg/L 。 4 油中含气量的测量,应符合下述规定:电压等级为330 ~500kV 的变压器,按照规定时间静置后取样测量油中的含气量,其值不应大于1%(体积分数)。 5 对SF6气体绝缘的变压器应进行SF6气体含水量检验及检漏:SF6气体含水量(20℃的体积分数)一般不大于250μL/L。变压器应无明显泄漏点。 7.0.3测量绕组连同套管的直流电阻,应符合下列规定: 1 测量应在各分接头的所有位置上进行; 2 1600kVA 及以下电压等级三相变压器,各相测得值的相互差值应小于平均值的 4%,线间测得值的相互差值应小于平均值的2%;1600kVA 以上三相变压器,各相测得值的相互差值应小于平均值的 2%;线间测得值的相互差值应小于平均值的1%; 3 变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于 2%;不同温度下电阻值按照式7.0.3换算: R2=R1(T+t2)/( T+t1) (7.0.3) 式中 R1、R2——分别为温度在t1、t2时的电阻值; T——计算用常数,铜导线取235,铝导线取225。 4 由于变压器结构等原因,差值超过本条第2款时,可只按本条第3款进行比较。但应说明原因。

润滑油试题

润滑油基础知识培训试题 一.填空题 1、润滑的类型有流体润滑、边界润滑。 2、润滑油主要作用有减少摩擦、清洗、散热、防锈、密封、传递动力等。 3、润滑油的主要质量指标有外观、粘度、粘度指数、酸值、闪点、水分、机械杂质、倾点和凝点、氧化安定性、灰分和残炭等。 4、润滑油的组成:基础油 + 添加剂 = 润滑油。 5、润滑油由基础油和添加剂组成;基础油是润滑油的主要成分,添加剂弥补和改善基础油性能方面不足,是润滑油的重要组成部分。 6、影响润滑剂类型的俩个主要因素速度和负荷。 7、润滑油的粘度是随温度变化而变化,温度升高粘度变小,温度降低粘度增大。 8、润滑油变黑原因:外界杂质进入油箱、油品变质、超过换油期、机器零件磨损。 9、酸值是评定新油和判断运行中油质氧化程度的重要化学指标之一。 10、温度是油品影响油品氧化的重要因素之一。 11、润滑管理的“五定”是指定点、定质、定时、定量、定人。 12、油样应在补加新油前取,以免受新油干扰,或在停机前油仍热时或设备低速运转时取样。 13、盛油样品标签,应填写单位名称、油品名称、设备名称、取样位置、取样时间等,送样单位需将样品标签的内容全部填写,不得有遗漏。 14、常规检测需取油量一般为250ml,在盛油前应先去检查盛样品是否干净、干燥,必要时用少量油样将盛样瓶冲洗一下。 15、对于正确润滑最重要的润滑油特性是粘度,随着负荷的增加,润滑油的粘度也应增加。 16、随着温度的上升,需要具有 ___更高_____ 粘度的润滑剂;随着速度的增加,需要具有 ____低______ 粘度的润滑剂。 17、润滑油压力低的主要原因:油泵出力不够,冷油器泄漏,油系统管路泄漏,溢油阀故障或误开,油箱油位过低等 18、齿轮油使用中出现腐蚀现象,可能因缺少防锈剂、油中含水、油氧化产生酸

变压器油取样化验注意事项的探讨苑雪梅

变压器油取样化验注意事项的探讨苑雪梅 摘要:我国的社会经济不断发展,生活以及生产当中,对于用电的质量都做出 了越来越高的要求。在电力系统当中,变压器一直以来都是一个重要的部分,为 电压变换、电流变换以及电压的稳定起到了有效的作用。在变压器的使用当中, 变压器油化验技术能够有效针对变压器油的质量以及使用的状况进行评估和了解。 关键词:变压器油;取样化验;注意事项 1、变压器油概述 在石油的分馏产物中有烃类和烷类,这些物质正是组成变压器油的原料。这 些原料通过一定的配比可构成变压器油,我国在变压器油方面制定了标准,该标 准就是GB2536[1]。另外,变压器油又分为很多种,这些种类的分类标准按照其 凝固点不同进行。其中有石蜡基油生产的10#号油,有环烷基油生产的45#油。 变压器油存在一些对变压器有益的作用与特性,这正是其应用于变压器的原因。首先便是具备一定的绝缘性。变压器油的绝对性与空气相比要好,而且接触 过变压器油的绝缘材料拥有更好的绝缘性能,这样可有效确保绝缘材料免受潮气 腐蚀[2]。 还有散热以及消弧的作用。变压器油比热容较大,这样其能够用作冷却,从 而达到给变压器散热的效果。而且变压器油的上下对流能够使铁芯、绕组机油升 温的情况得以应对,从而确保变压器正常运行。另外,在电路开合过程中金属导 体彼此接近容易产生电弧,而变压器油通过其具备的导热性可吸收开关切换时的 热量,这样能够起到介质灭弧作用,从而确保电弧迅速消除。 3取样方法 上面介绍了两种常见的变压器油试验,但为了保证试验结果的准确性,应对 试验的各个环节加以严格控制。接下来就介绍一下比较重要但也容易被忽视的取 样环节。 取样是变压器油试验的重要一环。取样方法也是试验方法的重要内容之一。 有些试验项目受取样方法影响较小,如密度、运动粘度、界面张力、酸值等,而 有些项目受取样方法影响较大,如介质损耗因数、含水量、含气量、溶解气体色 谱分析等。 3.1取样容器 对于不同的试验项目,要用不同的容器取样。一般说来,含水量、含气量、 溶解气体色谱分析用的油样要用注射器取,其他项目用的油样用棕色磨口瓶取。 用注射器取含水量、含气量测试用的油样,主要是为了隔绝空气。含水量、 含气量低的油,吸潮吸气速度极快,在空气中取样或用瓶子取样,测定的结果会 有较大误差。即使用注射器取样,若注射器密封不良或因磨损过甚而泄漏,也会 造成含水量上升。 用棕色磨口瓶取样的优点有两个:一是能遮光,二是密封相对较好而又开启 方便。对一般测试项目来说,油样见不见光,对测试结果影响不大,但对于介损 因数来说,油样见光后测试结果与不见光时明显不同,指标相差10~20倍。不 用棕色瓶取样,测试结果是不准确的;即使用棕色瓶取样,也不宜在阳光下长时 间照射。 3.2取样部位 确定取样部位应遵循两个原则:一是样品应能代表总体,二是要从油质可能 最劣的部位取样。“代表总体”就是要避免取滞留于某一死角、有受外界污染嫌疑

润滑油取样的正确方法

润滑油取样的正确方法 润滑油和液体取样指导方针 迪安的评述: 我最近经历了良好感觉,那是在我打开 TMC(美国卡车协会技术与维护委员会)的 信封之后。里面附上了关于推荐使用维护程序的投票总数,这个维护程序包含了所有类型的卡车润滑油样品……猜猜发生了什么! 这份维护程序跟DA公司使用已超过30年的维护程序几乎一字不差。 自从收到这个被提议的“RP”(推荐使用)说明,TMC全体成员开始投票接受它成为RP(推荐使用),而它的副本是可以连接、打印并分发给你的卡车客户。它同样也适用于工程设备客户。 迪安·奥德克里克 TMC推荐使用 润滑油和液体取样指导方针 目的和机会:这份“RP”提供了润滑油和液体取样的指导方针,它能监控润滑油及其组成状况。“RP”还介绍了针对润滑油∕成分的一般取样程序和指导方针。此外,“RP”适用于等级2到6的商用车润滑油∕液体取样。但它并没有涉及冷却液和燃料的取样与分析。 润滑油和液体取样的一般指导方针:润滑油分析计划对评价润滑油的状况、受污染程度和部件磨损来说是一个有效地预防维护工具。而正确和有效地润滑油∕液体分析需要正确地取样程序。以下是取油样时需要遵守的一般规则: 1、进行油∕液体取样时,总是遵照车间程序和实践守则去做。 2、油处于压力下或油温很高时,采集油样时要十分小心。 3、要有一致性。要以同样地方式在同一样本点取样。 4、必须清洁取样设备。使用实验室提供的干净、干燥的新取样容器。 直到准备装油样才能取下取样容器帽。 5、要在机器正常运作温度下采集油样,除非温度要求已经给定。 6、取样完毕,检查设备的用油是否足量,是否要添加新油。注意:在取样前不要往设备中添加新油。 正确地填写取样标签是十分重要的。在取样前完成标签是为了保持干净和易辨认。把标签贴在取样瓶上,然后把样品及时地送到实验

变压器油化验

变 压 器 油 化 验 主编:严小伟 审核:

目录 1、变压器油的功能及油号的使用规定 2、电力用油取样方法GB/T 7597-2007 3、GC-900-SD气相色谱仪操作规程及安装与维护 4、GCSD-A2变压器油色谱数据工作站V4.0使用说明书 5、油样色谱分析前的准备工作与操作流程 6、油介电强度测试操作规程及注意事项 7、油介损及体积电阻率测试仪操作规程及注意事项 8、微量水分测定操作规程及注意事项 9、变压器油进厂检验标准 10、变压器油出厂检验标准 11、运行中变压器油质量标准

变压器油的功能及油号的使用规定 一、变压器油的功能 变压器油除了应用于变压器外,还应用于其他许多电器设备上。这些设备包括绝缘套管、断路器、隔离开关、分接头切换开关以及互感器和电抗器等。 1、绝缘功能 在电气设备中,变压器油可将不同电位(势)的带电部分隔离开来,使其不致于形成短路。因为空气的介电常数为1.0,而变压器油的介电常数为2.25,所以油的绝缘强度要比空气的绝缘强度大得多。假设,变压器的线圈暴露在空气中,在设备运行时很快就会被击穿,而在变压器线圈之间充满了变压器油,则增加了介电强度,就不会被击穿,并且随着变压器油的质量的提高,设备的安全系数就越大。所以变压器油具有的可靠绝缘性能,时其主要的功能之一。 2、散热冷却功能 变压器在带电运行过程中,由于线圈有电阻,铁心有磁蚀和涡流损失,当电流通过时,它必然像其他电器一样发热。如果不将线圈内的这一热量散发出来,它必然会使线圈和铁心内聚积的热量越来越多,从而使铁心和线圈内部的温度急剧升高,损坏线圈外部包覆的固体纤维绝缘,以致于烧毁线圈。若是使用变压器油作为冷却介质,那么线圈内部产生的这部分热量,先是被油吸收,然后通过油的循环使热量散发出来,而不会在线圈内部产生热量的聚积,从而保证了设备的安全运行。吸收了热量的变压器油其冷却方式有自然循环冷却、自然风冷却、强迫油循环水冷却等方式。一般大容量的电力变压器大部分采用强迫油循环的冷却方式。所以散热冷却是变压器的第二大功能。 3、灭弧功能 在开关设备中,变压器油主要起灭弧作用。当油浸开关在切断电力负荷时,其固定触头和滑动触头之间会产生电弧,此时的电弧温度很高,并且随开断电流的大小而不同。如果不设法将弧柱的热量带走,使触头冷却,那么在初始电弧发生之后,还会有连续的电弧产生,从而很容易使设备烧毁,同时还会引起过电压的产生而使设备损坏。 当油浸开关在最初开断受到电弧作用时,由于电弧的高温使得油发生剧烈的热裂解,在其裂解产物中约70%的氢气。由于氢气的导热系数较大,此时氢气就可以吸收大量的热量,并且将此热量传导至油中,而直接将开关触头冷却,从而达到了灭弧的目的。所以变压器油的灭弧作用是第三大功能。 4、对绝缘材料的保护功能

润滑油管理题库

润滑油基础知识风电场岗位培训试题 一.填空题 1、 润滑的类型有流体润滑、边界润滑。 2、 润滑油主要作用有减少摩擦、清洗、散热、防锈、密封、传递 动力等。 3、 (新油)是未使用过的充入设备前的商品油。 4、(未用过的油)指新油充入设备后,在运行前的设备中的油。 5、(运行油)是已被充到设备中正在使用的油品。 6、旧油又称(用过的油),在使用期间某些性质已经发生了变化的油品。 7、润滑油的主要质量指标有外观、粘度、粘度指数、酸值、闪点、水分、机械杂质、倾点和凝点、氧化安定性、灰分和残炭等。 8、润滑油的组成:基础油 + 添加剂 = 润滑油。 9、润滑油由(基础油)和(添加剂)组成;(基础油)是润滑油的主要成分,(添加剂)弥补和改善基础油性能方面不足,是润滑油的重要组成部分。 10、影响润滑剂类型的俩个主要因素(速度)和(负荷)。 11、润滑油的粘度是随(温度)变化而变化,(温度)升高粘度变小,温度(降低)粘度增大。 12、润滑油变黑原因:外界杂质进入油箱 、油品变质、超过换油期、机器零件磨损 。 13、(酸值)是评定新油和判断运行中油质氧化程度的重要化学指标之一。 14、(温度)是油品影响油品氧化的重要因素之一。 15、润滑管理的“五定”是指(定点)、(定质)、(定时)、(定量)、(定人)。 16、油样应在补加新油前取,以免受新油干扰,或在停机前油仍热时或设备低速运转时取样。

17、盛油样品标签,应填写单位名称、油品名称、设备名称、取样位置、取样时间等,送样单位需将样品标签的内容全部填写,不得有遗漏。 18、常规检测需取油量一般为(250)ml,在盛油前应先去检查盛样品是否干净、干燥,必要时用少量油样将盛样瓶冲洗一下。 19、对于正确润滑最重要的润滑油特性是(粘度),随着负荷的增加,润滑油的粘度也应增加。 20、随着温度的上升,需要具有 ___更高_____ 粘度的润滑剂; 随着速度的增加,需要具有 ____低______ 粘度的润滑剂。 21、润滑油压力低的主要原因:油泵出力不够,冷油器泄漏,油系统管路泄漏,溢油阀故障或误开,油箱油位过低 等 22、齿轮油使用中出现腐蚀现象,可能因(缺少防锈剂)(油中含水)(油氧化产生酸性物质)造成,改进的方法是(添加防锈剂的油)(防止水分进入油中)(防止污染物进入油中)。 23、齿轮油使用中出现泡沫现象,可能因(缺少抗泡剂)(空气进入油中)(油中含水)造成,改进的方法是用含有抗泡剂油,防止空气和水进入油中 24、齿轮油使用中出现不正常发热现象,可能因(油粘度太大)(载荷过高)(齿箱外积灰太多)造成,改进的方法是(降低油粘度)(降低载荷)(清理积灰) 25、齿轮传动常见的失效形式有(断齿)(齿面磨损)(齿面胶合)(点蚀)(齿面塑性变形)。 26、齿轮传动,按其工作条件可分为(闭式)传动、(开式)传动、(半开式)传动。 27、滑动轴承是一种(滑动)摩擦的轴承,按其摩擦状态可分为流体动压润滑摩擦轴承和流体静压摩擦轴承。 28、、液压油的物理性质主要有(粘度)和(密度)。 29、液压泵的主要性能参数有(流量)(溶积效应)(压力)(功率)

变压器油的标准

变压器油的标准: 变压器绝缘油的常规试验项目(物理--化学性质的项目) 1》在20/40℃时℃比重不超过0.895(新油)。 2》在50℃时粘度(思格勒)不超过1.8(新油)。 3》闪光点(℃)不低于135(运行中的油不比新油降低5℃以上)。 4》凝固点(℃)不高于-25(在月平均最低气温不低于-10℃的地区,如无凝固点为-25℃的绝缘油时,允许使用凝固点为-10℃的油)。 5》机械混合物无。 6》游离碳无。 7》灰分不超过(%)0.005(运行中的油0.01)。 8》活性硫无。 9》酸价(KOH毫克/克油)不超过0.05(运行中的油0.4)。 10》钠试验的等级为2。 11》安定性:<1>氧化后的酸价不大于0.35。<2>氧化后沉淀物含量(%)0.1。12》电气绝缘强度(标准间隙的击穿电压)不低于(KV):<1>用于35KV及以上的变压器(40)。<2>用于6~35KV的变压器(30)。<3>用于6KV以下的变压器(25)。 13》溶解于水的酸或殓无。 14》水分无。 15》在+5℃时的透明度(盛于试管内)透明。 16》tgδ和体积电阻(如果浸油后的变压器tgδ和C2/C50值增高则应进行测量)tgδ不超过(%)在20℃时为1(运行中为2),在70℃时为4(运行中为7),体积电阻(无规定值但应与最低值进行比较)。 绝缘油和SF6 气体gb50150 20.0.1 绝缘油的试验项目及标准,应符合表20.0.1 的规定。 表20.0.1 绝缘油的试验项目及标准

行分析,其结果应符合表 20.0.1 中第8、11项的规定。混油后还应按表20.0.2 中的规定进行绝缘油的试验。 20.0.4 SF6新气到货后,充入设备前应按国家标准《工业六氟化硫》GB12022 验收,对气瓶的抽检率为10%,其他每瓶只测定含水量。 20.0.5 SF6气体在充入电气设备24h后方可进行试验。

变压器油取样方法

! 变压器油取样方法 一、取样工具 1.取样瓶:KDZD-GKP油化瓶,规格500CC;KDZD-ZSQ针筒油化瓶规格100CC。500~1000mL磨口具塞玻璃瓶,并应贴标签。 适用范围:适用于常规分析。发电厂,电力,钢铁,铁路,变电站,石化等部门相关单位实验室做油品取样试验。 取样瓶的准备:取样瓶先用洗涤剂进行清洗,再用自来水冲洗,最后用蒸馏水洗净,烘干、冷却后,盖紧瓶塞。 2.注射器:应使用20~100mL的全玻璃注射器(最好采用铜头的),注射器应装在一个专用油样盒内,该盒应避光、防震、防潮等。注射器头部用小胶皮头密封。适用于油中水分含量测定和油中溶解气体(油中总含气量)分析。 3.注射器的准备 取样注射器使用前,按顺序用有机溶剂、自来水、蒸馏水洗净,在105℃温度下充分干燥,或采用吹风机热风干燥。干燥后,立即用小胶头盖住头部待用(最好保存在干燥器中)。 ^ 4.油桶取样用的取样管 5.油罐或油槽车取样用的取样勺 从充油电气设备中取样,还应有防止污染的密封取样阀(或称放油接头)及密封可靠的医用金属三通阀和作为导油管用的透明胶管(耐油)或塑料管。 6. 二、取样方法和取样部位 1.对于变压器、油开关或其他充油电气设备,应从下部阀门处取样。取样前,油阀门需先用干净甲级棉纱或布擦净,再放油冲洗干净。对需要取样的套管,在停电检修时,从取样孔取样。 没有放油管或取样阀门的充油电气设备,可在停电或检修时设法取样。进口全密封无取样阀的设备,按制造厂规定取样。 2.检查油的脏污及水分时,自油箱底部取样。

) 注:① 在取样时应严格遵守用油设备的现场安全规程。 ② 基建或进口设备的油样除一部分进行试验外,另一部分尚应保存适当时间,以备考查。 ③ 对有特殊要求的项目,应按试验方法要求进行取样。 三、变压器油中水分和油中溶解气体分析取样 取样方法: 1. 取样的要求 a.油样应能代表设备本体油,应避免在油循环不够充分的死角处取样。一般应从设备底部的取样阀取样,在特殊情况下可在不同取样部位取样。 b.取样要求全密封,即取样连接方式可靠,不能让油中溶解水分及气体逸散,也不能混入空气(必须排净取样接头内残存的空气),操作时油中不得产生气泡。 》 c.取样应在晴天进行。取样后要求注射器芯子能自由活动,以避免形成负压空腔。 d.油样应避光保存。 2.取样操作 a.取下设备放油阀处的防尘罩,旋开螺丝6让油徐徐流出。 b.将放油接头4安装于放油阀上,并使放油胶管(耐油)置于放油接头的上部,排除接头内的空气,待油流出。 c.将导管、三通、注射器依次接好后,装于放油接头5处,按箭头方向排除放油阀门的死油,并冲洗连接导管。 d.旋转三通,利用油本身压力使油注入注射器,以便湿润和冲洗注射器(注射器要冲洗2~3次)。 e.旋转三通与设备本体隔绝,推注射器芯子使其排空。 : f.旋转三通与大气隔绝,借设备油的自然压力使油缓缓进入注射器中。 g.当注射器中油样达到所需毫升数时,立即旋转三通与本体隔绝,从注射器上拔下三通,在小胶头内的空气泡被油置换之后,盖在注射器的头部,将注射器置于专用油样盒内,填好样品标签。

2014国家电网变压器试验标准

变压器试验项目清单10kV级 例行试验 绕组直流电阻互差: 线间小于2%,相间小于4%; 电压比误差: 主分接小于0.5%,其他分接小于1%; 绝缘电阻测试:2500V摇表高压绕组大于或等于1000MΩ,其他绕组大雨或等于500MΩ; 局部放电测量(适用于干式变压器) 工频耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 噪声测试 密封性试验(适用于油浸式变压器) 附件和主要材料的试验(或提供试验报告) 现场试验: 按GB50150相关规定执行 绝缘油试验 绕组连同套管的直流电阻

变压比测量 联结组标号检定 铁心绝缘电阻 绕组连同套管的绝缘电阻 绕组连同套管的交流工频耐压试验 额定电压下的合闸试验 抽检试验 绕组电阻测量 变压比测量 绝缘电阻测量 雷电全波冲击试验 外施耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 xx试验 油箱密封性试验(适用于油浸式变压器)容量测试 变压器过载试验 联结组标号检定

突发短路试验 长时间过载试验 35kV级 应提供变压器和附件相应的型式试验报告和例行试验报告 例行试验 绕组电阻测量 电压比测量和联结组标号检定 短路阻抗及负载损耗测量 1.短路阻抗测量: 主分接、最大、最小分接、主分接低电流(例如5A2负载损耗: 主分接、最大、最小分接 3短路阻抗及负载损耗均应换算到75℃ 空载损耗和空载电流测量 1.10%-115%额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线 2.空载损耗和空载电流进行校正 3.提供380V电压下的空载损耗和空载电流 绕组连同套管的绝缘电阻测量: 比值不小于1.3,或高于5000MΩ绕组的介质损耗因数(tanδ)和电容测量 1.油温10-40℃之间测量 2.报告中应有设备的详细说明

变压器油中溶解气体分析和判断导则DLT—

变压器油中溶解气体分析和判断导则D L T—集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

变压器油中溶解气体分析 和判断导则 编写: 审核: 批准:

变压器油中溶解气体分析和判断导则 ? Guide to the analysis and the diagnosis of gases dissolved in transformer oil ? ? 1 范围 ? 本导则推荐了利用气相色谱法分析溶解气体和游离气体的浓度,以判断充油电气设备运行状况的方法以及建议应进一步采取的措施。 本导则适用于充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备,其中包括变压器、电抗器、电流互感器、电压互感器和油纸套管等。 ? 2 引用标准 ? 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 7597—87 电力用油(变压器油、汽轮机油)取样方法 GB/T 17623—1998 绝缘油中溶解气体组分含量的气相色谱测定法 DL/T 596—1996 电力设备预防性试验规程 IEC 567—1992 从充油电气设备取气样和油样及分析游离气体和溶解气体的导则 IEC 60599—1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则 ? 3 定义 ? 本导则采用下列定义。 特征气体 characteristic gases 对判断充油电气设备内部故障有价值的气体,即氢气(H 2)、甲烷(CH 4 )、乙烷(C 2 H 6 )、乙烯 (C 2H 4 )、乙炔(C 2 H 2 )、一氧化碳(CO)、二氧化碳(CO 2 )。 总烃 total hydrocarbon 烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。游离气体 free gases 非溶解于油中的气体。 ? 4 产气原理 ? 绝缘油的分解

变压器油质的检测

变压器油质的检测 1、油质检测的内容 1)取样。首先应保证取油样的器具必须清洁、干燥。清洗方法要严格按取样方法标准中有关规定执行。取样前要将储油容器的取样口认真擦洗干净,取样时,应利用初取样之油将器具冲洗一遍。开始取样,要放掉采样死区的油,整个取样过程,要防止油样受外界污染,防止空气、水分侵入,油样要避光保存。取样时,要排净取样器具内的残余空气,油样进入取样器时要防止产生气泡。 油样采集后应及时试验,若不能及时试验,油样要密封避光保存;油中溶解气体分析油样不得超过四天,水分测定油样不得超过十天。容器内油面要留有一定的空隙,油受热有膨胀的余地。在运送过程中,要防止油样摇幌。 2)外观检测。用目测,将油样置于100mL量筒内,在20±5℃下观察,油样呈透明,无悬浮和机械杂质为合格;纯净的变压器油应是淡黄而略带微蓝色,清澈、透明、无可见的悬浮物和机械杂质等任何异物。若油存在弥散状态水分时,将失去应有的透明度,颜色也会由黄变白。油若老化,随着老化的程度不同,油逐渐变深、变暗。逐渐失去透明,以致出现絮状物和油泥。 3)理化性能的检测 ⑴酸值与水溶性酸。新油几乎不含酸性物质,其酸值常为0;PH值在6~7之间。运行中的变压器油的酸值要求≤0.1;水溶性酸PH值要求≥4.2。长期贮存的、特别是长期运行的变压器油,由于吸收了空气中的氧,并与之化合而产生各种有机酸和酚类以及胶状油泥,这些酸性物质会提高油的导电性,降低油的绝缘性能,在高温运行条件下还会促使纤维材料老化,缩短变压器的使用寿命。 ⑵闪点。闪点降低,表示油中有挥发性可燃物质产生,这些低分子碳氢化合物,是局部放电等故障造成过热,油在高温下裂解生成的。测定油的闪点,还可发现油中是否混入轻质馏份的油品,预试规程中规定变压器油的闪点≥135℃。但运中的油闪点已不作常规检验项目。 ⑶水分。变压器有一定的亲水性。它会从空气中汲收水分,而油中水分含量是影响绝缘性能的重要

相关文档
相关文档 最新文档